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Abstract— Combinatorial optimization problems (COP) are 

difficult to solve by nature. One of the reasons is because the 

amount of neighborhood search required to generate high 

quality solutions based on sequential methods is intractable. In 

this paper, parallel algorithm for COP such as Knapsack 

Problem is presented. Knapsack problem arises in different 

types of resource allocation problems and has many applications 

in real-world problems. The proposed algorithm is based on 

MapReduce framework where the workload for neighborhood 

search is distributed across available computing nodes in the 

cluster. The design of Map and Reduce phases is proposed based 

on consecutive runs of MapReduce jobs. The computational 

results that shows the effect of degree of parallelism on the 

solution quality are provided. 

 

Index Terms— MapReduce; Combinatorial Optimization 

Problem; Knapsack Problem; Metaheuristics. 

 

I. INTRODUCTION 

 

Knapsack Problem (KP) often arises in different types of 

resource allocation problems and has many applications in 

real-world problems. In general, KP is classified as NP-hard 

problem. Although it is possible to use a very large and 

powerful machine to solve the problem, the approach tends to 

be impractical due to the relevant costs involved in acquiring 

hardware. Thus, it is much more economical and practical to 

use a cluster of computers system that charges the service 

based on the amount of usage such as cloud system. 

MapReduce (MR) framework can be used to help 

implementing parallel algorithms. MR is based on a simple 

programming model and is commonly implemented on top of 

Hadoop [1], an open source MapReduce framework. Not only 

it can assist in distributing workload to different nodes in the 

cluster, it also provides necessary services such as load 

balancing, fault tolerance, etc.  

MR was first introduced by Google. It was originally 

designed to process larger datasets that normally are located 

at different locations. In this paper, the MR based algorithms 

are proposed for COP such as KP. The computational results 

that shows the effect of degree of parallelism of the proposed 

algorithm on the solution quality are provided. The paper is 

organized as follows. Section II gives details of KP and MR 

framework. The design of parallel algorithms based on MR 

framework is presented in Section III. The computational 

results are presented and summarized in Section IV. Section 

V provides conclusion and future research directions. 

 

II. BACKGROUND 

 

In this section, basic information of Knapsack Problem and 

MR framework are provided.  First, the general description of 

KP is provided, then the framework of MR is presented.  

A. Knapsack Problem  
KP has many applications in different fields and typically 

arises in resource allocation problem. For example, it can be 
used to determine the set of data files chosen to store with a 
given available bytes of storage.  The formal description of 
KP can be described as follows: 

Given two sets of numbers, {v1, v2,…, vn}(values) and {w1, 
w2,…, wn} (weights) and W (capacity) > 0, the objective is to 
determine the subset S of {1,2,…,n}( set N) such that 
∑ 𝑣𝑖𝑖∈𝑆   is maximized, subjected to ∑ 𝑤𝑖 ≤ 𝑊𝑖∈𝑆 . In general, 
the KP is considered NP-hard and there is no known 
polynomial algorithm which can solve the problem. There 
exists many algorithms for KP problem, branch and bound, 
heuristics and dynamic programming approach but most of 
them are intractable as the problem size increases. The 
dynamic programming algorithm for KP [1] is shown in 
Figure 1. In the algorithm, an array V[i,w] is used to store the 
value of each combination of i and w. The size of the array is 
nW which increases significantly as the parameter W or the 
capacity of the knapsack increases. As a result, the algorithm 
becomes intractable. 
 

1. An array V[0..n, 0..W] for 1 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑤 ≤ 𝑊 is 

constructed and set to 0 initially. 

2. Recursively, update V[i,w] 
 

 
 

Figure 1: Dynamic programming algorithm for KP 
 

In this paper, a parallel heuristic algorithm (PHKP) for KP 

is proposed to demonstrate how it can take advantage of 

parallel and distributed functions from MR framework. 

 

B. MapReduce Framework 

In general, MR framework requires input data in the form 

of a list of records in the form of <key, value> pairs. The data 

can be stored by using different distributing file systems; i.e, 

Google’s MR uses GFS while Hadoop uses HDFS [1].  In 

Hadoop, one of the nodes is defined as the Master while 

others are defined as slave nodes. The Master node distributes 

MR jobs to slave nodes based on the predefined MAP and 

REDUCE functions. Based on an input data in the form of 

<key, value> pairs, the MAP function will generate a set of 

intermediate records, also in the form of <key2, value2>. 

Intermediate records having the same key2 are grouped 
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together and processed by a REDUCE function which will 

generate a number of output records. Hadoop manages the 

scheduling of intermediate records to available slave nodes 

while considering overall load balancing. 

A simple MR program consists only a MAP and a 

REDUCE functions. In a complex MR program, it is possible 

to have more than one MR job run in sequence where the 

output of a MR job becomes the input of the next MR job. 

The MR framework is shown in Figure 2.  

 

 
 

Figure 2: MapReduce framework 
 

III. MAPREDUCE ALGORITHM FOR KP 

 

Although there has been much work in developing 

parallelizing heuristics for COP such as traveling salesman 

problem (TSP) [3][4][5], none of them has taken advantage 

of existing cluster computing architectures such as MR for 

solving the problem. The contribution of this paper is to 

develop an algorithm based on neighborhood search [6] and 

demonstrate how it can be implemented on MR framework.  

 

A. Solution Representation 

The set of candidate solutions for a KP with i items is 

represented by a set Si. Each solution s in Si needs to satisfy 

the constraint imposed by the KP, the capacity of the 

knapsack. The knapsack value for any solution Si is defined 

as ∑ 𝑣𝑠𝑠∈𝑆𝑖
. 

 

B. Initial Solution 

The initial solution is based on a greedy heuristic algorithm 

where the items are selected based on the ratios of value and 

weight (vw ratio) in decreasing order. The algorithm is 

summarized in Figure 3. 
 

 
 

Figure 3: Greedy heuristic algorithm 
 

C. Neighborhood Search 

All solutions that can be reached from a current solution 

(incumbent solution) by using one or more moves represent a 

neighborhood [7]. In general, the moves for COP take the 

form of insertions, exchanges or replacements. For the PHKP, 

the neighborhood is defined as all feasible points that can be 

reached by two types of moves.  The first is called a swap and 

involves an exchange of assignment of two items item1 and 

item2 ∈ {1,…,n} when either ( item1 ∈  Si  and  item2 ∉  Si ) or 

(item1 ∉  Si  and  item2 ∈  Si) is true.     

The swap moves trade an item with high vw ratio with one 

or more items with lower vw ratios. The second move is 

called an insert and selects an item not already included in the 

solution to be inserted to the solution. 

Example of moves. Figure 4 depicts a swap between items 

3 and 4. The items are represented by the circles where the 

numbers correspond to items’ ids. In the example, there are 

five items considered, the parameters for the items are as 

follows. The values for items 1 to 5 are v1 = 50, v2 = 40, v3 = 

15, v4 = 80 and v5 = 20. The weights for items 1 to 5 are w1 = 

2, w2 = 9, w3 = 3, w4 = 8 and w5 = 5. The capacity is limited to 

20. Before the swap, items 1, 3 and 5 are in the solution. After 

the swap, the assignment of items 3 and 4 are exchanged; item 

3 is removed from the solution while item 4 is included to the 

solution. The capacity of the solution increases from 10 to 15 

and the value of the solution increases from 85 to 150. 
 

 
 

Figure 4: A swap between items 3 and 4 
 

Using the same data and starting with the solution in the 

bottom portion of Figure 4. Figure 5 gives an example of an 

insert move.  Before the insert, items 1, 4 and 5 are in the 

solution. The move inserts item 3 to the solution. The 

capacity of the solution increases from 15 to 18 and the value 

of the solution increases from 150 to 165. 

 

D. MapReduce Jobs 

The proposed MR for KP consists of sequential MR jobs 

where the solution is adjusted based on neighborhood search 

in each MR job. Once the job is completed, the improved 

solutions are retrieved and used as the input for the next 

iteration.  The algorithm terminates when no more improved 

solution can be found. In each iteration of the algorithm, 

improved solutions can be found by using a neighborhood 

search based on the previously generated solutions at each 

node. The pseudo code for the main program of the algorithm 

is shown in Figure 6. 

Input 

Map 1 

Map 2 

Map n 

Reduce 1 

Reduce m 

Output 

Before swap 

1 2 3 4

4
5 

v1 = 50 

w1 = 2 

v2 = 40 

w2 = 9 

v3 = 15 

w3 = 3 

v4 =80 

w4 = 8 

v5 = 20 

w5 = 5 

W = 20, i = 3, 

Si={1,3,5} 

Value(Si) = 85 

Capacity=10 

After swap 

1 2 3 4

4
5 

v1 = 50 

w1 = 2 

v2 = 40 

w2 = 9 

v3 = 15 

w3 = 3 

v4 =80 

w4 = 8 

v5 = 20 

w5 = 5 

W = 20, i = 3, 

Si={1,4,5} 

Value(Si) = 150 

Capacity = 15 
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Figure 5: An insert of item 3 

 

 
 

Figure 6: The pseudo code for MR main program 
 

Proposition 1 

If the current solution is not optimal, when the initial 

solution is generated by using a greedy heuristic algorithm, 

the solution can be improved by either applying a swap move 

or applying a swap and an insert.  

 

Proof 

Consider a knapsack problem with n items. Let Si be the 

solution generated by following the greedy heuristic 

algorithm and the list of items included in the solution in 

increasing order of pw ratios is item1, item2,...,itemi. Without 

loss of generality, a single pair of items, itemm and itemn (m < 

n < i), is considered in the swap.  

 

Case1:  itemm ∉ Si and itemn ∈  Si 

    Let 𝑆𝑖
𝑛𝑒𝑤be the solution after swapping itemm and itemn. 

The capacity and the value of 𝑆𝑖
𝑛𝑒𝑤1are Capacity(𝑆𝑖

𝑛𝑒𝑤1) =  

Capacity(Si) - 𝑤𝑖𝑡𝑒𝑚𝑛
 + 𝑤𝑖𝑡𝑒𝑚𝑚

  and  Value(𝑆𝑖
𝑛𝑒𝑤1) =  

Value(Si) - 𝑣𝑖𝑡𝑒𝑚𝑛
 + 𝑣𝑖𝑡𝑒𝑚𝑚

 , respectively. Based on the 

assumption, 
𝑣𝑖𝑡𝑒𝑚𝑚

𝑤𝑖𝑡𝑒𝑚𝑚

 ≤  
𝑣𝑖𝑡𝑒𝑚𝑛

𝑤𝑖𝑡𝑒𝑚𝑛

 , there are 2 possible cases. 

 

    Case 1.1:  

    Capacity (𝑆𝑖
𝑛𝑒𝑤1) ≤ W and Value (𝑆𝑖

𝑛𝑒𝑤1) > Value (Si) 

    In this case, the solution is improved by applying only a 

swap. 

     

Case 1.2: 

The solutions that follow case1.1 are ignored in this case. 

Consider applying an insert after a swap. By contradiction, 

there must exist itemo, o < n, such that Capacity (𝑆𝑖
𝑛𝑒𝑤2) =  

Capacity (𝑆𝑖
𝑛𝑒𝑤1) +𝑤𝑖𝑡𝑒𝑚𝑜

≤ W and Value(𝑆𝑖
𝑛𝑒𝑤2) =  

Value(𝑆𝑖
𝑛𝑒𝑤1) + 𝑣𝑖𝑡𝑒𝑚𝑜

 ,otherwise 𝑆𝑖
𝑛𝑒𝑤1is optimal. 

 

Case 2: itemm ∈ Si and  itemn ∉  Si 

    If ∃ itemn such that 
𝑣𝑖𝑡𝑒𝑚𝑚

𝑤𝑖𝑡𝑒𝑚𝑚

 ≤  
𝑣𝑖𝑡𝑒𝑚𝑛

𝑤𝑖𝑡𝑒𝑚𝑛

 and Capacity (𝑆𝑖
𝑛𝑒𝑤3) 

=  Capacity(Si) - 𝑤𝑖𝑡𝑒𝑚𝑚
 + 𝑤𝑖𝑡𝑒𝑚𝑛

  ≤ W, then by contradiction, 

Si was not generated by greedy heuristic algorithm. 

 

Based on Proposition 1, in each MR job, a swap or an insert 

is applied to the solutions alternately in the MAP function. 

The pseudo code of the MAP function is listed in Figure 7. 

 

Function MAP( key, (l, 𝑁𝑙 , (Sol1,..,𝑆𝑜𝑙𝑁𝑙
)) 

1. Initialize HashMap = ∅ 

2. For each j ∈ Nl do 

If( l is odd) 

𝑆𝑜𝑙𝑗
𝑛𝑒𝑤 =  𝑆𝑊𝐴𝑃(𝑆𝑜𝑙𝑗)  

Else 

𝑆𝑜𝑙𝑗
𝑛𝑒𝑤 =  𝐼𝑁𝑆𝐸𝑅𝑇(𝑆𝑜𝑙𝑗)   

if(𝐻𝐴𝑆𝐻_𝑉𝐴𝐿𝑈𝐸(𝑆𝑜𝑙𝑗
𝑛𝑒𝑤)  ∉ HashMap) 

HashMap = HashMap ∪  𝐻𝐴𝑆𝐻_𝑉𝐴𝐿𝑈𝐸(𝑆𝑜𝑙𝑗
𝑛𝑒𝑤)          

seed = 𝐶𝐴𝐿_𝑆𝐸𝐸𝐷(𝑆𝑜𝑙𝑗
𝑛𝑒𝑤)                                        

EMIT(seed, 𝑆𝑜𝑙𝑗
𝑛𝑒𝑤)  

: l is iteration id 

: Nl is the number of solutions at iteration l 

: Sol1,..,𝑆𝑜𝑙𝑁𝑙
is the list of solutions at iteration l  

: HashMap is a hash map that stores solutions based on hash value 

 

Figure 7: The pseudo code for MR main program 

 

The input of MAP function consists of iteration id (l), 

number of solutions (𝑁𝑙) and the list of solutions for iteration 

l (Sol1,..,𝑆𝑜𝑙𝑁𝑙
). The algorithm iterates through each solution 

and applies a swap when l is odd and an insert when l is even. 

Examples of a swap and an insert are shown in Figures 4 and 

5, respectively. Each generated solution is checked against 

the HashMap to make sure that no duplicate solution is stored 

in the HashMap. This helps reduce the number of solutions 

that needs to be processed in the following iterations. At the 

end of MAP function, a seed is assigned to each solution and 

used as a key that will be passed to a reducer.  

 

Example of grouping solutions based on seed: 

In order to take advantage of parallel computing function 

from MR framework, the solutions are partitioned and 

assigned to different reducers based on the special key called 

“seed”. For any solution Si, the seed is defined as an item with 

the maximum ratio of profit and weight, item  𝑗∗ =

𝑎𝑟𝑔𝑚𝑎𝑥𝑗∈𝑆𝑖
(

𝑣𝑗

𝑤𝑗
) . Figure 8 illustrates how the seeds are 

assigned to solutions. Note that whenever there are more than 

one solution set based on i. Each member of Si can be 

referenced by using notation 𝑆𝑖
𝑘,where 𝑘 ∈ {1, . . , |𝑆𝑖|} . In 

the example, the number of items is 5 and i = 3.   

     It is possible to have multiple solutions assigned to a 

reducer. The solutions’ values are compared with the 

incumbent value of the best known solution. Solutions with 

values worse than the incumbent solution’ value are excluded 

from the next iteration, otherwise the incumbent solution is 

updated. Figure 9 lists the pseudo code of the REDUCE 

function. 
 

 

Before insert 

1 2 3 4

4
5 

v1 = 50 

w1 = 2 

v2 = 40 

w2 = 9 

v3 = 15 

w3 = 3 

v4 =80 

w4 = 8 

v5 = 20 

w5 = 5 

W = 20, i = 3, 

Si={1,4,5} 

Value(Si)= 150 

Capacity = 15 

After insert 

1 2 3 4 5 

v1 = 50 

w1 = 2 

v2 = 40 

w2 = 9 

v3 = 15 

w3 = 3 

v4 =80 

w4 = 8 

v5 = 20 

w5 = 5 

W = 20, i = 4, 

Si={1,3,4,5} 

Value(Si)= 165 

Capacity = 
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Figure 8: Example of seeds assignment 

 

Function REDUCE( seed,  (Sol1,..,𝑆𝑜𝑙𝑁𝑠𝑒𝑒𝑑
) ) 

1. initialize valinc and solinc    

2. for each ( 𝑗 ∈ 𝑁𝑠𝑒𝑒𝑑) do  
if( val(Sj) < valinc)                    

update valinc and solinc   

EMIT(seed, solinc)  
 

: seed is the key generated from MAP function 
: Nseed is the number of solutions with the same seed 

: Sol1,..,𝑆𝑜𝑙𝑁𝑠𝑒𝑒𝑑
is the list of solutions with the same seed 

: solinc is an incumbent solution 

: valinc is the value of the incumbent solution 

 

Figure 9: The pseudo code of REDUCE function 

 

The flow of MR jobs is summarized in Figure 10. In the 

first iteration the input is retrieved from an input file, the 

format of input file for MAP and REDUCE phases are 

described in Section III. In the following iterations the inputs 

are the outputs generated from all the reducers used in the 

previous iteration. Note that the solutions generated by all 

Maps are grouped and passed to Reducers based on the 

assigned seeds. The flow of MR jobs is terminated if no 

improved solution can be determined in the Reduce phase of 

the last iteration. 
 

 
 

Figure 10: The pseudo code of REDUCE function 

IV. COMPUTATIONAL RESULTS 

 

The proposed algorithm was implemented on Amazon 

Elastic MapReduce (Amazon EMR) with various provided 

configurations as shown in Table 1. The Apache Hadoop 

Version 1.0.4 was chosen for compilation of MapReduce 

code.  
 

Table 1 

Number of default Mappers and Reducers from Amazon EMR 

 

Amazon EC2 Instance Name Mappers Reducers 

m1.small 2 1 

m1.medium 2 1 

m1.large 4 2 
m1.xlarge 8 4 

c1.medium 4 2 

c1.xlarge 8 4 

m2.xlarge 4 2 

m2.2xlarge 8 4 

m2.4xlarge 16 8 

 

The data sets for the KP are from CMU artificial 

intelligence repository which were used as test cases in many 

research work [8][9][10]. The data sets contain instances with 

number of items ranging from 20 to 100 items. The data sets 

were solved with different Amazon EC2 instance to show the 

effect of degree of parallelism on the solutions. The results 

are summarized in Figure 11. 
 

 

Figure 11: Effect of number of mappers on solution quality 

 

Figure 11 shows how well the proposed algorithm scales. 

The percent gap was used as a measurement of solution 

quality. Three types of test cases (n = 20, 50, 100) were used 

in the experiment. For small test cases (20 items), the quality 

of solution did not depend on the number of mappers. For 

medium and large test cases (50 and 100 items), increasing 

the number of mappers improved the solutions and the gap 

became zero when number of mappers reached 16. 

To determine the effect of number of mappers on the 

number of iterations of the algorithm (number of MR jobs) 

the %gap was set to 0.01% and the algorithm was executed 

until the required %gap was achieved. The results are shown 

in Figure 12. For all test cases, the number of required 

iterations decreases as the number of mappers increases. 

However, the rate of decrease for larger test cases is less than 

the rate of decrease for smaller test cases. This is because 

larger test cases require searching through larger 

neighborhood in order to achieve the required %gap. 
 

 

𝑆𝑖
1 

𝑆𝑖
2 

𝑆𝑖
3 

i = 3,   |Si| = 5           
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Figure 12: Effect of number of mappers on iterations 

 

V. CONCLUSION 

 

In this paper, a parallel heuristic algorithm for a KP is 

proposed. The description of MAP and REDUCE phases as 

well as the flow of MR jobs are provided. The efficiency of 

the algorithm was evaluated on Amazon EMR.  Algorithm 

for COB such as knapsack problem can be developed on MR 

framework. The parallelization feature of the algorithm 

improved the overall efficiency of the algorithm, especially 

the solution quality (%gap). Similar concept can be applied 

to solve other COBs that are difficult to solve such as vehicle 

routing problem and travelling salesman problem. 
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