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Abstract—In this paper, a kernel classification distance metric 

learning framework is investigated for face verification. The 

framework is to model the metric learning as a Support Vector 

Machine face classification problem, where a Mahalanobis 

distance metric is learnt in the original face feature space. In the 

process, pairwise doublets that are constructed from the 

training samples can be packed and represented in a means of 

degree-2 polynomial kernel. By utilizing the standard SVM 

solver, the metric learning problem can be solved in a simpler 

and efficient way. We evaluate the kernel classification-based 

metric learning on three different face datasets. We demonstrate 

that the method manages to show its simplicity and robustness 

in face verification with satisfactory results in terms of training 

time and accuracy when compared with the state-of-the-art 

methods. 

 

Index Terms—Face Verification; Kernel Classification; 

Metric Learning; Support Vector Machine; Doublets. 

 

I. INTRODUCTION 

 

Face verification has attracted enormous interest among the 

computer vision and biometric researchers in the past few 

decades. The main factor of its popularity is due to the wide 

range and non-intrusiveness of its practical applications such 

as the law-enforcement and military applications. Face 

verification aims to determine whether a given pair of face 

images is from the same person or different person. It is 

crucial that the significant variations of a face image caused 

by varying aging, lighting, pose, expression and others to be 

handled well in order to satisfy the real-world scenarios.  

Metric learning techniques play an important role in many 

machine learning tasks such as image retrieval, face 

verification, image identification and activity recognition to 

improve their performance. Metric learning techniques have 

been extensively applied in face verification [1]-[4] over the 

years. A new distance metric is always learned from the 

training samples to effectively measure the similarity 

between face samples by enlarging the similarity of similar 

pairs and reducing the similarity of the dissimilar pairs. There 

are various types of metrics can be learned, depending on the 

objective functions of the metric learning algorithms. Not 

limited to Mahalanobis metrics [5,6], there are also similarity 

metrics [7,8], nonlinear distance metrics [9] and multiple 

metrics [10]. 

Although numerous metric learning algorithms have been 

proposed and proved to be useful, there are still problems to 

be further investigated. Certain metric learning methods 

which require all pairwise distances between points [11] are 

inefficient to solve large-scale problems. There is also 

situation where some metric learning methods relying on the 

additional information might be impractical in some 

scenarios such as verifying a foreigner who does not have any 

identity information in data bank, or an intruder who tries to 

abuse the system repeatedly. In addition, the ability of 

recasting metric learning as a supervised learning problem 

remains as an interesting topic to further study. 

With considerations of the mentioned issues and inspired 

by the work of [29], a kernel classification-based metric 

learning, dubbed  Support Vector Machine Metric Learning 

(SVMML) is modified to fit the face verification pipeline in 

order to learn a Mahalanobis distance metric of the original 

face feature space. This framework prepares a unified model 

to be integrated in the existing metric learning method, such 

as large margin nearest neighbor (LMNN) [5]. 

Experiments results are reported based on two types of 

settings: standard and restricted wild face verification 

protocol. The former one is implemented by using FERET 

[13] and AR [14] datasets, where the number of classes, the 

number of images per class and the class of a particular image 

belongs to are considered in the learning process. The latter 

case is implemented by using Labeled Faces in the Wild 

(LFW) [15] dataset, where only same or not same person 

labels are used in training and no other information about the 

person is available. 

The paper reviews the related works in Section 2 and lists 

the contribution of SVMML in face verification in Section 3. 

Section 4 presents the work in detail. Experimental results are 

presented in Section 5. Finally, Section 6 concludes the paper. 

 

II. RELATED WORKS 

 

A good metric learning algorithm should equip the ability 

to emphasize relevant dimensions while reducing the 

influence of non-informative dimensions [16]. When learning 

a Mahalanobis matrix, attention should be paid to three 

criteria. The first criterion is that the learning algorithm 

should be global. All the useful samples should be used for 

training as many as possible. However, due to the limitation 

of algorithm efficiency, not all the samples could be trained. 

This in turn may cause the overfitting problem. The second 

criterion is that the labels of the training samples should be as 

weak as possible. In our real life scenarios, it is always 

difficult to obtain strict label of the training samples. 

Compared with class labels, data pair labels (similarity/ 

dissimilarity) are weaker and more practical in metric 

learning applications. The third criterion is that the metric 

learning algorithms should be scalable with respect to the size 

of the training samples. In another word, the algorithmic 

efficiency should be high. 
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The famous metric learning algorithm introduced by 

Weinberger et al. [5] learns a transformation matrix in order 

to improve the k nearest neighbour (kNN) classification. The 

objective is to maintain the consistency in the sample’s 

neighbourhood and keeping a large margin at the boundaries 

of different categories. Kumar et al. [17] proposed an 

extension version of LMNN, named ILMNN for 

transformation invariant classification.  On the other hand, 

Information Theoretic Metric Learning (ITML) [18] is 

designed to deal with general pair-wise constraints, which 

maximizes the differential entropy of a multivariate Gaussian 

subject to constraints on the associated Mahalanobis distance. 

ITML is fast and scalable but the constraints of the model are 

restricted. An extended ITML [19] is presented by Saenko et 

al. for visual category domain adaptation. Logistic 

Discriminant Metric Learning (LDML) [6] learns the metric 

from a set of labelled image pairs. Hieu et al. [2] implements 

Cosine Similarity Metric Learning (CSML) which leads to a 

fast gradient-based optimization algorithm. 

Furthermore, Perez-Suay et al. [20] proposed a batch and 

online scheme for metric learning based on margin 

maximization. Its metric learning method utilizes the doublet-

based constraints but its model is different with [29]. There 

are also methods proposed for learning the nonlinear distance 

metric [9],[10] and multiple distance metric [21]. 

 

III. CONTRIBUTION 

 

Several issues of the existing metric learning methods as 

discussed motivate us in adapting the SVMML in face 

verification problem. The SVMML offers several merits in 

face verification such as: 

• Provide a platform for developing a new metric 

learning algorithm by adopting the standard SVM 

solvers. 

• Transferrable weak supervised metric learning. 

• Scalable to big data. 

• Simple structure of learning pipeline promises faster 

processing time 
 

IV. SYSTEM OVERVIEW 

 

In this section, the overview of the proposed face 

verification system is explained. Firstly, the cropped images 

are filtered with DoG filter [22] to enhance the image quality 

and suppress the noises. Then, each face image is partitioned 

into several local regions and the face descriptors are 

extracted from each region independently via OCLBP [24]. 

Due to the large dimension of the face descriptors, dimension 

reduction is needed. Two types of dimension reduction 

techniques: PCA [25] and WPCA [26] are applied separately 

in order to compare their performance in the flow to obtain 

the higher accuracy. The reduced features are then processed 

by the SVMML approach to produce the transform matrix. 

 

A. Face Descriptor 

OCLBP is an extended version of the original LBP [23], 

where it is computed with overlapping blocks and repeated 

with different sizes and radius [24]. The main reason to 

choose OCLBP as the face descriptor is due to its simplicity 

and speed in the implementation.  

Given an input image and a set of parameters as in Equation 

(1), local descriptors can be generated: 

 

𝐿 = {(𝑚𝑖 , 𝑛𝑖 , 𝑣𝑖 , ℎ𝑖 , 𝑝𝑖 , 𝑟𝑖)}𝑖=1
𝑘  (1) 

 

where image is divided into the blocks of size 𝑚𝑖×𝑛𝑖 with 

vertical overlap of 𝑣𝑖, horizontal overlap of ℎ𝑖using the 

operator 𝐿𝐵𝑃𝑝𝑖,𝑟𝑖
𝑈2 with U2, the uniform patterns, the number of 

points 𝑝 that are uniformly sampled over a circle of radius 𝑟. 

Fig. 1 illustrates the circular neighbourhoods by (𝑝, 𝑟). The 

computation is repeated for 𝑘 configurations in 𝐿.  

All the descriptors are to be concatenated to form a single 

vector which is the resulted OCLBP descriptor. The resulted 

OCLBP descriptor will then be processed with PCA or 

WPCA to reduce its large dimension. 
 

 
 

Figure 1: Illustration of circular neighborhoods (8,1) 

 

B. Dimension Reduction 

PCA is a conventional dimensional reduction technique 

that forms the basis of numerous studies in face recognition 

literature. The use of PCA was proposed by Turk et al. [25]. 

PCA-based algorithms are popular because of the ease of 

implementing them and their reasonable performance level 

[27]. The PCA extracts the eigenvectors corresponding to the 

largest eigenvalues which serve as the principal components 

by computing the covariance matrix of the feature set. 

Suppose that there are 𝑁 training samples of 𝑛 dimension for 

each vector, {𝑥𝑖}𝑖=1
𝑁 ∈ ℝ𝑛 and 𝑚 is the mean of the total 

training samples. The covariance matrix of the training can 

be defined as follow:  

 

𝐶 =  
1

𝑁
∑(𝑥𝑖 − 𝑚)(𝑥𝑖 − 𝑚)𝑇

𝑁

𝑖=1

 (2) 

 

Recently Weighted PCA (WPCA) is a famous tool for 

dimension reduction among the researchers. WPCA is an 

extended version of PCA, which it considers the weighted 

coefficient to suppress the responses from larger eigenvalues. 

It emphasizes on the training samples that are very close to 

the test sample and reduces the influence of the other training 

samples. Suppose that there are 𝑁 training samples of 𝑛 

dimension for each vector, {𝑥𝑖}𝑖=1
𝑁 ∈ ℝ𝑛 and let 𝑡 be the test 

sample. The weighted covariance matrix of WPCA is as 

follows: 

 

𝐶𝑊 =
1

𝑁
(𝑤𝑖𝑥𝑖)(𝑤𝑖𝑥𝑖)𝑇 (3) 

 

where 𝑤𝑖 = 𝑒𝑥𝑝 (−
𝑚𝑎𝑥𝑑−𝑑𝑖𝑠𝑡(𝑥,𝑡)

𝜇
), 𝑚𝑎𝑥𝑑 is the maximum 

value of the distance between 𝑥𝑖 … 𝑥𝑁 and 𝑡, 𝑑𝑖𝑠𝑡(𝑥, 𝑡) is the 

distance between 𝑥𝑖 and 𝑡, while 𝜇 is a positive constant. 𝑤𝑖  is 

called as weight coefficient. WPCA takes the eigenvectors 

corresponding to the first 𝑑 largest eigenvalues of 𝐶𝑊as 

projection axes and exploits these projection axes to 

transforms the sample into a 𝑑-dimensional space. 
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C. Doublets and Pairwise 

SVMML considers a set of constraints imposed on the 

doublets or pairwise of training face samples to learn the 

distance metric. There are two face verification settings in our 

experiments: standard face verification and wild face 

verification. For standard face verification, SVMML is 

operated on the doublets. Doublets of a training sample are 

composed of a nearest similar neighbour 𝑚1 and a nearest 

dissimilar neighbour 𝑚2. Let 𝐷 = {(𝑥𝑖 , 𝑦𝑖)|𝑖 = 1,2, … , 𝑛} be 

a training dataset, where vector 𝑥𝑖 ∈ ℝ𝑑 represents the 𝑖th 

training sample and scalar 𝑦𝑖denotes the class label of 𝑥𝑖. A 

doublet (𝑚1 + 𝑚2) is built from any two samples extracted 

from 𝐷 and a label 𝑒 is given to this doublet where 𝑒 = 1 if 

𝑦𝑖 =  𝑦𝑗 and 𝑒 = −1 if 𝑦𝑖 ≠  𝑦𝑗. By combining all the 

doublets constructed from all training samples, a double set 

is formed by {𝑧1, … , 𝑧𝑁𝑑
}, where 𝑧𝑙 = (𝑥𝑙,1, 𝑥𝑙,2), 𝑙 =

1,2, . . , 𝑁𝑑. The label of doublet of 𝑧𝑙 is denoted by 𝑒𝑙.   

For the wild face verification, SVMML learns the pairwise 

of the training samples. Due to the lack of information on the 

class label and the number of classes in the LFW setting, we 

could only generate the pairwise based on the restricted 

protocol of the LFW. Among the matched pairs, we set 𝑒 =
−1; while for the mismatched pairs, we set 𝑒 = 1. Same with 

the standard face verification setting, all the label of the 

pairwise generated from the training samples are pooled and 

denoted by 𝑒𝑙. 

 

D. Kernel Classification-based Metric Learning 

Distance metric learning can be readily formulated as a 

kernel classification problem by incorporating the degree-2 

polynomial functions which can be operated on the pairs of 

doublets/ pairwise. 

Let 𝑥𝑖 and 𝑥𝑗 be the two training samples, degree-2 

polynomial kernel can be defined as: 

 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑡𝑟(𝑥𝑖𝑥𝑖
𝑇𝑥𝑗𝑥𝑗

𝑇) 

           = 𝑡𝑟(𝑥𝑖
𝑇𝑥𝑗)

2
 

(4) 

 

where 𝑡𝑟(∙) is the trace operator of a matrix. From here, it 

is said to fulfil the Mercer’s condition [28]. 

In order to apply the kernel function as defined in Eq. (4) 

to a pair of doublets/ pairwise, we can extend the degree-2 

polynomial kernel as: 

 

𝐾𝐷(𝑧𝑖 , 𝑧𝑗) = 𝑡𝑟 ((𝑥𝑖,1 − 𝑥𝑖,2)(𝑥𝑖,1 − 𝑥𝑖,2)
𝑇
 

                (𝑥𝑖,1 − 𝑥𝑖,2)(𝑥𝑖,1 − 𝑥𝑖,2)
𝑇

) 

= ((𝑥𝑖,1 − 𝑥𝑖,2)
𝑇

(𝑥𝑗,1 − 𝑥𝑗,2))
2

 

(5) 

 

where 𝑧𝑖 = (𝑥𝑖,1, 𝑥𝑖,2) and 𝑧𝑗 = (𝑥𝑗,1, 𝑥𝑗,2) are the pair of 

doublets/ pairwise. With Equation (5), a decision function is 

learnt to decide whether the two samples of a doublet have 

the same class label. 

With the introduction of the degree-2 polynomial kernels, 

the task of metric learning can be solved. Any kernel 

classification method can be used to learn the kernel classifier 

as follows: 

 

𝑔𝑑(𝑧) = 𝑠𝑔𝑛 (∑ 𝑒𝑙 ∝𝑙 𝐾𝐷(𝑧𝑙 , 𝑧) +  𝑏
𝑙

) (6) 

 

where 𝑧𝑙 , 𝑙 = 1,2, . . , 𝑁 is the doublet of the training dataset, 

𝑧 = (𝑡𝑖,𝑡𝑗) is the test doublet, ∝𝑙 is the weight and 𝑏 is the 

bias. 

By substituting Eq. (5) into Eq. (6) for doublets, 

 

∑ 𝑒𝑙 ∝𝑙 𝑡𝑟 ((𝑥𝑙,1 − 𝑥𝑙,2)(𝑥𝑙,1 − 𝑥𝑙,2)
𝑇

𝑙
 

(𝑡𝑖 − 𝑡𝑗)(𝑡𝑖 − 𝑡𝑗)
𝑇

) +  𝑏 

=  (𝑡𝑖 − 𝑡𝑗)𝑊(𝑡𝑖 − 𝑡𝑗)
𝑇

+ 𝑏 

(7) 

 

where 𝑊 is the matrix of Mahalanobis distance metric. 

 

𝑊 = ∑ 𝑒𝑙 ∝𝑙 (𝑥𝑖,1 − 𝑥𝑖,2)(𝑥𝑖,1 − 𝑥𝑖,2)
𝑇

𝑙
 (8) 

 

The kernel decision function in Equation (6) can be used to 

determine whether the test doublets are similar to each other 

or not. 

On the other hand, the SVM-like model can be adopted to 

learn the distance metric: 

 

min 𝑟 (𝑊) + 𝑝(𝜉) (9) 

𝑠. 𝑡. 𝑓𝑙
(𝑑)

((𝑥𝑙,1 − 𝑥𝑙,2)𝑊(𝑥𝑙,1 − 𝑥𝑙,2)
𝑇

, 𝑏, 𝜉𝑙) ≥ 0 (10) 

𝜉𝑙 ≥ 0 (11) 

 

where 𝑟(𝑊) is the regularization term, 𝑝(𝜉)is the margin 

loss term, the constant 𝑓𝑙
(𝑑)

can be any linear function. If the 

Frobenius norm is applied to regularize 𝑊 and the hinge loss 

penalty 𝜉, the model in (9) will become the standard SVM 

[12]. 

To build SVMML, Frobenius norm regularizer is set as 

𝑟𝐾𝐶𝑀𝐿(𝑊) =
1

2
‖𝑊‖𝐹

2 , and the margin loss term is set as 

𝑝𝐾𝐶𝑀𝐿(𝜉) = 𝐶 ∑ 𝜉𝑙𝑙  . The SVMML can be redefined as: 

 

min
1

2
‖𝑊‖𝐹

2 + 𝐶 ∑ 𝜉𝑙
𝑙

 (12) 

s. 𝑡. 𝑒𝑙 ((𝑥𝑙,1 − 𝑥𝑙,2)𝑊(𝑥𝑙,1 − 𝑥𝑙,2)
𝑇

+ 𝑏 ≥ 1 − 𝜉𝑙) (13) 

𝜉𝑙 ≥ 0, ∀𝑙 (14) 

 

where ‖∙‖𝐹 is the Frobenius norm. The Lagrange dual 

problem of the proposed SVMML is as below: 

 

max
𝛼

−
1

2
∑ 𝛼𝑖𝛼𝑗𝑒𝑖𝑒𝑗𝐾𝐷(𝑧𝑖 , 𝑧𝑗) + ∑ 𝛼𝑖

𝑖𝑖,𝑗
 (15) 

𝑠. 𝑡. 0 ≤ 𝛼𝑙 ≤ 𝐶, ∀𝑙 (16) 

∑ 𝛼𝑙𝑒𝑙 = 0
𝑙

 (17) 

 

By using the existing SVM solvers, the problem can be 

easily solved. A two-step greedy strategy is applied for metric 

learning. The positive semi-definite constraint is neglected 

and the LibSVM is used to learn a preliminary matrix 𝑊, 

which is mapped onto the space of positive semi-definite 

matrices. 

 

V. EXPERIMENTAL RESULTS 

 

Experiments are conducted based on two types of settings: 

standard and wild face verification, to evaluate the 

performance of SVMML in constrained and unconstrained 

setting for face verification. FERET [13] and AR [14] 
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datasets are used in the standard face verification settings, 

while LFW [15] is used in the wild face verification setting. 

For FERET dataset, 2000 images are randomly selected 

from the original dataset. There are 200 classes in the subset, 

where each class consists of 5 training images and 5 testing 

images. 

For AR dataset, a total of 1980 images for 99 classes have 

been randomly selected from the original dataset. For each 

class, there are 10 training images and 10 testing images. 

We followed the standard LFW face verification 

“Restricted View 2” protocol. LFW consists of a total of 

13,233 face images from 5,749 individuals. There are 6,000 

different face image pairs arranged randomly from the sets to 

form 5,400 pairs (2,700 matched pairs and 2,700 mismatched 

pairs) for training and 600 pairs (300 matched pairs and 300 

mismatched pairs) for testing. 

In our experiments, all the original face images are cropped 

into 73 x 61 pixels. In order to enhance the quality of the face 

image and to suppress the Gaussian noises, DoG filter is 

applied on each face image. To be fair in comparison, our 

proposed system does not make use of any outside training 

data. Yet, none of the further type of preprocessing such as 

pose estimators or 3D modeling is being used in the 

experiments. 

Experiments are conducted using different face datasets 

with different dimension reduction techniques, different 

dimensions and different number of training sets. 

Performance is evaluated based on accuracy in percentage 

and training time in seconds. In Table 1, we compare 

SVMML with the state-of-the-art metric learning methods in 

face verification based on the standard and wild face settings. 

There is very less similar framework in standard verification 

setting to solve the supervised problem. Here we compare 

LMNN with our SVMML and it is interestingly shown that 

SVMML is able to boost the accuracy rate up to 97% on 

FERET while LMNN can achieve at 89.89%. For wild face 

verification setting, SVMML is able to outperform the listed 

state-of-the-art methods with 77.81% of accuracy rate. 

Incorporating the classification power in the metric learning 

process helps in improving the performance compared to the 

well-known methods such as LDML, NOWAK, ITML which 

achieve 72.8%, 73.93% and 76.18% respectively. 
 

Table 1  

Comparisons of accuracy for various metric learning methods using 

standard and wild face verification settings. 
 

Standard Face Verification Setting 

Learning Method Accuracy (%) 

LMNN [5] 89.89 
SVMML 97 

 

Wild Face Verification Setting 

Learning Method Accuracy (%) 
CSML [2] 71.12 

LDML [6] 72.8 

NOWAK [30] 73.93 
ITML [19] 75.2 

MERL+NOWAK [31] 76.18 

SVMML 77.81 

 

Figure 2 illustrates the performance of SVMML with the 

assistance of different dimension reduction techniques: PCA 

or WPCA, on the standard face datasets, FERET and AR with 

different reduced dimensions. The best result of FERET can 

be obtained at 96.2% and 97% by applying PCA and WPCA 

respectively, when reducing the feature length to 100. On the 

other hand, AR dataset also achieves the best accuracy at the 

length of 100 for both the PCA and WPCA, with 86.77% and 

88.38% respectively. From the experiments, it is proven that 

WPCA may assist better in the verification process since it 

suppresses the responses from larger eigenvalues.  

Figure 3 shows the performance of SVMML with WPCA 

using different number of training sets from the  LFW 

datasets on different dimensions (number of blocks=49; 

reduced dimension={2,5,10,12,15,20}). Each training sets 

consists of 300 pairs of images. The highest accuracy rate can 

be achieved at 77.81% with the dimension of 735 with 6 

training sets. This dimension 735 is based on the block-based 

concept produced by OCLBP, which consists of 49 blocks 

and 15 feature length of each block. The WPCA is applied on 

each of the block separately and the reduced features are 

concatenated before sending to SVMML for learning. 
 

 

 
 

Figure 2: The Performance of SVMML with PCA or WPCA on FERET 
and AR datasets with different dimensions. 

 

 

 
 

Figure 3: The Performance of SVMML with WPCA on LFW datasets with 

different dimensions. 

 

Table 2 demonstrates the training time in seconds of 

SVMML on different face datasets with different number of 

training images and different dimensions of features. It is 

obviously shown that the training time for SVMML is much 

faster than LMNN, even with large training samples in LFW. 

For LFW, it takes around 5 to 32.5 seconds to train 10800 

images. In addition, the training time for the FERET and AR 

datasets fall within the range of 0.14 seconds to 1.45 seconds. 

This is considerably fast to train around 1000 images. The 

short training time proves the simplicity and efficiency of 

SVMML. 
 
 

 

PCA-
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PCA-
200

PCA-
400

WPCA-
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WPCA-
200

WPCA-
400

FERET 96.2 96 96 97 96.5 91.5

AR 86.77 84.75 84.95 88.38 85.13 83.55
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Table 2  

Training time of SVMML on difference face datasets with different number 
of training images and dimensions. 

 

Method 
Face 

Datasets 

No. of 
Training 

Images 

Feature 

Dimensions 

Training 
Time 

(Sec) 

LMNN 

[5] 

YALE-B 1690 300 480 

ORL 280 200 66 

SVMML 

FERET 

1000 100 0.359 

1000 200 0.547 

1000 400 1.454 

AR 

990 100 0.141 

990 200 0.451 

990 400 0.844 

LFW 

10800 98 4.938 

10800 245 5.531 

10800 490 11.816 

10800 588 13.706 

10800 735 21.518 

10800 980 32.49 

 

VI. CONCLUSIONS 

 

In this paper, the ability for applying the kernel 

classification concept as distance metric learning in face 

verification is analysed and evaluated. By coupling a degree-

2 polynomial kernel with the kernel methods, SVMML is 

able to act as a unified model for the metric learning 

approach. SVMML, which is implemented by the standard 

SVM solvers on the doublets/pairwise, is able to achieve a 

satisfactory result which is comparable to the state-of-the-art 

methods in terms of verification rate. The simple structure of 

the SVMML learning process, not only guarantee faster 

processing time, may also encourages the weak supervised 

learning. The efficiency and effectiveness of the kernel 

classification-based metric learning is worth to be further 

investigated with supervised, semi-supervised and even 

nonlinear metric learning algorithms. 
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