
 e-ISSN: 2289-8131 Vol. 9 No. 2-2 41

Expanding the Data Capacity of QR Codes Using

Multiple Compression Algorithms and Base64

Encode/Decode

Azizi Abas, Dr Yuhanis Yusof, and Farzana Kabir Ahmad

School of Computing, Universiti Utara Malaysia, 06000 Sintok, Kedah.

azizia@uum.edu.my

Abstract—The Quick Response (QR) code is an enhancement

from one dimensional barcode which was used to store limited

capacity of information. The QR code has the capability to

encode various data formats and languages. Several techniques

were suggested by researchers to increase the data contents. One

of the technique to increase data capacity is by compressing the

data and encode it with a suitable data encoder. This study

focuses on the selection of compression algorithms and use

base64 encoder/decoder to increase the capacity of data which is

to be stored in the QR code. The result will be compared with

common technique to get the efficiency among the selected

compression algorithm after the data was encoded with base64

encoder/decoder.

Index Terms—QR Code; Data Compression; Base64

Encoder/Decoder.

I. INTRODUCTION

A barcode [1] is an optical machine-readable which is

consists the data pertaining to the object to which it is given.

Primitive bar codes, represent data by varying the widths and

space of parallel lines, and they may be referred to as linear

or one dimensional code. One dimensional barcode does not

hold as much data as compared to the two-dimensional

barcode [2]. Figure 1 illustrates the difference between one

dimensional barcode and two-dimensional barcode. The

design of a two-dimension code (i.e QR Code), in figure 1,

shows considerably a greater volume of information than one

dimension barcode.

The Quick Response code (QR code) [3][4] is a new

technology to keep data and information in a medium range

of capacity. It is a popular type of two-dimensional barcodes

that was developed by Denso Corporation Japan in 1994. QR

Code [5] is registered by the ISO/IEC 18004 of industrial

standard. The QR code [6] is widely used in Japan, Europe,

America and other developed countries due to effective mode

of carrying and the information transmission also includes

certain security function. The QR codes are used to track

parcel, item tagging, transport ticketing, contact information,

website uniform resource locator, identity verification and

several types of useful information request. Technically, the

QR code is a black and white graphical image which can store

information both horizontally and vertically.

The characteristics contained in the QR code are capability

in highly speed recognition, robustness in error-correcting

capability, able to recognize expression in Kanji and Kana

symbols, structured append which is can be splitting up to 16

segments [7], no magnetic tape is used to store information

so the cost is reduced [8] and can be scanned in all directional

angle.

Figure 1: Difference between one dimensional barcode and two-
dimensional barcode.

The two dimensional QR code [2] can encode various data

including numeric, alphanumeric, symbols, kanji characters

and binary 8 bytes. Table 1 shows the basic characteristic of

QR Code.

Table 1

The basic characteristic of QR Code

Encodable

character set

• Numeric (0-9)

• Alphanumeric data (Digits 0 - 9; upper case letters

A-Z; nine other characters: space, $ % * + - . / :)

• 8-bit byte data

• Kanji characters

Color

Module

• A dark module is a binary 1

• A light module is a binary 0

Versions • Version 1 until 40

Error Level

Correction

• L -7% or less errors can be corrected.

• M 15% or less errors can be corrected.

• Q 25% or less errors can be corrected.

• H 30% or less errors can be corrected.

Type of QR
Code

• Model 1 with maximum version being 14 (73 x 73

modules) and 2 with maximum version being 40

(177 x 177 modules).

• Micro with one orientation detecting.

• iQR with rectangular code, turned-over code, black-
and-white inversion code or dot pattern code (direct

part marking).

• SQRC with limited specific types of scanners.

• LogoQ with combine designability and readability.

II. LITERATURE REVIEW

This section discusses the anthology associated with QR

codes and the structure of those codes. The popularity of QR

codes depends on its capability symbolizing same amount of

data in approximately one tenth the space of a one dimension

barcode [1].

Journal of Telecommunication, Electronic and Computer Engineering

42 e-ISSN: 2289-8131 Vol. 9 No. 2-2

A. Storage Capacity

To date, there is an explosion of information surrounding

the community. There is an increased amount of data that

comes in various forms such as emails, pictures, and videos,

all of which must be accessible in a timely and dependable

fashion. This data can be stored in our personal computers or

in data centers around the world (cloud computing). Because

the growing data requirements, storage is rapidly becoming

an important factor in data center IT equipment. A recent

survey by Gartner, Inc. (2015) reveals that data growth is the

greatest challenge for larger enterprises. The memory storage

has kept increasing due to demand of the users.

QR code [11] consists matrix symbols which have arrays

of nominally square modules arranged in square pattern.

There are 40 versions of QR code that have a specific task or

purpose. The difference between each version is the number

of modules. In version 1, it consists 21 x 21 module that can

store up to 133 encoded characters. However, version 40 has

177 x 177 modules that can store nearly 23648 data modules

(2956 encoded characters). Table 2 shows the character

capacities by version (1, 20 and 40), error correction level,

and mode of QR code.

Table 2

The character capacities by version (1, 20 and 40), error correction level,
and mode of QR code

V
ersio

n
s

E
rro

r C
o

rrectio
n

L
ev

el

N
u

m
eric M

o
d
e

A
lp

h
an

u
m

eric

M
o
d

e

B
y
te M

o
d
e

K
an

ji M
o

d
e

1

L 41 25 17 10

M 34 20 14 8

Q 27 16 11 7

H 17 10 7 4

20

L 2061 1249 858 528

M 1600 970 666 410

Q 1159 702 482 297

H 919 557 382 235

40

L 7089 4296 2953 1817

M 5596 3391 2331 1435

Q 3993 2420 1663 1024

H 3057 1852 1273 784

According to The International Standard ISO/IEC 18004,

the process of basic generation of QR code is as in Figure 2.

Figure 2: Basic generation of QR code (Courtesy: International Standard

ISO/IEC 18004 (Denso Incorporation, 2006))

The output result of the process in Figure 2 is a QR code

image. The structure of QR code in Figure 3 shows the

interface of QR code and the design along with an explanation

of QR code surface. According to Galiyawala [13], there are

eight significant parts of a QR code architecture. The parts

are (a) Finder pattern (1) - a decoder software is able to

recognize the QR code and ensure the correct orientation, (b)

Separators (2) - as the separator between finder pattern and

code data, (c) Timing pattern (3) - to ensure the decoder

software to determine the width of a single module, (d)

Alignment patterns (4) - enable the decoder software

compensating the image, (e) Format Information (5) - to keep

the error correction level of the QR Code and the chosen

masking pattern, (f) Data (6) - the 8 bit codewords data, (g)

Error correction (7) - the 8 bit codewords error correction, (h)

Remainder bits (8) - the empty bits if data and error correction

bits cannot be divided into 8 bit codewords without

remainder.

Figure 3: The structure of QR code version 2

B. Compression

Compression [8] is an algorithm used to reduce file size

which turns storage space into minimal compact data usage.

Moreover, it makes the transmission of data over line faster

than uncompressed file. The art of compression is to

eliminate the redundancy data and squeeze the size using

relevant compress process. In general, there are two types of

compression (a) Lossless compression - does not lose any part

of data and retrieve back the data after decompression, (b)

Lossy compression – it does loose some data to achieve

higher compression. Table 3 shows the comparison of

advantage and disadvantage between lossless and lossy

compression.

Table 3

The comparison of advantage and disadvantage between lossless and lossy

compression

 Advantage Disadvantage

Lossly
Use less space

Ratio compression is high

Possibility of losing some

data

Lossless One to one input and output
Consume more space and
memory

Nowadays, the lossless compression used various encoding

schemes such as Lempel-Ziv, Huffman, Deflate, GZip, TTA,

FLAC, Zip etc. On the other hand, the lossy encoding scheme

utilize MPEG-2, MPEG-3, MPEG-4 codec, psychoacoustics

etc. Table 4 shows the description of various lossless

compressors schemes.

Table 4

The description of various lossless compressors [14]

Name Developer
File

Extension

Base

Algorithm
used

GZip

(GNU

Zip)

Jean-Loup Gailly
and Mark Adler

.gz

Deflate algorithm,

which is a
combination of LZ77

and Huffman coding

Zip Phil Katz .zip Deflate algorithm

LZW

Abraham Lempel,

Jacob Ziv, and

Terry Welch.

.gif LZ78 algorithm

Huffman

coding
David A. Huffman .txt Huffman's algorithm

Data to be

encoded
Data analyst

Data

encodation

Error

correction

coding

Structure final

message

Module

placement in

matric

Masking

Format and

version

information

Expanding the Data Capacity of QR Codes Using Multiple Compression Algorithms and Base64 Encode/Decode

 e-ISSN: 2289-8131 Vol. 9 No. 2-2 43

C. Base64 Encoder

The Base64 [15] is a binary to text encoding scheme that

represents binary data in an ASCII string format by

translating it into a radix 64 representation. It can transmit

data from binary into ASCII characters. Also, it was designed

to represent arbitrary sequences of octets in a form that allows

the use of both upper- and lowercase letters but that need not

be human readable [16]. It can also convert a file to a string

format which only contains 64 ASCII characters (i.e., A–Z,

a–z, 0–9, +, /) with a special suffix “=” used for padding [17].

According to Rawat, Sahu, & Puthran [18], the base64

encoding undergoes six phases. The first phase divides the

input bytes stream into blocks of 3 bytes. Then it divides 24

bits of each 3-byte block into 4 groups of 6 bits, this is

followed by mapping each group of 6 bits to 1 printable

character, based on the 6-bit value using the base64 character

set map as shown in Table 5. Later if the last 3-byte block has

only 1 byte of input data, pad 2 bytes of zero (\x0000). After

encoding it as a normal block, it overrides the last 2 characters

with 2 equal signs (==), so the decoding process knows 2

bytes of zero were padded. If the last 3-byte block has only

2 bytes of input data, pad 1 byte of zero (\ x00). After

encoding it as a normal block, override the last 1 character

with 1 equal signs (=), so the decoding process knows 1 byte

of zero was padded. Finally, carriage return (\r) and new line

(\n) are inserted into the output character stream.

Table 5

Character set map by Base64 encoding

Value Encoding

0-25 A-Z

26-51 a-z

52-61 0-9
62 +

63 /

D. ZXing Library

ZXing [19] (pronounced as “zebra crossing”) is an open-

source system and multi-format 1D/2D barcode image

processing library which is implemented in Java

programming language. It can support various encode and

decode barcode including QR code. There are five main

component libraries for desktop (QR code) which are (a) core

– the core image decoding library, (b) javase - J2SE-specific

client code, (c) zxingorg – source file in zxing.org/w (d)

zxing.appspot.com - web-based barcode generator, (e) glass -

Simple google glass application.

This paper will focus on using the methods provided by

ZXing library to scan, encode and decode QR codes without

communicating with a server. The decode method will use

PNG file as a input. During encode and decode processes, the

input will use image processing libraries provided by ZXing

library.

 The ZXing library is easy to integrate into the application

because there are a lot of constructors and methods installed

in it. Kris Antoni Hadiputra Nurwono and Raymondus Kosala

[20] are using ZXing 0.6 as a tool in their research work to

develop the mobile barcode reader. Meanwhile, Antonio

Grillo etc al. [21] are using ZXing to develop a decoder

module for research work prototype that implements the

Print&Scan process for High Capacity Color Two

Dimensional codes. Thus, the ZXing library is a common

type of library in Java which is use to develop QR code

application in research work.

E. Compressed QR Code

According to Nancy Victor [2], compressing the data

before generating the QR code is more efficient to improve

data capacity of QR code. In addition, data capacity can be

improved by combining the most distinguish features of

compression and QR code generation. This study investigates

the idea of encoding compressed data. Figure 4 shows the

flow of generating high capacity QR code as proposed by

Nancy Victor [2].

Input the data to

be encoded

Compress the data

Encode the data

Figure 4: The flow to generate high capacity QR code [2].

III. METHODS

This study focuses on four compression algorithms and its

combination. On the other hand, a normal QR code

generation is used as a benchmark. The compression

algorithms to be tested are the Zip, GZip, LZW, Huffman

Coding, LZW-GZip and Huff-Zip. After compressing the

data, the compressed data will be embedded to the QR code

generator developed using the ZXing image processing

library.

A. Experimental Setup

The undertaken experiments includes several hardware

and software requirements. The study utilizes Intel i7

processor, 8Gb memory and 800Gb spaces. Meanwhile, the

required software includes Windows 7 operating system,

NetBean IDE, Notepad, ZXing library, JDK 1.8 compiler,

Sun Base64 decoder library, Apache common decode library

and compression libraries (GZip, Zip, LZW and Huffman

code)..

B. QR Code Encoding Process

The process of encoding involves several parts which are

starting with generating a raw input file called constant.txt.

The constant.txt file will receive characters starting with one

character until thousands of characters. Figure 5 shows the

snapshot of constant.txt file.

Figure 5: The snapshot of constant.txt file

The process of receiving the characters will end when the

Java program generates IOException message called

“com.google.zxing.WriterException: Data too big”. Then the

process will stop. As the flow of the process, after the process

of receiving characters is completed, the compression

algorithm will compress constant.txt file and will be named

by filename extension of compression such as: constant.gz.

Journal of Telecommunication, Electronic and Computer Engineering

44 e-ISSN: 2289-8131 Vol. 9 No. 2-2

For next process, the compressed file name will be decoded

by base64 encoder and as a result, the base64 encoder will

produce an array of byte data type contains encoded base64

data. The encoded base64 data are converted to a String literal

and put into QR code generator method as an input. This

process will generate a QR code image. Figure 6 shows the

process flow process of encoding the QR code.

Figure 6: The process flow of encoding the QR code

C. QR Code Decoding Process

When the QR code is generated, the next step is to decode

the QR code image. The process starts with binarization of

the QR code image. It will return decoded string literal if the

process is successfull. If not, the null string literal will be sent

and the process is not successful.

The next process is to decode the successful string literal

into the Base64 decoder method. As a result, Base64 decoder

will generate the compress filename according to the

previous compressed algorithm. The compressed filename

needs to uncompress back, which is the compressor algorithm

will take action to get back normal text filename previously

used as an input file. Figure 7 shows the process of decoding

the QR code.

Figure 7: The process flow of decoding the QR code

D. Experiments

The experiment was divided into two phases. In the first

phase, the base64 encoder/decoder is not tested due to see the

impact of data capacity using ASCII encoder/decoder

(normal implementation). But in the second phase, it will

include the base64 encoder/decoder.

The first experiment consists random alphanumeric

without carriage return and line feed as input data with error

correction level H. Meanwhile, the second experiment

includes fixed alphanumeric without carriage return and line

feed as input data with error correction level L, M, Q and H.

The comparison is based on the total character stored in

the produced QR code. Figure 8 shows the raw data used in

the experiment.

Figure 8: The fixed alphanumeric actual input data

E. Results

This section includes the obtained results of the proposed

method. Using the technique of compression and

encoding/decoding , may disclose the gap of storage

capacity between normal implementation and the proposed

method.

a. The First Phase

Results of the first phase is depicted in Table 6 and Table 7.

The experiments were carried out twenty times in order to

obtain the minimum total character stored in the QR code at

error correction level H. The reason of such action is

because the input data file contains different characters (due

to random character implementation), hence may produce

different size of files. . Table 6 includes results based on the

maximum number of characters while Table 7 includes data

for the minimum size.

Table 6
Result of maximum total characters stored in QR code from 20 times tested

at error correction level H

No.
Test

Normal Zip GZip LZW
Huffmann

Coding

Huffman

+

GZip

1 1271 474 635 434 113 471
2 1271 471 638 434 112 466

3 1271 476 637 433 111 477
4 1271 472 636 436 114 474

5 1271 475 637 433 112 470

6 1271 473 635 438 112 473
7 1271 475 635 433 111 474

8 1271 473 641 438 111 472

9 1271 474 636 438 114 468
10 1271 474 638 439 113 470

11 1271 473 634 433 113 468

12 1271 473 637 438 111 474
13 1271 471 633 441 111 477

14 1271 471 634 433 111 472

15 1271 473 635 437 113 471
16 1271 469 636 440 111 471

17 1271 470 636 438 111 479

18 1271 469 633 437 113 471
19 1271 477 636 436 112 467

20 1271 478 632 433 109 467

Table 7
The summarized minimum total character stored in QR code at error

correction level H

Normal Zip GZip LZW
Huffmann

Coding

Huffman
and

 GZip

1271 469 632 433 109 466

From the graph in shown Figure 9, it is learned that

compression methods do not contribute in extending the

storage capacity. . The percentages difference between the

Input file :

constant.txt

Compress the file

using selected

compress algorithmn

Encode compressed

file by base64

encoder algorithmn

Generate QR code

raw data file

compressed data file

String conversion

byte [] encoded data

string literal data

N process by number of characters

from decoding

processes
to decoding processes

success

fail : Data too big IOexception

end process

start

scan the QR code

image

base64 decode the

string literal

uncompress the file

using selected

compress algorithmn

string literal

compressed data filename

save to text file

normal text

continue to the next N (total characters) characters

from encoding process

to encoding process

scan

Expanding the Data Capacity of QR Codes Using Multiple Compression Algorithms and Base64 Encode/Decode

 e-ISSN: 2289-8131 Vol. 9 No. 2-2 45

proposed methods and the normal implementgation are (a)

Zip – 63%, (b) GZip – 50%, (c) LZW – 66%, (d) Huffmann

Coding – 91% (e) Huffmann + GZip – 63%. The smallest

difference is the one obtained using GZip compression

algorithm while Huffmann Coding produces the largest.

Figure 9: The percentage gap between normal process and the selected

compressor algorithms

b. The Second Phase

In the second phase of experiment, the base64

encoder/decoder and fixed character composition were

embedded. The results were separated by the error level as

shown in Table 8. Each experiment is only performed once as

it uses fixed composition characters in the input file where

the compressor algorithm will generate same size files.

Table 8

The maximum total characters stored in QR code by error level

Error Level Normal Zip Gzip

H 1270 1560 1784
Q 1662 2114 2405

M 2330 3188 3470

L 2952 4226 4480

LZW
Huffman
Coding

Huffman
And Gzip

Huffman
And Zip

1167 212 1364 1166

1627 282 1827 1639
2441 392 2607 2425

3253 503 3323 3095

From the results in Table 8, the graphs were generated as

shown in Figure 10, 12, 13 and 14.

In error level H (High), the highest total characters are

GZip compression algorithm . The QR code can hold up to

1784 characters. At the H level, the data are covered by 30%

of the codeword in error respectively. The version of QR

code created in this experiment is the version 40. Figure 11

shows the generated QR code.

Figure 10: The maximum total characters of normal and selected

compression algorithm separated by error correction level H

Figure 11: The generated version 40 QR code

Figure 12: The maximum total characters of normal and selected

compression algorithm separated by error level Q

Figure 13: The max total characters of normal & selected compression

algorithms separated by error level M

100%

63%
50%

66%

91%

63%

Compressor Algorithmn

1270

1560
1784

1167

212

1364
1166

Total characters embedded

1662

2114
2405

1627

282

1827
1639

Total embedded characters

2330

3188
3470

2441

392

2607 2425

Total characters embedded

Journal of Telecommunication, Electronic and Computer Engineering

46 e-ISSN: 2289-8131 Vol. 9 No. 2-2

Figure 14 The maximum total characters of normal and selected

compression algorithm separated by error level L

The error correction level Q (quartile) consists 20% of the

codeword in error. The GZip compression algorithm still can

hold the highest characters compared to normal and other

selected compression algorithm. It covered 2114 characters

and the different between error correction level H and Q is

621 characters.

In the error correction level M (medium), the total

characters that QR code can hold increases. This is because

the total correction is decreased to 15%. It increases up to

3470 characters.

The last error correction level H (high) produces the largest

number of characters that a QR code can hold The QR code

at this level can hold until 4480 characters and the size of the

file is 4.375 kilobytes.

The undertaken experiments reveal that GZip is the best

compression algorithm as it is able to compress the maximum

text data and able embedded in QR code compared to other

selected compression. Nevertheless, it must be encoded using

base64 encoder/decoder not ASCII encoder. Table 8 shows

the gap of a number of characters between normal and

selected compression algorithms.

Gzip algorithm can exceed more than 40% of data

compression compared to other algorithms. Clearly here that

GZip is the best text data compression at all levels of error-

correction followed by Zip algorithm. Meanwhile, Huffman

Coding is not suitable for text data compression because it

gives a negative percentage compared to normal text. Table 9

shows the gap percentage between total normal characters

and selected compression algorithm with four error level

correction.

Table 9

The total number of characters gap between normal and selected
compression algorithm with four error level correction

Total
Normal

Zip Gzip LZW
Huffman
Coding

Huffman
and Gzip

Huffman
and Zip

1270 290 514 -103 -1058 94 -104

1662 452 743 -35 -1380 165 -23

2330 858 1140 111 -1938 277 95
2952 1274 1528 301 -2449 371 143

Table 10

The gap percentage between total normal character and selected

compression algorithm with four error level correction

Normal

(characters)

Zip

(%)

Gzip

(%)

LZW

(%)

Huffman
Coding

(%)

Huffman
and Gzip

(%)

Huffman
and Zip

(%)

1270 23 40 -8 -83 7 -8
1662 27 45 -2 -83 10 -1

2330 37 49 5 -83 12 4

2952 43 52 10 -83 13 5

IV. CONCLUSION

This study investigates mechanism to extend the data

storage in a QR code. The undertaken method is to compress

the text data and utilizes the Base64 to encode/decode the QR

code. The high data density helps to minimize the space used

for printing in the QR code images. Disadvantage regarding

the QR code is the users must provide smartphone embedded

with a camera and the correct software for encode and

decode. Furthermore, Base64 is limited to 64 characters

representation to encode and decodes process and not human

readable. The main advantage of base64 is able to transmit

data from binary, into (most commonly) ASCII characters.

Further enhancement of QR code data density is focusing

capability to increase the data into more than 52% as a

maximum result from the GZip compression algorithm tested

before.

Secure QR code can also be implemented by using

encryption techniques [2]. More advance data compression

technique can be introduced to get more data capacity from

normal QR code.

REFERENCES

[1] Pandya K. H. and Galiyawala H. J. 2014. A Survey on QR Codes: in
context of Research and Application. International Journal of

Emerging Technology and Advanced Engineering. 4(3): 258-262.

[2] Victor N. 2012. Enhancing the Data Capacity of QR Codes by

Compressing the Data before Generation. International Journal of
Computer Applications (0975 –8887). 60(2): 17-21.

[3] An Lin J. and Shann Fuh C. 2013. 2D Barcode Image Decoding,” The
Scientific World Journal. 2013(3): 1.

[4] Chen W., Yang G., and Zhang G. 2012. A Simple and Efficient Image
Pre-processing for QR Decoder, in 2nd International Conference on

Electronic & Mechanical Engineering and Information Technology

(EMEIT-2012). 234-238.

[5] Qianyu J. 2014. Exploring the Concept of QR Code and the Benefits

of Using QR Code for Companies.

[6] Xiaoyang Y., Yang S., Yang Y., Shuchun Y., Hao C., and Yanxia G.

2013. An Encryption Method for QR Code Image Based on ECA.
International Journal of Security and Its Applications. 7(5): 397-406.

[7] Swetake Y. 2014. How to create QRcode, swetake.com, Online].
Available: http://www.swetake.com/qrcode/qr1_en.html.

[8] Goel S. and Singh A. K. 2014. Cost Minimization by QR Code
Compression, International Journal of Computer Trends and

Technology (IJCTT). 15(4): 157-161.

[9] Belussi L. F. F. and Hirata N. S. T. 2013. Fast Component-Based QR

Code Detection in Arbitrarily Acquired Images. Journal Math
Imaging Vis. 45: 277-292.

[10] Christy Pettey L. G. Gartner Survey Shows Data Growth as the
Largest Data Center Infrastructure Challenge. Gartner, Inc. (NYSE:

IT), 2015. [Online]. Available:

http://www.gartner.com/newsroom/id/1460213.

[11] Harish N. and Gurav S. 2014. Embedding a Large Information In QR

Code Using Multiplexing Technique, Taraksh Journal of
Communications.1(6): 6-9.

[12] Incorporation D. 2006. Information technology automatic
identification and data capture techniques bar code symbology QR

Code.

[13] Galiyawala H. J. and Pandya K. H. 2014. To Increase Data Capacity
of QR Code Using Multiplexing with Color Coding: An example of

Embedding Speech Signal in QR Code. in 2014 Annual IEEE India
Conference (INDICON). 2-7.

[14] Gailly J.-L. and Adler M., Gzip, Wikipedia, 2015. [Online].
[Accessed: 21 Oct 2015. Available:

https://en.wikipedia.org/wiki/Gzip.

[15] Hobbes T., Base64, 2014. [Online]. Available: Accessed: 20-May-
2015. http://en.wikipedia.org/wiki/Base64.

[16] Josefsson S. 2006. The Base16, Base32, and Base64 Data Encodings.

[17] Xu C., Chen Y., and Chiew K. 2010. An Approach to Image Spam
Filtering Based on Base64 Encoding and N -Gram Feature Extraction.

2952

4226 4480

3253

503

3323 3095

Total characters embedded

Expanding the Data Capacity of QR Codes Using Multiple Compression Algorithms and Base64 Encode/Decode

 e-ISSN: 2289-8131 Vol. 9 No. 2-2 47

in 22nd International Conference on Tools with Artificial Intelligence.

171-177.

[18] Rawat D., Sahu R., and Puthran Y. 2015. Optimizing the Capacity of

QR Code to Store Encrypted Image. International Journal of
Emerging Trends in Engineering Research (IJETER). 3(1): 1-4.

[19] Trivedi H. ZXing (‘Zebra Crossing’), 2014. [Online]. Available:
Accessed: 20 May 2015. http://androidcustomviews.com/new/zxing-

zebra-crossing/.

[20] Nurwono K. A. H. and Raymondus K. 2009. Color quick response

code for mobile content distribution. the 7th International Conference.
267-271.

[21] Grillo A., Lentini A., Querini M., and Italiano G. F. 2010. High
Capacity Colored Two Dimensional Codes. in Proceedings of the

International Multiconference on Computer Science and Information

Technology. 5(1): 709-716.

