
 e-ISSN: 2289-8131 Vol. 9 No. 2-2 55

RFID Data Reliability Optimiser Based on Two

Dimensions Bloom Filter

Siti Salwani Yaacob, Hairulnizam Mahdin, Shahreen Kasim

Faculty of Computer Science and Information Technology,

Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Johor, Malaysia.

hairuln@uthm.edu.my

Abstract—Radio frequency identification (RFID) is a flexible

deployment technology that has been adopted in many

applications especially in supply chain management. RFID

system used radio waves to perform wireless interaction to

detect and read data from the tagged object. However, RFID

data streams contain a lot of false positive and duplicate

readings. Both types of readings need to be removes to ensure

reliability of information produced from the data streams. In

this paper, a single approach, which based on Bloom filter was

proposed to remove both dirty data from the RFID data

streams. The noise and duplicate data filtering algorithm was

constructed based on bloom filter. There are two bloom filters

in one algorithm where each filter holds function either to

remove noise data and to recognize data as correct reading from

duplicate data reading. Experimental results show that our

proposed approach outperformed other existing approaches in

terms of data reliability.

Index Terms—RFID; Bloom Filter; False Positive Reading;

Noise; Duplicate Reading; Redundancy.

I. INTRODUCTION

Radio Frequency Identification (RFID) technologies has been

broadening applied in many applications such as supply chain

management [1], healthcare management system[2], public

transport system [3], and library management system [4].

RFID is a technology that uses radio waves to transfer

detecting information between reader and tagged object from

a distance without line of sight.

A typical RFID system consist of tag, reader, middleware

and application [5]. A tag is a package that can be attached to

the physical object. While reader, also known as interrogator

will communicate with the tag by transmitting radio waves.

The tag then sends the radio signal back to the reader and

sends to the server for further analysis and processing of data.

The RFID data generally in the form of reader_id, tag_id and

timestamp [6].

As the tag is unique, the readers are able to detect the

information of RFID tag items from a certain location at

different times. While for RFID data are generated quickly

and automatically [7], it can be used for real-time monitoring

[7] or accumulated for object tracking [8]. Since the

advancement of RFID technology has been broadened in

many applications, RFID system still suffers from several

conflicts that prevent it being implemented by the industry.

The crucial part by implementing RFID system is to deal with

the flood of data generated by the reader [9].

For example, the Coca-Cola Company produced more than

a billion bottles per day. An effective retail in-store logistics

at Coca-Cola Company is necessary to ensure high product

availability at minimum operating cost [10]. The unreliable

data reading such as noise, duplicate reading that were

produced by RFID reader has become the primary factor

limiting the widespread adoption of this technology. In that

case, it is compulsory to filter the original data to maintain its

reliability of data reading for business process. This is

because, a small decrease of effective read rate will reduce

the accuracy and reliability of further data process [11].

Therefore, it is necessary to implement filtering technique to

provide quality RFID data.

RFID system generates massive amount of data which

often contains errors and unimportant readings [12]. The

errors can be classified into three types of error readings that

caused by hardware in RFID system [13]; noise reading,

missed reading and duplicate reading. Noise data or false

positive reading happens when reader detects a tag, but it is

not in the reader’s field [14]. This happens because of tag

collisions [15] and reader collisions [16]. Reader collision

occurs when the signals from two or more readers overlap.

Tag collision occurs when many tags are present in a small

area. Although the occurrence of noise reading is low [17],

noise reading can mislead important business decision-

making. Missed reading or false negative happens when the

tag is considered to be absent when it is present in the reader

vicinity. However, missed reading can be solved by multi-

reading periodically [6]. While data redundancy or duplicate

readings occurred when the similar RFID data readings

generates repeatedly due to multiple readings cycle and

multiple readers implemented to cover specific area [18]. The

duplicate readings problem is recognized as a serious issue in

RFID and sensor networks [19]. Therefore, it is necessary to

implement filtering technique to provide quality RFID data.

II. RELATED WORKS

Previous research on RFID data filtering, most of the

approaches treated duplicate reading issue and noise reading

issue in separate problem.

A. Window Based Approach

One of the approaches that used to filter data is by

implementing window based approach. There are two types

of window-based approach discovered; sliding window and

landmark window [20]. Figure 1 portrayed the sliding

window and landmark window. Sliding window is a window

with certain, size that moves with specific time. While

landmark window is a window that move with time.

Bai et al., [17] has conducted a research that focuses on

reducing noises, false positive readings, false positive

readings and duplicate readings. To overcome noise

problems, they have proposed a technique where any tag

Journal of Telecommunication, Electronic and Computer Engineering

56 e-ISSN: 2289-8131 Vol. 9 No. 2-2

below the threshold value will be discard. Else, if the number

of the readings with the same tag EPC values appears equal

to or above threshold, then the EPC value is not noise and

need to be forward for further processing. While in the

duplicate elimination process, they proposed a technique by

keeping a sliding window of size exist another reading in the

window with the same key, then it issue (max_distance) in

time from the previous reading with the same key. Then this

reading is considered a new reading.

Figure 1: (a) Sliding window, and (b) Landmark Window

Tyagi, Ansari and Khan [21] proposed dynamic threshold

sliding-window based approach (DTSW) to reduce false

positive reading and false negative reading by adding time

scheduling on threshold value. This means after a period of

time, the data will recognize as a tag or else it will consider

as a noise. They also proposed a technique to inspect data

format of RFID and associate values such as header

information by introducing CheckEPCHeader(). After

recognizing data as a tag, CheckEPCHeader() will inspects

all tags either it is a real tag or it is a noise.

Mahdin & Abawajy [22] proposed an approach denoise and

duplicate elimination algorithm (DDSW) to filter noise and

duplicate readings in one algorithm that make one filter. This

approach used number of occurrence per time as the basis of

filtering data in the data stream. Thus, eliminating one of the

filters reduces the time required to filter duplicate readings.

Then the author focuses their works to filter duplicate reading

filtering in RFID data stream [23]. However, this approach

has low false positive rates, which illustrates the improved

correctness of the filtering process. It is more efficiency in

terms of time and memory usage.

K. Hu et al., [6] has proposed HTB algorithm as a solution

to filter noise data in RFID data streams based on sliding

window approach. They solve the problem of sliding window

when the size of data getting bigger, the RFID reading has not

been outputted until expiring in sliding window. Although the

research focuses on filtering on false positive reading, they

are actually filtering the duplicate reading by applying time

tolerance threshold in hash table technique.

B. Bloom Filter Approach

Another approach that used to filter data in RFID is Bloom

filter approach [24]. A Bloom filter is a space-efficient

probabilistic data structure that tells either the data is in the

set or not.

Figure 2 shows a basic structure design of bloom filter. It

represents data in its bit array of size m using k number of

hash functions. Whenever the data has been hash, all bits in

array that are initially set to 0 will be substitute to 1. The basic

bloom filter supports two operations: test and add [25].

Based on Figure 3, the picture visualizes how a bloom filter

operates. The bloom filter simply adds data such Tag X and

Tag Y in the bloom filter. To test if an item is stored in the

filter, again we feed it to the same k hash function. If one or

more of these bits is not set then the queried element is

definitely not present in the filter. As in Figure 3, if any of the

bits are 0, for example Tag Z, then the string definitely does

not exist in the filter. If all of the bits are 1, there is probability

that the string exists in the filter. Generally, bloom-filter has

been used to filter duplicate data. Removal and deletion is not

allowed in normal bloom filter. This is for the reason that a

single counter in bloom-filter can be hashed number of times

by different data. Turning counter to 0 will disturb other data

that is not involved in the deletion.

Figure 2: Basic Structure of Bloom Filter

Figure 3: The Operation of Bloom Filter

Previously research shows that bloom filter has been

extended to allow deletion and implemented many research

in order to filter duplicate readings and noise in RFID data

streams. Deng & Rafiei [26] has proposed an algorithm

(DSBF) using bloom filter approach to eliminate duplicate

data in the data stream applications. The bits in the regular

bloom filter are change into cells consisting one or more bits.

In order to eliminate old data, each cell is set to the maximum

value and decrement the values of randomly selected cells

whenever data arrives. However, this approach is still

produce false positive errors and false negative errors.

Mahdin & Abawajy [27] has proposed an approach to filter

duplicate readings in RFID based on Bloom filter. The

proposed approach stores the information such as time of tag

detected in the filter units to compare which reader a tag

belongs to. However, the algorithm might complicate the

selection reading cycle and the time of clearing data in the

filter. Thus, the algorithm may delete the true reading and

cannot be used in the filter.

Lee & Chung [28] has extends original bloom filter to

support sliding window and proposed time bloom filter

algorithm (TIBF) in order to detect duplicate data reading on

RFID data streams. As the process of filtering duplicates were

takes place at the server side, a lot of bandwidth wasted

during transferring the duplicates. Hence, three algorithms;

bloom filter, time bloom filter and time interval bloom filter

were proposed to eliminate each duplicates data arrive. Time

interval bloom filter were used in fault detection and

elimination and this algorithm need more space than the time

bloom filter. In this research, the time interval bloom filter

need more space compare to time bloom filter. Time bloom

filter depends on time information to check whether the data

is duplicates or not. Even though it does not create false

Start StartEnd End

Time Time

(a) (b)

Tag X

k k
k

Bits Array (m)

0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 Bits Array

Tag X Tag Y

Tag Z

Add

Test

RFID Data Reliability Optimiser Based on Two Dimensions Bloom Filter

 e-ISSN: 2289-8131 Vol. 9 No. 2-2 57

negative errors, the major problem of this technique is

bottleneck will occurs, as the data has to pass through this

module in the server side.

C. Decision Support Model Approach

Decision support model is a structured process where it

consists of several parts of manageable processes to filter

RFID data stream. For examples, Majority voting approach

and smooth filtering approach are examples of decision

support model where each technique consists of several parts

of process to filter data. Majority voting is an approach where

it is efficiently dealing when both readers agree or disagree

with each other in identifying the tag.

Tu & Piramuthu [29] believed that by using majority-

voting technique would reduce low false read rates in supply

chain. The purpose of majority voting is to detect false

negative reading by identifying the presence of data reading

in the data stream. They proposed Three Tag-Two Readers

Model (TTTR) where all three tags are embedded in their

object of interest. Each reader will identify either the presence

of the object of interest either it is present or absent. There are

several rules that have to be followed in order to detect the

presence of the object of interest. However, even the purpose

of this model is to reduce false read rates, it does not perform

well as in the result there is slight increase false negative error

by correcting the true- negative error.

C. M. Wu et al., [30] has proposed data filtering strategy

using cluster based approach (CBA) to filter noise reading

and duplicate reading. Figure 2.13 shows the cluster

architecture. Cluster is a framework where RFID readers

were grouped into several clusters according to its location of

tagged objects. In this research, the readers were grouped in

order to assist data cleaning process. This research, they focus

on removing noise reading and duplicate reading by applying

many techniques in order to decide whether the reading is

duplicate reading or noise reading. The sliding window

technique was applied to detect duplicate readings and noise

readings. They also applied hash method to minimize search

time of the sliding window. Besides, the majority voting

approach was also applied to detect false positive readings

between RFID readers.

III. FILTERING DESIGN

The strategy to remove duplicate readings and noise

readings in RFID is by implementing the threshold value

concept as [6], [21]. Reading that did not pass the threshold

value is considered as noise. While the reading that is more

than the threshold value is considered as duplicate.

The proposed algorithm is based on Bloom filter that

consists of two Bloom filters; duplicate Bloom filter (DBF)

and noise Bloom filter (NBF). There two types of Bloom

filters considered as Two Dimension Bloom Filter (2BF).

According to [23], the size of hash function k is set to 7 and

the size of m is set to 9 times bigger than the number of data

n to get the best results. Threshold value was implemented in

NBF to filter noise readings in the data stream. In this

research, the threshold value is set to 7.Based on Figure 4, the

algorithm consists of duplicate bloom filter (DBF) and noise

bloom filter (NBF). The input for DNA is the tag

identification reading (READING). In step 1-4, the algorithm

checks the time to remove all readings in the filters. When the

time is met, the counter position in both filters will be clear

and reset to zero. Next, in step 5, as the reader receives tag

identification readings for each tag, then the READING is

sent to the filter. For steps 6-19, each incoming READING

will be hashed and its condition is checked in the DBF. If the

READING is not the DBF, this shows that the reading is not

the correct reading. Hence increase the counter position of

hashed reading in the NBF. If the READING is already in the

DBF, then state that the READING as duplicate and filter

next READING. While in step 20-32, if the counter position

in the NBF is more or equal to the threshold value, this means

that the READING is not noise and the READING is a true

reading. Then all the hashed counter positions in NBF are

copied, and mapped to DBF.

INPUT: READING

BEGIN

1: IF (Time == True) THEN //clearing counter when the time

comes

2: NBF[] = {0}

3: DBF[]={0}

4: ENDIF

5: FOREACH (incoming READING) DO

6: FOR(i=1<k)

7: position = hash[i](READING)

8: CounterNum[i]=position;

9: IF (DBF[position] ==0) AND (NBF[position]==0)

10: THEN

11: DBF[position] =1

12: NBF[position] =1

13: ELSEIF (DBF[position] ==0) AND (NBF[position]>0)

14: THEN

15: NBF[position] = NBF[position] + 1

16: ELSE

17: OUTPUT READING as DUPLICATE

18: ENDIF

19: EXIT(FOR) // go back to step 1 – new reading

20: FOR(i=1<k)

21: position=CounterNum[i]

22: IF(NBF[position]>THRESHOLD

23: NotNoise++

24: ENDIF

25: ENDFOR

26: IF (NotNoise>=(k/2)) //if half or more counter have

count over threshold

27: OUTPUT READING IS CORRECT

28: ENDIF

29: FOR(i=1<k) //copy NBF value to DBF value

30: position=CounterNum[i]

31: DBF(position)=1

32: ENDFOR

33: END FOR

Figure 4: Two Dimension Bloom Filter Algorithm (2BF)

IV. EXPERIMENT DESIGN

In this research the simulation of algorithms was developed

using C++. While the RFID data was generated using Poisson

distribution as in [31], Poisson distribution gives the random

number of independent events occurring in a fixed time [32].

Two data sets were created and each set of data contains

several samples. Each sample contains 10 tags and each tag

will repeat for 10 cycles. The first set is focused different

arrival rates. A set of data with a different noise ratio was

created in the second set data. For the first set of data, the

arrival rate for each sample is set of 5 readings per second, 10

readings per second, 15 readings per second, 20 readings per

second and 50 readings per second. In this sample data is set

to 10 % noise rate. In the next sample data, the arrival rate is

Journal of Telecommunication, Electronic and Computer Engineering

58 e-ISSN: 2289-8131 Vol. 9 No. 2-2

set to 50 readings per second. The noise ratios applied are

10%, 20%, 30%, 40% and 50% in each sample. The 2BF

algorithm was compared with HTB algorithm [6], DTSW

algorithm [21] and CBA algorithm [29] for performance

analysis.

V. RESULTS AND ANALYSIS

A. Different Arrival Rates

Table 1 and Figure 5 shows the results of time taken to

process data under different arrival rates. 2BF and HTB took

the least time to filter RFID readings. While, DTSW and

CBA took longer time to process the data. This is because it

needs to go through along the windows to read the readings

that become bigger with the increasing of arrival reading for

every time new incoming readings arrived. Unlike 2BF and

HTB, these algorithms do not have to go through along the

window to check duplicate readings and false positive

readings. The function of hashing the RFID data and

checking its existence in the filter is a constant operation.

Table 1

Time Execution under Different Arrival Rate

Arrival Rate 2BF HTB DTSW CBA

5 0.042 s 0.11 s 0.02 s 0.02 s

10 0.093 s 0.02 s 0.09 s 0.08 s
15 0.181 s 0.03 s 0.25 s 0.26 s

20 0.266 s 0.04 s 0.52 s 0.54 s

50 0.945 s 0.01 s 4.03 s 4.05 s

Figure 5: Processing time under different arrival rate

Table 2 and Figure 6 shows the result of the successful

duplicates data filtered under different arrival reading rates.

The RFID data sets with 10 % noise ratio does not affect the

performance of algorithm to filter duplicates data. This means

the RFID data with different arrival rates does not affect the

performance of the algorithms to filter duplicates data.

Table 2
Duplicate Data Filtered under Different Arrival Rate

Arrival Rate 2BF HTB DTSW CBA

5 100 % 98.7 % 98.9 % 99.5 %
10 100 % 99.6 % 99.4 % 99.7 %

15 99.9 % 99.8 % 99.6 % 99.7 %

20 99.98 % 99.8 % 99.7 % 99.9 %
50 99.9 % 99.9 % 99.8 % 99.95%

Figure 6: Duplicate Data Detected with Different Arrival Rate

Table 3 and Figure 7 shows the result of successful noise

data filtered under different arrival reading rates. 2BF

performs better than HTB. HTB produced small false positive

rate after filter process. But both algorithms filtered data

nearly 100%. The 10% noise data does affect DTSW and

CBA. However, DTSW and CBA produce small false

positive rates when the arrival reading is smaller.

Table 3
Noise Data Filtered with Different Arrival Rate

Arrival Rates 2BF HTB DTSW CBA

5 100 % 98.9 % 91.58 % 97 %
10 100 % 99.15 % 95.37 % 98.2 %

15 100 % 99.59 % 97.21 % 98.9 %

20 100 % 99.69 % 97.94 % 99.2 %
50 99.9 % 99.78 % 99.05 % 99.6 %

Figure 7: Percentage of Noise Detected Data under Different Arrival Rate

B. Different Noise Ratio

In this section, the arrival-reading rate is set to 50. Table 4

and Figure 8 shows the result of time taken to process data

under different noise ratio. As in Table 4, the HTB also took

the least time to filter data especially when the noise rates

getting higher compared to 2BF. HTB used hashing method

to reduce the searching time in window. While DTSW and

CBA took longer time to filter false positive reading and

duplicate readings. This is because DTSW has to go through

along window to read the data before filter process.

Table 4

Time Executions with Different Noise Ratio

Noise (%) 2BF HTB DTSW CBA

10 0.74 s 0.07 s 4.5 s 4.19 s

20 2.42 s 0.12 s 16.42 s 16.36 s

30 3.21 s 0.12 s 20.27 s 20.18 s
40 3.5 s 0.11 s 23.19 s 23.00 s

50 3.84 s 0.11 s 24.56 s 24.45 s

0

1

2

3

4

5

5 10 15 20 50

E
x

e
c

u
ti
o

n
 T

im
e

(s
e

c
)

Arrival Rate

2BF

HTB

DTSW

CBA

98

98.5

99

99.5

100

100.5

5 10 15 20 50P
e

rc
a

n
ta

g
e

 %

D
u

p
li
c

a
te

 D
e

te
c

te
d

Arrival Rate

2BF

HTB

DTSW

CBA

85

90

95

100

105

5 10 15 20 50

P
e

rc
e

n
ta

g
e

 o
f

N
o

is
e

 (
%

)

Arrival Rate

2BF

HTB

DTSW

CBA

RFID Data Reliability Optimiser Based on Two Dimensions Bloom Filter

 e-ISSN: 2289-8131 Vol. 9 No. 2-2 59

Figure 8: Processing Time with different Noise Ratio

Table 5 and Figure 9 shows the data filtered under different

noise ratio. The proposed approach 2BF filtered duplicate

data 100%. HTB has filtered data nearly 100%. There is slight

decrease in DTSW and CBA where the algorithms unable to

filter duplicate readings correctly in large arrival rate with

higher noise ratio. The weakness of using sliding window

approach (DTSW), is that the size cannot be large enough to

filter data correctly. When the readings are scattered, there

are readings that unable to be compared with other RFID data

reading as it need to be done to filter duplicate reading. This

left some reading in the window.

Table 5
Duplicate Data Filtered under Different Noise Ratio

Noise (%) 2BF HTB DTSW CBA

10 100 99.93 % 99.89 % 99.95 %
20 100 99.95 % 89.93 % 90 %

30 100 99.94 % 75.62 % 76 %

40 100 99.92 % 56.5 % 57 %
50 100 99.9 % 30 % 30 %

Figure 9: Percentage of Duplicate Detected Data under Different Noise

Ratio

Table 6 and Figure 10 shows the data filtered under

different noise ratio. 2BF and HTB filtered noise data nearly

100%. The performance of DTSW and CBA are decreasing

when the noise ratio are higher. This shows that these

algorithms effects on higher noise ratio and higher arrival

rates. The size of sliding window needs to be large enough to

go through the reading. As the window is large, the process

to compare data to filter noise become complicated and this

process might leave some reading in the window. Hence,

DTSW and CBA are not suitable to deals with high volume

reading per second.

Table 6

Noise Data Filtered under Different Noise Ratio

Noise (%) 2BF HTB DTSW CBA

10 99.96 % 99.78 % 99.05 % 99.6 %

20 99.95 % 99.9 % 59.65 % 59.85 %
30 99.96 % 99.93 % 43.1 % 43.23 %

40 100 % 99.95 % 34.82 % 40 %

50 100 % 99.96 % 29.84 % 30 %

Figure 10: Percentage of Noise Detected Data under Different Noise Ratio

C. Analysis Summary

Table 7 shows the comprehensive summary on the

performance of the algorithms. The time execution of HTB

algorithm is faster compared to the 2BF algorithm. This is

because each incoming new reading will be hashed in the

table. While 2BF needs to be compared with noise bloom

filter and duplicate bloom filter to identify false positive

readings and duplicate readings. Even though HTB algorithm

took the least time to process data, the 2BF algorithm

completely filters duplicate readings and false positive

readings. For 2BF, each type of reading has its corresponding

filter. This is the reason that makes the 2BF more efficient.

Unlike HTB, every new incoming reading will be hash in

the table. The hash table will update and count the incoming

reading. When the time interval of incoming reading is

greater than the time tolerance threshold value, the reading

will be mark as duplicate reading. Else, it is false positive

reading.

For DTSW algorithm and CBA algorithm has used sliding

window approach to filter duplicate readings and false

positive readings. These algorithms took longer time to

process the data. For DTSW, it has to go through along the

window that becomes bigger with the increasing of reading,

every time new readings came. While CBA has to check

whether the reading is in the sliding window and to check

whether the reading has been outputted. The reading then has

to go through noise checking process.

Table 7

Performance Evaluations of the Algorithms

Performance Evaluation

Accuracy Efficiency

Different

Arrival
Rates

Different

Noise Ratio

Different

Arrival
Rates

Different

Noise
Ratio

2BF Complete Complete
More

Efficient

More

Efficient
HTB Almost Almost Efficient Efficient

DTSW Almost
Not

Accurate
Efficient

Less

Efficient

CBA Almost
Not

Accurate
Efficient

Less

Efficient

The weakness of using sliding window approach is that the

size cannot be large enough to filter data correctly. When the

readings are scattered, there are readings that are unable to be

compared with other readings especially when arrival reading

rate is higher with higher noise ratio. This will left some

reading in the window. The performance result of DTSW and

CBA from the experiment with different noise ratio clearly

shows that both algorithms are not suitable to perform data

filter especially with higher arrival reading rate and noise

ratio.

0

10

20

30

10 20 30 40 50

E
x

e
c

u
ti
o

n
 T

im
e

(s
e

c
)

Noise Ratio (%)

2BF

HTB

DTSW

CBA

0

50

100

150

10 20 30 40 50

D
u

p
li
c

a
te

 D
e

te
c

te
d

(%
)

Noise Ratio (%)

2BF

HTB

DTSW

CBA

0

50

100

150

10 20 30 40 50

N
o

is
e

 D
e

te
c

te
d

(%
)

Noise Ratio (%)

2BF

HTB

DTSW

CBA

Journal of Telecommunication, Electronic and Computer Engineering

60 e-ISSN: 2289-8131 Vol. 9 No. 2-2

VI. CONCLUSION

The 2BF is developed to filter noised readings and

duplicates readings in the data stream. Even though the

possibilities of practical implementations for Two

Dimensions Bloom Filter has been shown, there are still some

essences to be explored for the reliability of proposed

algorithm. Therefore, recommendations regarding further

development of this research work are needed. Comparisons

with other techniques that can incorporate knowledge in the

form of constraints on different set data is suggested so that

the data can be better analysed.

ACKNOWLEDGEMENT

The authors would like to thank Universiti Tun Hussein

Onn Malaysia (UTHM) for the support given to this research

and also providing financial assistance under the Exploratory

Research Grant Scheme (ERGS) grant no E054.

REFERENCES

[1] Yan P., Yang W., Tan B., and Yu B. 2015. RFID Solution to

Improving Ammunition Supply Chain Management. LISS 2013,
Springer. 1163–1168.

[2] Hu L., Ong D. M., Zhu X., Liu Q., and Song E.. 2014. Enabling RFID
Technology for Healthcare: Application, Architecture, and
Challenges, Telecommunication Systems. 1–13.

[3] Frick J. 2014. Improving Transport and Accessibility through New
Communication Technologies. Advances in Production Management
Systems. Innovative and Knowledge-Based Production Management
in a Global-Local World, Springer, 2014. 572–578.

[4] Kushal K. S., Kadal H. M., Chetan S., and others. 2012. Design and
Implementation of a RFID Based Prototype SmArt LibrARY
(SALARY) System Using Wireless Sensor Networks. Advances in
Computer Science, Engineering & Applications, Springer, 2012. 499–
505.

[5] Kour R., Karim R., Parida A., and Kumar U. 2014. Applications of
Radio Frequency Identification (RFID) Technology with
eMaintenance Cloud for Railway System. International Journal of
System Assurance Engineering and Management. 5(1): 99–106.

[6] Hu K., Li L., and Lu Z. 2013. A Cleaning Method of Noise Data in
RFID Data Streams. 3rd International Conference on Consumer
Electronics, Communications and Networks (CECNet), 2013. 1–4.

[7] Zhong R. Y., Huang G. Q., Dai Q. Y., and Zhang T. 2014. Mining
SOTs and Dispatching Rules From RFID-Enabled Real-Time
Shopfloor Production Data. Journal of Intelligent Manufacturing.
25(4): 825–843.

[8] Wang L., Gu T., Xie H., Tao X., Lu J., and Huang Y. 2014. A
Wearable RFID System for Real-Time Activity Recognition Using
Radio Patterns. Mobile and Ubiquitous Systems: Computing,
Networking, and Services, Springer. 370–383.

[9] Kwon K., Kang D., Yoon Y., Sohn J.-S., and Chung I.-J. 2014. A real
time process management system using RFID data mining. Comput.
Ind. 65(4): 721–732.

[10] Metzger C., Thiesse F., Gershwin S., and Fleisch E. 2013. The impact
of false-negative reads on the performance of RFID-based shelf
inventory control policies. Comput. Oper. Res., 40(7): 1864–1873.

[11] Liu H., Liu K., Gong W., Liu Y., and Chen L. 2014. Wonder: Efficient
Tag Identification for Large-Scale RFID Systems. 2014 IEEE

International Conference on Distributed Computing in Sensor
Systems (DCOSS), 2014. 27–134.

[12] Liu Y., Fawang H. A. N., TJun. A. N., and ZHANG. H. 2015. An
Efficient RFID Data Cleaning Method Based on Wavelet Density
Estimation. Journal of Digital Information Management. 13(1): 11.

[13] Leema A. A. and Hemalatha M. 2013. Proposed Prediction
Algorithms Based on Hybrid Approach to Deal with Anomalies of
RFID Data in Healthcare. Egyptian Informatics Journal. 14(2): 135–
145.

[14] Ma J., Sheng Q. Z., Xie D., Chuah J. M., and Qin Y. 2014. Efficiently
Managing Uncertain Data in RFID Sensor Networks. World Wide
Web. 1–26.

[15] Fritz G., Beroulle V., Nguyen M. D., Hély D.. 2011. RFID System
On-line Testing based on the evaluation of the Tags Read-Error-Rate.
Journal of Electronic Testing. 27(3): 267–276.

[16] Zhang L., Gandino F., Ferrero R., Montrucchio B., and Rebaudengo
M. 2013. Trade-off Between Maximum Cardinality of Collision Sets
and Accuracy of RFID Reader-to-Reader Collision Detection.
EURASIP Journal on Embedded Systems. 2013(1): 1–14.

[17] Bai Y., Wang F., and Liu P. 2006. Efficiently Filtering RFID Data
Streams. CleanDB Workshop. 50–57.

[18] Mahdin H.. 2014. A Review on Bloom Filter Based Approaches for
RFID Data Cleaning. Proceedings of the First International
Conference on Advanced Data and Information Engineering (DaEng-
2013), Springer Singapore. 79–86.

[19] Vahdati F., Javidan R., and Farrahi A.. 2010. A New Method for Data
Redundancy Reduction in RFID Middleware. in 2010 5th
International Symposium on Telecommunications (IST), 2010, 175–
180.

[20] Rui W., Guoqiong, L. and Guoqiang D. 2014. Filtering Redundant
RFID Data Based on Sliding Windows. Management of e-Commerce
and e-Government (ICMeCG), International Conference 2014. 187–
191.

[21] Tyagi S., Ansari A. Q., and Khan M. A. 2010. Dynamic Threshold
Based Sliding-Window Filtering Technique for RFID Data. Advance
Computing Conference (IACC), 2010 IEEE 2nd International, 2010.
115–120.

[22] Mahdin H. and Abawajy J. 2009. An Approach to Filtering RFID Data
Streams. Parallel Architectures, Algorithms, and Networks.
International Symposium on, Los Alamitos, CA, USA. 742–746.

[23] Mahdin H. and Abawajy J. 2010. An Approach to Filtering Duplicate
RFID Data Streams. U- and E-Service, Science and Technology.
Springer Berlin Heidelberg. 124: 125–133.

[24] Bloom B. H. 1970. Space/time Trade-Offs in Hash Coding With
Allowable Errors. Communications of the ACM. 13(7): 422–426

[25] Dillinger P. C. and Manolios P. 2004. Bloom Filters in Probabilistic
Verification. Formal Methods in Computer-Aided Design. 367–381.

[26] Deng F. and Rafiei D. 2006. Approximately Detecting Duplicates for
Streaming Data Using Stable Bloom Filters. in Proceedings ACM
SIGMOD International Conference on Management of Data, New
York, USA. 25–36.

[27] Mahdin H. and Abawajy J. 2011. An Approach for Removing
Redundant Data from RFID Data Streams. Sensors. 11(12): 9863–
987.

[28] Lee C.-H. and Chung C.-W. 2011. An Approximate Duplicate
Elimination in RFID Data Streams. Data & Knowledge Engineering.
70(12): 1070–1087.

[29] Tu Y.-J. and Piramuthu S. 2011. A Decision-Support Model For
Filtering RFID Read Data In Supply Chains. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions
on. 41(2): 268–273.

[30] Wu C.-M., Cheng S.-S., and Chang R.-S. 2013. A Data Filtering
Strategy Using Cluster Architecture In Radio Frequency Identification
System. International Journal of Radio Frequency Identification
Technology and Applications. 4(2): 149–161.

[31] Sarac A., Absi N., and Dauzere -Peres S. 2015. Impacts of RFID
technologies on supply chains: a simulation study of a three-level
supply chain subject to shrinkage and delivery errors. European
Journal of Industrial Engineering. 9(1): 27–52.

[32] Forbes C., Evans M., Hastings N., and Peacock B. 2011. Statistical
distributions. John Wiley & Sons.

