
 

 e-ISSN: 2289-8131   Vol. 9 No. 2-2 29 

 

Parallel KNN and Neighborhood Classification 

Implementations on GPU for Network Intrusion 

Detection 
 

 

Phuangpaka Kuttranont, Kobkun Boonprakob, Comdet Phaudphut, Songyut Permpol, Phet Aimtongkhamand, 

Urachart KoKaew, Boonsup Waikham and Chakchai So-In 
Applied Network Technology (ANT), Department of Computer Science, 

Khon Kaen University, Khon Kaen, Thailand. 

chakso@kku.ac.th 

 

 
Abstract—With a rapid growth of Internet community 

making a practical usage of numbers of application used in 

many areas, i.e., research, commercial, industry, and even in 

military, there are millions of reports on attacks and attempts to 

invade the system online; and that phenomenon has led the 

essential of intrusion detection system (IDS). Data mining is one 

of the promising approaches to deal with large scale dataset 

including attack detection and recognition based on attack 

traces as an example from KDD CUP 1999. However, one of its 

key limitations is the computational complexity, and thus, this 

research investigates the possibility to integrate parallel 

processing to enhance the detection speed-up implemented on 

NVIDIA CUDA GPU. Several proposals have focused on k-

Nearest Neighbour (KNN) as one of the promising approaches 

due to its key advantage of simplicity and high precision; 

however, in addition to KNN evaluation, this research also 

proposes the integration of a simplified neighborhood 

classification (Neighborhood) using the percentage instead of 

group ranking resulting in higher accuracy gain with in-

significantly increase of computational complexity trade-off. 

 

Index Terms—Data Mining; GPU; Graphics Processing Unit; 

Intrusion Detection; k-Nearest-Neighbour; KDD CUP; 

Neighborhood; Network Security. 

 

I. INTRODUCTION 

 

With era of Internet of Thing [1], not only people but also any 

instance is able to join the Internet; and that phenomenon 

rapidly increases the number of end systems as well as huge 

amount of data traffic; these massive systems and information 

will obviously lead to the concern of security; and this brings 

to the awareness of Intrusion Detection System (IDS) [2-3], 

especially when the Internet has no more limitation on just 

for education and non-profit organization.  

Presently, IDS is one of the intuitive components for any 

organization to at least state a basic level of protection or 

prevention of the system. Based on the study in 2014 

provided by Symantec and McAfee [4-5], there are beyond 

556 million privacy breaches; and Cybercrime is keep 

growing and cost the global economy more than $400 

million. IDS can be classified in terms of detection behavior 

into misuse–based and anomaly–based detections [6]. The 

first approach is based on signature matching while the 

second is to detect the anomaly behavior from the network. 

Each has its own strength in high detection precision and 

speed including its complexity as trade-off.  

Apart from various attack recognition techniques [7], data 

mining is one of the efficient pattern classifications for 

misuse detection [8]. Traditionally, several probable 

classification algorithms have been well investigated to solve 

science and engineering problems including IDS [8-9]. It is 

worth noting that each approach has its own strength, 

especially the detection precision depending upon the data 

distribution (signature or behavior). However, above all, the 

main limitation is still on the computational time complexity, 

in particular, while applying into the real-time or online 

classification [10-11].  

Especially, considering the application to IDS, k-Nearest 

Neighbour (KNN) [12] is one of the candidates for IDS 

classification as in the group of data mining approaches based 

on its key advantage of simplicity with high detection 

precision [13-14]. It should be noted that there are several 

proposals applying KNN as the solver for engineering 

problems [15]. In general, KNN will try to group or class a 

whole dataset using the nearest concept (distance between 

each attribute) in K group. To determine the testing data, the 

distance computation, i.e., Euclidean, will be performed with 

ranking concept; and then the final decision will be issued 

based on the majority vote. 

Although KNN can be considered as one of the promising 

approaches for attack classification, one of our two 

contributions, here, is to propose another candidate by 

integrating a simplified neighborhood concept, i.e., 

Neighborhood [16], using the percentage instead of (K) group 

ranking for the purpose of higher precision gain. It should be 

noted that again although either KNN or our proposal can 

yield high detection precision, its key limitation is still on the 

computational complexity for real-time recognition system.  

In the recent years, to move beyond the traditional serial 

computation, the practicality of parallel processing has 

stepped up with the invention of Graphics Processing Unit 

(GPU) [17]. GPU will normally co-function with a traditional 

CPU. However, high computational tasks will be placed to 

GPU but with aids of CPU instruction. GPU has its own 

strength, i.e., thousands core (processing units) and fast 

memory-cache; which then supports multi-thread 

computation as cost effective approach. Recently, the 

accessibility to program GPU becomes probable, e.g., with 

Compute Unified Device Architecture (CUDA) framework 

provided by NVIDIA with C/C++/C## programming [16]. 

Note that there are a number of application adopting this 

parallel-computation advantage, such as image processing, 

security and encryption, and simulation and modelling 

including data recognition [19-21].  



Journal of Telecommunication, Electronic and Computer Engineering 

30 e-ISSN: 2289-8131   Vol. 9 No. 2-2  

Thus, in this research, the contribution lays on two-folds: 

noting that despite the attempts to apply data mining for IDS 

classification, again, one of which is KNN with key 

advantage of simplicity and precision gain; first, to enhance 

its efficiency using parallel processing, our focus is on the 

evaluation of KNN in GPU implementation on NVIDIA 

CUDA platform. Second, this research also proposes another 

candidate of IDS classification by integrating a simplified 

neighborhood technique (Neighborhood) using the 

percentage instead of group clustering. In addition, its speed-

up is then enhanced with GPU implementation.  

This research article is organized as follows. In Section 2, 

we briefly survey recent researches and proposals regarding 

the performance evaluation of data mining techniques on 

IDSs, especially KNN, Then, in Section 3, the overview of 

our methodology will be discussed including KNN and 

Neighborhood implementation on GPU. Section 4 provides 

the detailed analysis including the discussion of the 

comparative performance. Finally, the conclusions and future 

work are drawn in Section 5. 

 

II. LITERATURE REVIEW 

 

In this section, the main consideration will be on the focus 

of two approaches either applying KNN to solve a particular 

problem, especially implementing on parallel processing 

platform or the classification for IDS.  

 As previously stated, KNN can be considered as one of 

the most efficient classification algorithms proposed by many 

researchers. For example, in 2008, Garcia et al. [22] reported 

the evaluation of KNN efficiency using a statistical dataset on 

GPU using CUDA platform to illustrate the speed-up. 

Similarly, a year later, Kuang and Zhao [23] implemented the 

data segmentation algorithm on the focus of distance 

computation using CUDA platform on GPU in the 

comparison with CPU to show the speed-up. Recently in 

2014, Nikam and Meshram [24] provided the performance 

evaluation results of KNN speed-up using GPU and OpenCL 

based on UCI datasets.  

 Considering data mining techniques applying to IDS 

classifications, Julisch and Helali [8-9] reviewed various data 

mining techniques to classify intrusion behavior. Patel and 

Sondhi [25] also reviewed the machine learning approaches 

applying to IDS, especially in terms of classification 

accuracy. In 2009, Jian et al. [26] showed the comparative 

performance of Apriori, KNN, and K-mean using KDD CUP 

1999 dataset. Although K-mean resulted the fastest 

recognition, the detection accuracy is still in investigation. 

Recently, in 2014, So-In et al. [14] provided a detailed 

performance comparison survey over soft-computing 

approaches on KDD CUP datasets and reported that KNN is 

one of the most promising approaches so as to gain high 

precision for attack classification. 
 

III. EMPIRICAL STUDY 

 

In order to evaluate the performance of parallel 

classification techniques, there are three main components to 

perform the investigation, i.e., Data Preparation, 

Classification Model, and Parallel Processing as follows. 

 

A. Data Preparation 

In this research, the network intrusion detection traces was 

selected from KDD CUP 1999 [27] which is one of the 

biggest dataset for well-known intrusion detection systems. 

The dataset is suitable for the evaluation process since there 

exists the attacking status for testing purposes, i.e., either 

normal or attack. To lessen the experimental period, here, 

only 20% of the entire dataset was evaluated, and then, each 

half will be used as either training or testing set as stated in 

Table 1. In general, KDD CUP consists of four main attacks; 

namely, DoS (Denial of Service), PROBE, U2R (User to 

Root), and R2L (Remote to User). 
 

Table 1  

KDD CUP 1999 dataset 
 

Type Class Total Records 
20% of 

Records 

NORMAL  261908 52832 

DoS 
(178694) 

Back 3720 744 

Land 69 14 

Neptune 160361 32072 
Pod 773 155 

Smurf 10291 2058 

Teardrop 3480 696 

PROBE 

(45325) 

Ipsweep 14006 2801 

Nmap 5784 1157 

Portsweep 11390 2278 
Satan 14145 2829 

U2R 
(202) 

Buffer_overflow 116 23 

Loadmodule 34 7 
Perl 12 2 

Rootkit 40 8 

R2L 
(3871) 

Phf 15 3 
ftp_write 31 6 

Guess_passwd 201 40 

Imap 44 9 
Multihop 28 6 

Spy 8 2 

Warez_client 3466 693 
Warezmaster 78 15 

  490000 98000 

 

DoS: This attack can freeze the system operation including 

activity by acquiring all resources, and so, the system cannot 

provide any services, one of each is the attack based on 

flooding schemes.  

PROBE: This attack is generally used during a preparation 

stage to be ready for other attacking schemes in order to gain 

valuable information, such as enabled/disabled ports and 

active services as well as Internet name and address 

information.  

U2R: This attack performs a specific operation so that the 

system is vulnerable to be penetrated as a hole or leak, such 

as Buffer Overflow attacks.  

R2L: The attack is used to take advantages of related users’ 

safety information and/or configuration, such as SQL 

Injection. 
 

Table 2  
KDD CUP dataset: record example. 

 

Type Record 

NORMAL 
0,tcp,http,REJ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.0
0,0.00,1.00,1.00,1.00,0.00,0.00,2,233,1.00,0.00,0.50,0.1

0,0.00,0.00,1.00,0.98,normal 

ATTACK 
0,udp,private,SF,105,147,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.0

1,0.00,0.00,0.00,0.00,0.00,0.00,snmpgetattack 

 

Note that the KDD CUP dataset is ZIP format consisting of 

a variety of attributes (41 in totals) to represent the attack 

records or traces. Each attribute will be separated by “,” and 

the final attribute states the attacking status as examples 

shown in Table 2. 



Parallel KNN and Neighborhood Classification Implementations on GPU for Network Intrusion Detection 

 e-ISSN: 2289-8131   Vol. 9 No. 2-2 31 

B. Classification Models 

After the preparation stage, there are also three main sub-

states, especially for the evaluation, i.e., Data Pre-processing, 

Distance Computation, and Classification Selection. 

Data Pre-processing: Since the record of KDD CUP dataset 

also composes of characters, not just numeric, the data 

transformation will be required to convert all attributes into 

digits as example shown in Algorithm 1. Here, the protocol 

field will be converted accordingly, i.e., 0 is tcp and 1 is udp.  

 
Algorithm 1: String to Digit Conversion 

1  int preProcessProtocol(string protocol){ 

2    if (protocolMap.size() == 0) { 
3  protocolMap["tcp"] = 0; 

4  protocolMap["udp"] = 1; 

5  protocolMap["icmp"] = 2; 
6  } 

7  return protocolMap[protocol]; 

8  } 
 

Distance Computation: Once all attributes are in numeric 

formats, the distance will be computed between the known 

dataset (aka training) (q) and the unknown one (aka testing) 

(p) based on the equation below. 

  

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √∑ (𝑝𝑘 − 𝑞𝑘)2
𝑛

𝑘=1
 (1) 

   

Figure 1 shows an example of distance computation such 

that given the data set 1 (Test) at the first record, the attribute 

1 (p1) will be performed the subtraction operation with the 

first attribute (q2) from data set 2 (Train), then making a 

square; this operation will be continued until the end of data 

set 2 leading to the final distance of the first record. 
 

 
 

Figure 1: Example of distance computation 

 

 
 

Figure 2: Example of classification based on distance computation 

 

Classification Selection: This state is used to perform the 

actual classification based on either KNN or Neighborhood. 

Given the result from the first state (as examples shown in 

Figure 2), for KNN (K=3), the least distance will be selected 

in a group of K or 3 in this example. Here, the distance of 1 

(normal), 2 (attack), and 4 (normal) are in the group of three, 

and with the majority concept, “normal” will be finally 

representing for the final decision.  

However, with Neighborhood, instead of using K groups, 

the percentage out of the maximum distance will be then 

used. For instance, with 50% Neighborhood, the maximum 

distance is 10, so the selection of distance will be less than 5, 

and so, the distance of 1 (normal), 2 (attack), 3 (normal), and 

4 (attack and normal) will be then selected in an interest 

group. Finally, “normal” will be the decision based on the 

majority concept. 

 

C. Parallel Processing 

Figure 3 shows an overview of parallel processing with 

GPU integrating with CPU. Here, a share memory 

architecture was used. There are three steps of the processing 

as follows: (1) Data Transfer (the computed data will be 

replicated for GPU processing from shared memory), (2) 

Data Instruction (the key commands will be issued from CPU 

to GPU), and (3) Parallel Processing (the main operation, i.e., 

high computational tasks, will be performed at GPU cores). 
 

 
 

Figure 3: Example of parallel processing 
 

Algorithm 2: KNN Implementation in GPU (K = 3) 

1  Start_knn(); 
2  void knn(vector<networkTraffic> t,  

   vector<networkTraffic> testData, double k) 

3  double* d_knnMinDistances; 
4  cudaMalloc(&d_knnMinDistances, k *  

   sizeof(double)); 

5  double* d_knnLabels; 
6  cudaMalloc(&d_knnLabels, k * sizeof(double)); 

7  __global__ void cuComputeDist  

   networkTraffic*t, networkTraffic *testData,  
   double *distance, double *label, double   

   *knnMindistances,double *knnLabels,double  

   *knnGuesses, int j,int size,int k,int max,int  
   maxClass) { 

8  unsigned int i = blockIdx.x * blockDim.x +  

   threadIdx.x; 
9  if(i<size) { 

10   double sum = pow((t[i].duration   

     testData[j].duration), 2) + ... +   
     pow((t[i].dst_host_srv_rerror_rate  

     testData[j].dst_host_srv_rerror_rate), 2); 

11   distance[i] = sum; 
12   label[i] = t[i].label; 

13 } 
14 __syncthreads(); 

15 If (i<k) { 

16    knnMindistances[i] = distance [i]; 
17    knnLabels[i] = label[i]; 

18 } 
 

 Algorithm 2 also shows detailed operations and 

implementations of KNN in GPU as follows: after the 

initialization and function declaration (lines 1-2), line 4 

shows the main function of KNN; lines 3 to 6 state the 

variable declaration; line 7 indicates the parallel function 

operation; line 8 shows the thread indication based on 

0,tcp,http,SF,246,0.00,0.00,………………..1

2

0,udp,domain_u,SF,42,42,0,0,0,0,0,…………

0,tcp,smtp,S0,0,0,0,0,0,0,0,…………………

0,tcp,time,RSTR,0,0,0,0,0,0,…………………

1

2

49000

.

.

.

TrainTest
q1,q2,q3,…………………………..p1,p2,p3,…………………………..

.

.

.

5

4

2

.

.

.

.

.

      4                                                               

5(normal)

4(normal)

8(attack)

9(attack)

6(attack)

1(normal)

9(attack)

2(attack)

      5                                                            KNN

Main Memory

GPU

1. Copy processing 

data

GPU

Nvidia 

750Ti

CPU

3. Execute parallel 

in each core

2. Instruct the 

processing

Thread Block

Thread Thread Thread … Thread

0,0 0,1 0,2 … 0,128

0, 0 0, 1 0,383

      7                                       



Journal of Telecommunication, Electronic and Computer Engineering 

32 e-ISSN: 2289-8131   Vol. 9 No. 2-2  

blocking concept; given the size, lines 9 to 13 show the main 

computation tasks (the summation of each attribute stated in 

line 10 which is 41 in total, and here the notation is +…+); 

line 14 is used to start thread operations; lines 15 to 18 show 

the minimum distance computational process.  

 It should be noted that the parallel algorithm for 

Neighborhood is similar to that of KNN. However, the 

derivation of distance will select the ratio (percentage) 

instead of group k, modified in lines 15 to 18. 
 

IV. PERFORMANCE EVALUATION 

 

In this section, the evaluation processes were performed. In 

general, there are two main scenarios to illustrate the 

classification precision and computational time performance 

in both CPU and GPU.  

 

A. Empirical Setup 

To intensively validate the empirical results, K-Fold Cross 

Validation [28] was selected with folds and confusion matrix 

[29]. The first validation was based on the dataset with 

division of K sets equally (K folds). In each round, a single 

set was chosen from K to be a testing set and the other K–1 as 

a training set to perform the actual evaluation. Then, the 

subsequence set will be performed accordingly as the testing 

and the training for the others, K rounds, in total, and here, 

for simplicity, two was chosen for this evaluation as K.  

 For the sake of simplicity, the evaluated dataset is 20% out 

of the 490000 records due to the computational time 

constraint. The evaluation system was on Windows 7 Core i5; 

4 GB DDR-SDRM and 1 TB 5400 rpm DISK with NVIDIA 

750Ti (as a graphic card) [30]. 

 Two main metrics were used in this setup; namely, 

classification precision (accuracy) and computational time 

(seconds). The first metric was based on confusion matrix 

given predicted and actual values in terms of TP (True 

Positive), FN (False Negative), FP (False Positive), and TN 

(True Negative), to illustrate the classification accuracy as 

stated in equation 2 and Table 3.  

 There are two main scenarios for the purpose of 

comparative evaluation on the classification performance of 

KNN and Neighborhood. To state the comparative precision, 

for KNN, K was varied in range (odd number) of 3 to 9, 

respectively. However, with Neighborhood, instead, the 

percentage was varied from 10% to 90% with the increment 

of 20% each. Both classification techniques will be evaluated 

in both CPU and GPU to state the comparative speed-up.  

 

%𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 ×100 (2) 

 

Table 3  
Confusion matrix. 

 

Class C1 (Predicted) C2 (Actual) 

C1 (Predicted) True Positive (TP) False Negative (FN) 
C2 (Actual) False Positive (FP) True Negative (TN) 

 

B. Empirical Results 

Table 4 shows the performance evaluation results from the 

first scenario in that considering the effect of K, the least K 

gains the highest performance, i.e., almost 98% in 

comparison of just 94% with K = 9. It should be noted that 

the classification precision will be the same either CPU or 

GPU for our algorithm justification. In terms of 

computational time complexity, varying Ks has no 

significantly effect on computational time complexity, i.e., 

around 32 seconds for GPU and 1040 seconds for CPU. It is 

worth noting that with GPU implementation, the speed-up is 

on the factor of three. 
 

Table 4  
CPU vs. GPU performance of KNN (K = 3 to 9). 

 

CPU/ 

GPU 
Metric K=3 K=5 K=7 K=9 

GPU 
Accuracy (%) 97.82 96.44 95.13 93.88 

Time (sec.) 31.89 32.22 32.35 32.67 

CPU 

Accuracy (%) 97.82 96.44 95.13 93.88 

Time (sec.) 
1030. 

38 
1048. 

38 
1058. 

07 
1062. 

66 

 

Table 5 shows the second scenario results. In general, the 

performance precision has no significantly impact when 

varying the percentage for Neighborhood classification, i.e., 

around 99.10% to 99.30%. Similarly, the computational time 

has no significantly effect on the percentages, i.e., around 33 

to 37 seconds for GPU and 1112 to 1116 seconds for CPU. 

However, again, the speed-up of GPU is over the factor of 

three. 
 

Table 5 

CPU vs. GPU performance of Neighborhood (10% to 90%) 
 

CPU/ 

GPU 
Metric 10% 30% 50% 70% 90% 

GPU 

Accuracy 
(%) 

99. 26 99.28 99.30 99.27 99.10 

Time 

(sec.) 
33.85 33.89 33.80 36.00 37.27 

CPU 

Accuracy 
(%) 

99.26 99.28 99.30 99.27 99.10 

Time 

(sec.) 

1116. 

28 

1112. 

36 

1112. 

30 

1114. 

81 

1114. 

78 

 

It was noticed that when comparing Tables 4 and 5, the 

precision gain of Neighborhood is higher than that of KNN, 

i.e., around 99% vs. 95% for KNN as in average. The 

computational time complexity trade-off has in-significant 

effected, i.e., 34 seconds vs. 32 seconds with GPU. However, 

with CPU, Neighborhood can result in higher computational 

time, i.e., more than 1110 seconds vs. just 1050 seconds; 

however, again, Neighborhood with GPU implementation 

still maintains the outstanding result, and can be used as the 

candidate of IDS classifications. 

 

V. CONCLUSION AND FUTURE WORK 

 

Among various data mining techniques using for 

classifications, especially applying for detection the 

networking attack based on IDS (KDD CUP 199), k–

Nearest–Neighbour (KNN) is one of the promising 

approaches. However, with a very large scale trace, one of the 

key limitations of traditional serial computation (CPU) is 

reached, and so, this research then investigates an alternate 

approach by integrating the parallel computation using GPU 

based on NVIDIA CUDA framework.  

In addition to KNN and its computational enhancement, the 

other candidate was also investigated, i.e., Neighborhood, 

and then, again, with the improvement of its traditional 

computation with parallel processing which turns to the 

outstanding parallel classification algorithm of 

Neighborhood, i.e., the precision gain is at 99% with only 

around 34 seconds for computational time. 



Parallel KNN and Neighborhood Classification Implementations on GPU for Network Intrusion Detection 

 e-ISSN: 2289-8131   Vol. 9 No. 2-2 33 

It should be noted that the comparative results discussed in 

this paper can be used as the baseline for further investigation. 

However, more analyses and classification selections should 

be well investigated, i.e., various datasets including recent 

attacks with heterogeneous numbers of traffic patterns, and 

advanced classification techniques, and these are left for 

future work. 

 

REFERENCES 

 
[1] Atzori, L. Iera, A. and Morabito, G. 2010. The Internet of Things: A 

survey. Computer Networks. 54(15): 2787–2805. 

[2] Mukherjee, B. Heberlein, L.T. and Levitt, K.N. 1994. Network 
intrusion detection. IEEE Network. 8(3): 26–41. 

[3] Chen, P.Y. Cheng, S.M. and Chen, K.C. 2014. Information Fusion to 

Defend Intentional Attack in Internet of Things. IEEE Internet of 
Things Journal. 1(4): 337–348. 

[4] Symantec Corporation. 2014. INTERNET SECURITY THREAT 

REPORT 2014. 19. 
[www.symantec.com/content/en/us/enterprise/other_resources/b-

istr_main_report_v19_21291018.en-us.pdf] 

[5] McAfee. 2014. Net Losses: Estimating the Global Cost of Cybercrime.  
[www.mcafee.com/mx/resources/reports/rp-economic-impact-

cybercrime2.pdf] 
[6] Butun, I. Morgera, S.D. and Sankar, R. 2014. A Survey of Intrusion 

Detection Systems in Wireless Sensor Networks. IEEE 

Communication Surveys & Tutorials. 16(1): 266–282. 
[7] Liao, H.J. Lin, C.H.R. Lin, Y.C. and Tung, K.Y.  2013. Intrusion 

detection system: A comprehensive review. Journal of Network and 

Computer Applications. 36(1): 16–24. 
[8] Julisch, K. 2002. Data Mining for Intrusion Detection. Application of 

Data Mining in Computer Security, Advances in Information Security. 

6: 33–62.  
[9] Helali, R.G.M. 2010. Data Mining Based Network Intrusion Detection 

System: A Survey. Novel Algorithms and Techniques in 

Telecommunications and Networking. 501–505.  
[10] Vaarandi, R. 2009. Real-time classification of IDS alerts with data 

mining techniques. Proc. IEEE International Conference on Military 

Communications. 1–7.  
[11] Gianfelici, F. Turchetti, C. and Crippa, P. 2007. Efficient Classification 

of Chaotic Signals with Application to Secure Communications. Proc. 

IEEE International Conference on on Acoustics, Speech, and Signal 
Processing. 1073–1076. 

[12] Wu, X. Kumar, V. Quinlan, J.R. Ghosh, J. Yang, Q. Motoda, H. 

McLachlan, G.J. Ng, A. Liu, B. Yu, P.S. Zhou, Z. Steinbach, M. Hand, 
D.J. and Steinberg, D. 2008. Top 10 algorithms in data mining. 

Knowledge and Information Systems Journal. 14(1): 1–37. 

[13] Wagh, S.K. Pachghare, V.K. and Kolhe, S.R. 2013. Survey on Intrusion 
Detection System using Machine Learning Techniques. International 

Journal of Computer Applications, 78(16): 30–37. 

[14] So-In, C. Mongkonchai, N. Aimtongkham, P. Wijitsopon, K. and 

Rujirakul, K. 2014. An Evaluation of Data Mining Classification 
Models for Network Intrusion Detection. Proc. International 

Conference on Digital Information and Communication Technology 

and its Applications. 90–94. 
[15] Bhatia, N. and Vandana. 2010. Survey of Nearest Neighbor 

Techniques. International Journal of Computer Science and 

Information Security. 8(2): 302–305. 
[16] Hu, Q. Yu, D. and Xie, Z. 2008. Neighborhood classifiers. Expert 

Systems with Applications. 34(2): 886–876. 

[17] Kirk, D.B. and Hwu, W.W. 2010. Programming Massively Parallel 
Processors: A Hands-on Approach. Morgan Kaufmann. 280 pp. 

[18] Wilt, N. 2013. CUDA Handbook: A Comprehensive Guide to GPU 

Programming. Addison-Wesley Professional. 528 pp. 
[19] Navarro, C.A. Hitschfeld-kahler, N. and Mateu, L. 2014. A Survey on 

Parallel Computing and its Applications in Data-Parallel Problems 

Using GPU Architectures. Communications in Computational Physics. 
15(2): 285–329. 

[20] Shi, L. Liu, W. Zhang, H. Xie, Y. and Wang, D. 2012. A survey of 

GPU-based medical image computing techniques. Quantitative 

Imaging in Medicine and Surgery. 2(3): 188–206. 

[21] So-In, C. Poolsanguan, S. Poonriboon, C. Rujirakul, K. and Phaudphut, 

C. 2013. Performance Evaluation of Parallel AES Implementations 
over CUDA GPU Framework. International Journal of Digital Content 

Technology and its Applications. 7(5): 501–511. 

[22] Garcia, V. Debreuve, E. and Barlaud, M. 2008. Fast k nearest neighbor 
search using GPU. Proc. IEEE Conference on Computer Vision and 

Pattern Recognition Workshops. 1–6. 
[23] Kuang, Q. and Zhao, L. 2009. A Practical GPU Based KNN Algorithm. 

Proc. Symposium International Computer Science and Computational 

Technology. 151–155. 
[24] Kikam, V.B. and Meshram, B.B. 2014. PARALLEL kNN ON GPU 

ARCHITECTURE USING OpenCL. International Journal of 

Research in Engineering and Technology. 3(10): 367–372. 
[25] Patel, S. and Sondhi, J. 2014. A Review of Intrusion Detection 

Technique using Various Technique of Machine Learning and Feature 

Optimization Technique. International Journal of Computer 
Applications. 93(14): 43–47. 

[26] Jian, L. Wang, C. Liu, Y. Liang, S. Yi, W. and Shi, Y. 2013. Parallel 

data mining techniques on Graphics Processing Unit with Compute 
Unified Device Architecture (CUDA). The Journal of Supercomputing. 

64(3): 942–967. 

[27] KDD CUP 1999 Data.  
[kdd.ics.uci.edu/databases/kddcup99/kddcup99.html]. 

[28] J. Schneider, “Cross Validation”.  

[www.cs.cmu.edu/~schneide/tut5/node42.html]. 
[29] H. Hamilton, “Confusion Matrix”.  

[www2.cs.uregina.ca/~dbd/cs831/notes/confusion_matrix/confusion_

matrix.html]. 
[30] Geforce GTX 750 TI Dataset.  

[www.nvidia.com/gtx-700-graphics-cards/gtx-750ti/]. 

 

 

 

https://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf
https://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf
http://www.mcafee.com/mx/resources/reports/rp-economic-impact-cybercrime2.pdf
http://www.mcafee.com/mx/resources/reports/rp-economic-impact-cybercrime2.pdf

