

 e-ISSN: 2289-8131 Vol. 9 No. 2-2 1

Parallel Algorithm for Combinatorial Optimization

Problem

Narameth Nananukul
Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand, 12121.

narameth@siit.tu.ac.th

Abstract— Combinatorial optimization problems (COP) are

difficult to solve by nature. One of the reasons is because the

amount of neighborhood search required to generate high

quality solutions based on sequential methods is intractable. In

this paper, parallel algorithm for COP such as Knapsack

Problem is presented. Knapsack problem arises in different

types of resource allocation problems and has many applications

in real-world problems. The proposed algorithm is based on

MapReduce framework where the workload for neighborhood

search is distributed across available computing nodes in the

cluster. The design of Map and Reduce phases is proposed based

on consecutive runs of MapReduce jobs. The computational

results that shows the effect of degree of parallelism on the

solution quality are provided.

Index Terms— MapReduce; Combinatorial Optimization

Problem; Knapsack Problem; Metaheuristics.

I. INTRODUCTION

Knapsack Problem (KP) often arises in different types of

resource allocation problems and has many applications in

real-world problems. In general, KP is classified as NP-hard

problem. Although it is possible to use a very large and

powerful machine to solve the problem, the approach tends to

be impractical due to the relevant costs involved in acquiring

hardware. Thus, it is much more economical and practical to

use a cluster of computers system that charges the service

based on the amount of usage such as cloud system.

MapReduce (MR) framework can be used to help

implementing parallel algorithms. MR is based on a simple

programming model and is commonly implemented on top of

Hadoop [1], an open source MapReduce framework. Not only

it can assist in distributing workload to different nodes in the

cluster, it also provides necessary services such as load

balancing, fault tolerance, etc.

MR was first introduced by Google. It was originally

designed to process larger datasets that normally are located

at different locations. In this paper, the MR based algorithms

are proposed for COP such as KP. The computational results

that shows the effect of degree of parallelism of the proposed

algorithm on the solution quality are provided. The paper is

organized as follows. Section II gives details of KP and MR

framework. The design of parallel algorithms based on MR

framework is presented in Section III. The computational

results are presented and summarized in Section IV. Section

V provides conclusion and future research directions.

II. BACKGROUND

In this section, basic information of Knapsack Problem and

MR framework are provided. First, the general description of

KP is provided, then the framework of MR is presented.

A. Knapsack Problem
KP has many applications in different fields and typically

arises in resource allocation problem. For example, it can be
used to determine the set of data files chosen to store with a
given available bytes of storage. The formal description of
KP can be described as follows:

Given two sets of numbers, {v1, v2,…, vn}(values) and {w1,
w2,…, wn} (weights) and W (capacity) > 0, the objective is to
determine the subset S of {1,2,…,n}(set N) such that
∑ 𝑣𝑖𝑖∈𝑆 is maximized, subjected to ∑ 𝑤𝑖 ≤ 𝑊𝑖∈𝑆 . In general,
the KP is considered NP-hard and there is no known
polynomial algorithm which can solve the problem. There
exists many algorithms for KP problem, branch and bound,
heuristics and dynamic programming approach but most of
them are intractable as the problem size increases. The
dynamic programming algorithm for KP [1] is shown in
Figure 1. In the algorithm, an array V[i,w] is used to store the
value of each combination of i and w. The size of the array is
nW which increases significantly as the parameter W or the
capacity of the knapsack increases. As a result, the algorithm
becomes intractable.

1. An array V[0..n, 0..W] for 1 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑤 ≤ 𝑊 is

constructed and set to 0 initially.

2. Recursively, update V[i,w]

Figure 1: Dynamic programming algorithm for KP

In this paper, a parallel heuristic algorithm (PHKP) for KP

is proposed to demonstrate how it can take advantage of

parallel and distributed functions from MR framework.

B. MapReduce Framework

In general, MR framework requires input data in the form

of a list of records in the form of <key, value> pairs. The data

can be stored by using different distributing file systems; i.e,

Google’s MR uses GFS while Hadoop uses HDFS [1]. In

Hadoop, one of the nodes is defined as the Master while

others are defined as slave nodes. The Master node distributes

MR jobs to slave nodes based on the predefined MAP and

REDUCE functions. Based on an input data in the form of

<key, value> pairs, the MAP function will generate a set of

intermediate records, also in the form of <key2, value2>.

Intermediate records having the same key2 are grouped

Journal of Telecommunication, Electronic and Computer Engineering

2 e-ISSN: 2289-8131 Vol. 9 No. 2-2

together and processed by a REDUCE function which will

generate a number of output records. Hadoop manages the

scheduling of intermediate records to available slave nodes

while considering overall load balancing.

A simple MR program consists only a MAP and a

REDUCE functions. In a complex MR program, it is possible

to have more than one MR job run in sequence where the

output of a MR job becomes the input of the next MR job.

The MR framework is shown in Figure 2.

Figure 2: MapReduce framework

III. MAPREDUCE ALGORITHM FOR KP

Although there has been much work in developing

parallelizing heuristics for COP such as traveling salesman

problem (TSP) [3][4][5], none of them has taken advantage

of existing cluster computing architectures such as MR for

solving the problem. The contribution of this paper is to

develop an algorithm based on neighborhood search [6] and

demonstrate how it can be implemented on MR framework.

A. Solution Representation

The set of candidate solutions for a KP with i items is

represented by a set Si. Each solution s in Si needs to satisfy

the constraint imposed by the KP, the capacity of the

knapsack. The knapsack value for any solution Si is defined

as ∑ 𝑣𝑠𝑠∈𝑆𝑖
.

B. Initial Solution

The initial solution is based on a greedy heuristic algorithm

where the items are selected based on the ratios of value and

weight (vw ratio) in decreasing order. The algorithm is

summarized in Figure 3.

Figure 3: Greedy heuristic algorithm

C. Neighborhood Search

All solutions that can be reached from a current solution

(incumbent solution) by using one or more moves represent a

neighborhood [7]. In general, the moves for COP take the

form of insertions, exchanges or replacements. For the PHKP,

the neighborhood is defined as all feasible points that can be

reached by two types of moves. The first is called a swap and

involves an exchange of assignment of two items item1 and

item2 ∈ {1,…,n} when either (item1 ∈ Si and item2 ∉ Si) or

(item1 ∉ Si and item2 ∈ Si) is true.

The swap moves trade an item with high vw ratio with one

or more items with lower vw ratios. The second move is

called an insert and selects an item not already included in the

solution to be inserted to the solution.

Example of moves. Figure 4 depicts a swap between items

3 and 4. The items are represented by the circles where the

numbers correspond to items’ ids. In the example, there are

five items considered, the parameters for the items are as

follows. The values for items 1 to 5 are v1 = 50, v2 = 40, v3 =

15, v4 = 80 and v5 = 20. The weights for items 1 to 5 are w1 =

2, w2 = 9, w3 = 3, w4 = 8 and w5 = 5. The capacity is limited to

20. Before the swap, items 1, 3 and 5 are in the solution. After

the swap, the assignment of items 3 and 4 are exchanged; item

3 is removed from the solution while item 4 is included to the

solution. The capacity of the solution increases from 10 to 15

and the value of the solution increases from 85 to 150.

Figure 4: A swap between items 3 and 4

Using the same data and starting with the solution in the

bottom portion of Figure 4. Figure 5 gives an example of an

insert move. Before the insert, items 1, 4 and 5 are in the

solution. The move inserts item 3 to the solution. The

capacity of the solution increases from 15 to 18 and the value

of the solution increases from 150 to 165.

D. MapReduce Jobs

The proposed MR for KP consists of sequential MR jobs

where the solution is adjusted based on neighborhood search

in each MR job. Once the job is completed, the improved

solutions are retrieved and used as the input for the next

iteration. The algorithm terminates when no more improved

solution can be found. In each iteration of the algorithm,

improved solutions can be found by using a neighborhood

search based on the previously generated solutions at each

node. The pseudo code for the main program of the algorithm

is shown in Figure 6.

Input

Map 1

Map 2

Map n

Reduce 1

Reduce m

Output

Before swap

1 2 3 4

4
5

v1 = 50

w1 = 2

v2 = 40

w2 = 9

v3 = 15

w3 = 3

v4 =80

w4 = 8

v5 = 20

w5 = 5

W = 20, i = 3,

Si={1,3,5}

Value(Si) = 85

Capacity=10

After swap

1 2 3 4

4
5

v1 = 50

w1 = 2

v2 = 40

w2 = 9

v3 = 15

w3 = 3

v4 =80

w4 = 8

v5 = 20

w5 = 5

W = 20, i = 3,

Si={1,4,5}

Value(Si) = 150

Capacity = 15

Parallel Algorithm for Combinatorial Optimization Problem

 e-ISSN: 2289-8131 Vol. 9 No. 2-2 3

Figure 5: An insert of item 3

Figure 6: The pseudo code for MR main program

Proposition 1

If the current solution is not optimal, when the initial

solution is generated by using a greedy heuristic algorithm,

the solution can be improved by either applying a swap move

or applying a swap and an insert.

Proof

Consider a knapsack problem with n items. Let Si be the

solution generated by following the greedy heuristic

algorithm and the list of items included in the solution in

increasing order of pw ratios is item1, item2,...,itemi. Without

loss of generality, a single pair of items, itemm and itemn (m <

n < i), is considered in the swap.

Case1: itemm ∉ Si and itemn ∈ Si

 Let 𝑆𝑖
𝑛𝑒𝑤be the solution after swapping itemm and itemn.

The capacity and the value of 𝑆𝑖
𝑛𝑒𝑤1are Capacity(𝑆𝑖

𝑛𝑒𝑤1) =

Capacity(Si) - 𝑤𝑖𝑡𝑒𝑚𝑛
 + 𝑤𝑖𝑡𝑒𝑚𝑚

 and Value(𝑆𝑖
𝑛𝑒𝑤1) =

Value(Si) - 𝑣𝑖𝑡𝑒𝑚𝑛
 + 𝑣𝑖𝑡𝑒𝑚𝑚

 , respectively. Based on the

assumption,
𝑣𝑖𝑡𝑒𝑚𝑚

𝑤𝑖𝑡𝑒𝑚𝑚

 ≤
𝑣𝑖𝑡𝑒𝑚𝑛

𝑤𝑖𝑡𝑒𝑚𝑛

 , there are 2 possible cases.

 Case 1.1:

 Capacity (𝑆𝑖
𝑛𝑒𝑤1) ≤ W and Value (𝑆𝑖

𝑛𝑒𝑤1) > Value (Si)

 In this case, the solution is improved by applying only a

swap.

Case 1.2:

The solutions that follow case1.1 are ignored in this case.

Consider applying an insert after a swap. By contradiction,

there must exist itemo, o < n, such that Capacity (𝑆𝑖
𝑛𝑒𝑤2) =

Capacity (𝑆𝑖
𝑛𝑒𝑤1) +𝑤𝑖𝑡𝑒𝑚𝑜

≤ W and Value(𝑆𝑖
𝑛𝑒𝑤2) =

Value(𝑆𝑖
𝑛𝑒𝑤1) + 𝑣𝑖𝑡𝑒𝑚𝑜

 ,otherwise 𝑆𝑖
𝑛𝑒𝑤1is optimal.

Case 2: itemm ∈ Si and itemn ∉ Si

 If ∃ itemn such that
𝑣𝑖𝑡𝑒𝑚𝑚

𝑤𝑖𝑡𝑒𝑚𝑚

 ≤
𝑣𝑖𝑡𝑒𝑚𝑛

𝑤𝑖𝑡𝑒𝑚𝑛

 and Capacity (𝑆𝑖
𝑛𝑒𝑤3)

= Capacity(Si) - 𝑤𝑖𝑡𝑒𝑚𝑚
 + 𝑤𝑖𝑡𝑒𝑚𝑛

 ≤ W, then by contradiction,

Si was not generated by greedy heuristic algorithm.

Based on Proposition 1, in each MR job, a swap or an insert

is applied to the solutions alternately in the MAP function.

The pseudo code of the MAP function is listed in Figure 7.

Function MAP(key, (l, 𝑁𝑙 , (Sol1,..,𝑆𝑜𝑙𝑁𝑙
))

1. Initialize HashMap = ∅

2. For each j ∈ Nl do

If(l is odd)

𝑆𝑜𝑙𝑗
𝑛𝑒𝑤 = 𝑆𝑊𝐴𝑃(𝑆𝑜𝑙𝑗)

Else

𝑆𝑜𝑙𝑗
𝑛𝑒𝑤 = 𝐼𝑁𝑆𝐸𝑅𝑇(𝑆𝑜𝑙𝑗)

if(𝐻𝐴𝑆𝐻_𝑉𝐴𝐿𝑈𝐸(𝑆𝑜𝑙𝑗
𝑛𝑒𝑤) ∉ HashMap)

HashMap = HashMap ∪ 𝐻𝐴𝑆𝐻_𝑉𝐴𝐿𝑈𝐸(𝑆𝑜𝑙𝑗
𝑛𝑒𝑤)

seed = 𝐶𝐴𝐿_𝑆𝐸𝐸𝐷(𝑆𝑜𝑙𝑗
𝑛𝑒𝑤)

EMIT(seed, 𝑆𝑜𝑙𝑗
𝑛𝑒𝑤)

: l is iteration id

: Nl is the number of solutions at iteration l

: Sol1,..,𝑆𝑜𝑙𝑁𝑙
is the list of solutions at iteration l

: HashMap is a hash map that stores solutions based on hash value

Figure 7: The pseudo code for MR main program

The input of MAP function consists of iteration id (l),

number of solutions (𝑁𝑙) and the list of solutions for iteration

l (Sol1,..,𝑆𝑜𝑙𝑁𝑙
). The algorithm iterates through each solution

and applies a swap when l is odd and an insert when l is even.

Examples of a swap and an insert are shown in Figures 4 and

5, respectively. Each generated solution is checked against

the HashMap to make sure that no duplicate solution is stored

in the HashMap. This helps reduce the number of solutions

that needs to be processed in the following iterations. At the

end of MAP function, a seed is assigned to each solution and

used as a key that will be passed to a reducer.

Example of grouping solutions based on seed:

In order to take advantage of parallel computing function

from MR framework, the solutions are partitioned and

assigned to different reducers based on the special key called

“seed”. For any solution Si, the seed is defined as an item with

the maximum ratio of profit and weight, item 𝑗∗ =

𝑎𝑟𝑔𝑚𝑎𝑥𝑗∈𝑆𝑖
(

𝑣𝑗

𝑤𝑗
) . Figure 8 illustrates how the seeds are

assigned to solutions. Note that whenever there are more than

one solution set based on i. Each member of Si can be

referenced by using notation 𝑆𝑖
𝑘,where 𝑘 ∈ {1, . . , |𝑆𝑖|} . In

the example, the number of items is 5 and i = 3.

 It is possible to have multiple solutions assigned to a

reducer. The solutions’ values are compared with the

incumbent value of the best known solution. Solutions with

values worse than the incumbent solution’ value are excluded

from the next iteration, otherwise the incumbent solution is

updated. Figure 9 lists the pseudo code of the REDUCE

function.

Before insert

1 2 3 4

4
5

v1 = 50

w1 = 2

v2 = 40

w2 = 9

v3 = 15

w3 = 3

v4 =80

w4 = 8

v5 = 20

w5 = 5

W = 20, i = 3,

Si={1,4,5}

Value(Si)= 150

Capacity = 15

After insert

1 2 3 4 5

v1 = 50

w1 = 2

v2 = 40

w2 = 9

v3 = 15

w3 = 3

v4 =80

w4 = 8

v5 = 20

w5 = 5

W = 20, i = 4,

Si={1,3,4,5}

Value(Si)= 165

Capacity =

Journal of Telecommunication, Electronic and Computer Engineering

4 e-ISSN: 2289-8131 Vol. 9 No. 2-2

Figure 8: Example of seeds assignment

Function REDUCE(seed, (Sol1,..,𝑆𝑜𝑙𝑁𝑠𝑒𝑒𝑑
))

1. initialize valinc and solinc

2. for each (𝑗 ∈ 𝑁𝑠𝑒𝑒𝑑) do
if(val(Sj) < valinc)

update valinc and solinc

EMIT(seed, solinc)

: seed is the key generated from MAP function
: Nseed is the number of solutions with the same seed

: Sol1,..,𝑆𝑜𝑙𝑁𝑠𝑒𝑒𝑑
is the list of solutions with the same seed

: solinc is an incumbent solution

: valinc is the value of the incumbent solution

Figure 9: The pseudo code of REDUCE function

The flow of MR jobs is summarized in Figure 10. In the

first iteration the input is retrieved from an input file, the

format of input file for MAP and REDUCE phases are

described in Section III. In the following iterations the inputs

are the outputs generated from all the reducers used in the

previous iteration. Note that the solutions generated by all

Maps are grouped and passed to Reducers based on the

assigned seeds. The flow of MR jobs is terminated if no

improved solution can be determined in the Reduce phase of

the last iteration.

Figure 10: The pseudo code of REDUCE function

IV. COMPUTATIONAL RESULTS

The proposed algorithm was implemented on Amazon

Elastic MapReduce (Amazon EMR) with various provided

configurations as shown in Table 1. The Apache Hadoop

Version 1.0.4 was chosen for compilation of MapReduce

code.

Table 1

Number of default Mappers and Reducers from Amazon EMR

Amazon EC2 Instance Name Mappers Reducers

m1.small 2 1

m1.medium 2 1

m1.large 4 2
m1.xlarge 8 4

c1.medium 4 2

c1.xlarge 8 4

m2.xlarge 4 2

m2.2xlarge 8 4

m2.4xlarge 16 8

The data sets for the KP are from CMU artificial

intelligence repository which were used as test cases in many

research work [8][9][10]. The data sets contain instances with

number of items ranging from 20 to 100 items. The data sets

were solved with different Amazon EC2 instance to show the

effect of degree of parallelism on the solutions. The results

are summarized in Figure 11.

Figure 11: Effect of number of mappers on solution quality

Figure 11 shows how well the proposed algorithm scales.

The percent gap was used as a measurement of solution

quality. Three types of test cases (n = 20, 50, 100) were used

in the experiment. For small test cases (20 items), the quality

of solution did not depend on the number of mappers. For

medium and large test cases (50 and 100 items), increasing

the number of mappers improved the solutions and the gap

became zero when number of mappers reached 16.

To determine the effect of number of mappers on the

number of iterations of the algorithm (number of MR jobs)

the %gap was set to 0.01% and the algorithm was executed

until the required %gap was achieved. The results are shown

in Figure 12. For all test cases, the number of required

iterations decreases as the number of mappers increases.

However, the rate of decrease for larger test cases is less than

the rate of decrease for smaller test cases. This is because

larger test cases require searching through larger

neighborhood in order to achieve the required %gap.

𝑆𝑖
1

𝑆𝑖
2

𝑆𝑖
3

i = 3, |Si| = 5
𝑣1

𝑤1
≥

𝑣4

𝑤4
≥

𝑣3

𝑤3
≥

𝑣2

𝑤2
≥

𝑣5

𝑤5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5 𝑆𝑖
4

1 2 3 4 5

Seed =1

Seed =2

Seed =3

𝑆𝑖
5

Mapn

N

Optim

Y

Output

…

.

Input

Map

Sol1 Soln…

.

Sol …

.

Soln

Reduce1 …

.

Reducem

0

1

2

3

4

5

2 4 8 16

%
G

ap

Number of mappers

n =20 n=50 n=100

Parallel Algorithm for Combinatorial Optimization Problem

 e-ISSN: 2289-8131 Vol. 9 No. 2-2 5

Figure 12: Effect of number of mappers on iterations

V. CONCLUSION

In this paper, a parallel heuristic algorithm for a KP is

proposed. The description of MAP and REDUCE phases as

well as the flow of MR jobs are provided. The efficiency of

the algorithm was evaluated on Amazon EMR. Algorithm

for COB such as knapsack problem can be developed on MR

framework. The parallelization feature of the algorithm

improved the overall efficiency of the algorithm, especially

the solution quality (%gap). Similar concept can be applied

to solve other COBs that are difficult to solve such as vehicle

routing problem and travelling salesman problem.

REFERENCES

[1] Martello, S., Pisinger, P. and Toth, P. 1999. Dynamic programming and

strong bounds for the 0-1 knapsack problem. Manag. Sci., 45:414-424.

[2] Lam, C. 2010. Hadoop in Action. Manning Publications Co.

[3] Fiechter, C.N. 1994. A parallel tabu search algorithm for large traveling
salesman problems. Discrete Applied Mathematics, 51(3): 243-267.

[4] Cesari, G. 1996. Divide and conquer strategies for parallel TSP

heuristics. Computers and Operations Research, 23(7): 681-694.
[5] Tsutsui, S. and Fujimoto, N. 2010. Parallel Ant Colony Optimization

algorithm on a Multi-core Processor. Lecture Notes in Computer

Science, 6234(2010): 488-495.
[6] Hoos, H. H. and T. Stutzle. 2005. Stochastic Local Search:

Foundations and Applications. Morgan Kaufmann.

[7] Glover, F. and M. Laguna. 1997. Tabu search. Kluwer.
[8] Drexel, A. 1988. A Simulated Annealing Approach to the

Multiconstraint Zero-One Knapsack Problem. Computing, 40:1-8.

[9] Freville, A. and Plateau, G. 1990. Hard 0-1 multiknapsack testproblems
for size reduction methods. Investigation Operativa, 1:251-270.

[10] Shi, W. 1979. A branch and bound method for the multiconstraint zero

one knapsack problem. J. Opl. Res. Soc., 30:369-378.
[11] Lin, J. and C. Dyer. 2010. Data-Intensive Text Processing with

MapReduce. Morgan and Claypool Publishers.

[12] Amazon Elastic MapReduce Developer Guide, API Version 2009-03-
31.

0

1

2

3

4

5

6

7

2 4 8 16

N
u

m
b

er
 o

f
it

er
at

io
n

s

Number of mappers

n =20 n=50 n=100

