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Abstract—Analytical potential model for cylindrical 

surrounding-gate or gate-all-around metal oxide semiconductor 

field effect transistors (MOSFETs) has been developed. The 

model presented here takes quantum confinement effects into 

account in which embodied by two physical parameters, namely, 

(1) threshold voltage shift and (2) inversion layer centroid. These 

parameters have been incorporated into the classical procedure 

as modifications for the gate work function and the inversion 

layer capacitance to obtain the quantum version of drain 

current. The model has been able to reproduce drain current vs. 

gate voltage characteristics obtained from self-consistent 

calculation. Therefore, it is suitable to use it in the context of 

circuit simulator.  

 

Index Terms—Analytical Model; Cylindrical Surrounding 

Gate MOSFETs.  

 

I. INTRODUCTION 

 

Conventional bulk MOSFETs has approaching its scaling 

limit [1]. As the size of the device are continue to shrink, 

several detrimental effects such as gate oxide tunneling and 

short channel effects began to affects device performance [2-

11]. One of the solutions to overcome those undesirable 

effects is to improve the channel electrostatics control. To get 

better control over the channel, multi-gate based technology, 

like double gate, triple gate, and surrounding gate, 

incorporate more than one gate into the channel [6]. 

Surrounding gate (SG) MOSFETs offers the best gate control 

compared to the others since the channel is basically fully 

surrounded by the gate. 

In this paper, we propose a simple analytical model for 

obtaining the I_ds (V_g,V_ds ) characteristic of cylindrical 

SG MOSFET. Since the channel is fully surrounded by the 

gate and as the size is approaching the nanometers regime, 

quantum confinement effects have a major influence into the 

inversion charge of SG MOSFET. Therefore, to be able to 

describe more accurate characteristics of the device, this 

quantum confinement effects have to be included in the 

current model [2, 4, 13].  The quantum confinement effects 

can manifest into the behavior of the device characteristics in 

two aspects. First, since the energy levels are quantized, more 

band bending would be required to populate the subbands 

therefore the threshold voltage become higher. Second, the 

inversion layer formed near surface would reduce the total 

gate capacitance [4]. 

Roldan et al. [2] obtained a great result for an analytical I-

V characteristic model for cylindrical SG MOSFETs that 

include quantum confinement effects by performing 

modification on classical charge control based approach [3]. 

Although the analytical model developed there can match 

numerical simulation at low and high gate voltages, it is not 

quite accurate particularly on the transition region near 

threshold voltage. Therefore, a more accurate model is 

needed since this transition region become more and more 

important as the power supply voltage is scaled down [7]. 
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Figure 1: Cross section of a cylindrical SG MOSFET 

 

In this paper, we will demonstrate that an analogous 

formulation of quantum correction or modification for 

classical potential based approach [4] as proposed by Wang 

et al. for the double-gate (DG) MOSFET [5] can be carried 

out for the cylindrical SG MOSFET [6, 7]. Classical potential 

based approach that we used here is an analytical method 

proposed by Yu et al. [7]. This method proved to be more 

correct mathematically and more accurate compared to 

classical charge control based method [7]. Therefore, 

hopefully by applying this method as our base analytical 

model, we can get more accurate result compared to the one 

obtained by [2]. For this purpose, we organize this letter as 

follows: In Section 2 solutions to the coupled Schrödinger 

and Poisson equations in cylindrical coordinate system are 

developed using a one-dimensional Poisson-Schrödinger 

solver. Then the Influences of quantum confinement on 
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device characteristics, namely, threshold voltage shift and 

inversion centroid are expressed as closed form functions of 

device radius and inversion charge density. In Section 3, 

quantum effects are implemented in the classical potential 

based compact model for generating I-V curves. The 

advantages when compared to with the previous model from 

[2] will be covered in Section 4. The final conclusions are 

drawn in Section 5. 

 

II. QUANTUM CORRECTION 

 

The goal of this section is to model the quantum 

mechanical aspects (threshold voltage shift and capacitance 

degradation) that would affect the device characteristics. 

 

A. Self-consistent Solution of Schrödinger-Poisson 

Equation 

Figure 1 shows the geometrical dimensions of a cylindrical 

SG MOSFET. A silicon nanowire with radius R is surrounded 

by thin gate oxide with thickness 𝑡𝑜𝑥. For a long-channel SG-

MOSFET, quantum confinement effects arise both from field 

potential from gate and from 2-D structural confinement from 

the surrounding oxide barrier. To obtain the quantum 

electrical characteristics of the MOSFET, one needs to solve 

the coupled Poisson and Schrödinger equations self-

consistently. The Poisson equation connecting the 

electrostatic potential ψ(r) to the electron density n(r) is [2, 6, 

7]. 
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Instead of using classical Boltzmann’s statistics, which is 

given as 𝑛 = 𝑛𝑖 exp 𝑞𝜓/𝑘𝑇 in the classical model, n is 

modeled quantum mechanically as [2]  
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due to the application of Fermi-Dirac statistics. Here q is the 

electronic charge, 𝜀𝑠𝑖 is the silicon permitivitty, k is 

Boltzmann’s constant, T is temperature, 𝐸𝑓 is the Fermi level, 

𝑔𝑣 and 𝑚𝑑,𝑣
∗  are the degeneracy and density-of-state effective 

mass in the vth valley, respectively, ℏ is Planck’s constant, 

Ψ𝑣,𝑛𝑟,𝑛𝜙
(𝑟) is the normalized wave functions and 𝐸𝑣,𝑛𝑟,𝑛𝜙

 is 

the energy of the 𝑛𝑟th and 𝑛𝜙th subband in the vth valley 

satisfying the following Schrödinger equation. 
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(3) 

 

Here 𝑚𝑟,𝑣
∗  is the electron effective mass in the vth valley in 

the radial direction and the conduction band 𝐸𝑐(𝑟) is coupled 

to the electrostatic potential ψ(r) through 𝐸𝑐 = 𝐸𝑔/2 −

𝑞𝜓(𝑟). 

The boundary condition relates the potential and electric 

field at the silicon-oxide interfaces to the applied gate voltage 

as follows [4, 6].  
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where 𝐶𝑜𝑥 = 𝜀𝑜𝑥/𝑅 ln(1 + 𝑡𝑜𝑥/𝑅) is the oxide capacitance 

per unit area, Δϕ is the work function difference between the 

gate electrode and the intrinsic silicon, V𝑔 is gate voltage, and 

Q𝑖  is the electron charge sheet density. The wave function is 

forced to be zero at the silicon-oxide interface mimicking 

impenetrable barrier but continues at the center (r=0).  

We have developed numerical self-consistent calculation 

to solve the Poisson Equation (1) and Schrödinger Equation 

(3). The illustration of our quantum self-consistent 

calculation when compared to the classical calculation will be 

covered in the result section (Section 5) as a minor result. 

 

B. Threshold Voltage Shift 

In order to convert those complex self-consistent 

calculations into analytical one, we followed the work by 

Roldan et.al. [2] and our previous work [13] by the following. 

First, we modeled the trends of the threshold voltage shift 

obtained from self-consistent calculation by empirical 

equation given by 

 

𝛥𝑉𝑡ℎ = 0.03001 (𝑉) +  
0.1187×10−18(𝑉/𝑚2)

𝑅2 . (5) 

 

This procedure is quite different with the work by Wang et al. 

for the DG-MOSFET [4], in which the threshold voltage shift 

can be modeled only by the lowest subband.  

 

C. Gate Capacitance Degradation 

It is known that the gate capacitance is degraded due to 

quantum quantization effects [2, 4, 13]. This gate capacitance 

degradation can be modeled by correcting the oxide 

capacitance C_ox. the quantum charge distribution in the 

semiconductor through the determination of the inversion 

layer centroid is characterized to calculate the corrected oxide 

capacitance. In order to get the correction for C_ox, first we 

gathered self-consistent data of inversion layer centroid. We 

then used the following empirical equation to model those 

data [2, 13]. 
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where a=0.55 nm, b=0.198, z_I0=5.1 nm, 𝑁𝐼0 = 7×1016 −
4.9×1024/m, and n=0.75 are constants.  

The classical oxide capacitance, Cox, was replaced by 

another capacitance called as corrected oxide capacitance, 

Cox*, to incorporate the effects of zI for the evaluation of the 

inversion charge concentration in Equation (4) which 

formulated as follows: 

 
1
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1
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where 𝐶𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑  is calculated as follows [2, 13]: 

 

𝐶𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =
𝜀𝑠𝑖

(𝑅 − 𝑧𝐼) 𝑙𝑛 (1 +
𝑧𝐼

𝑅 − 𝑧𝐼
)

. 
(8) 
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These two semi-empirical equations (Equation (5) and 

Equation (6)) are proven to be consistently fit with the data 

for various range of radius and gate voltage. The illustration 

can be found elsewhere [13].  

 

III. IMPLEMENTATION OF QUANTUM CORRECTION FOR SG-

MOSFETS FOR INVERSION CHARGE MODEL 

 

Finally, in order to obtain the quantum version of analytical 

approach, the quantum mechanical correction factors (the 

threshold voltage shift and the gate capacitance degradation) 

are implemented in a classical analytic potential model for SG 

MOSFETs proposed by Ref [6-7]. There, in the analytic 

potential model, Poisson’s equation is rigorously solved to 

obtain an analytical expression for potential in the silicon film 

[6-7].   
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where V is the electron quasi-Fermi potential at a point along 

the channel, 𝑛𝑖 is the intrinsic carrier density, and the 

dimensionless parameter α which is a function of V to be 

determined from the boundary condition in Equation (4) with 

𝑉𝑔 replace by 𝑉𝑔 − 𝑉. For this analytical consideration, the 

boundary condition can be appropriately implemented by 

substituting Equation (9) into Equation (4) to obtain the 

following boundary equation:  
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where 𝑠 = 2𝜀𝑠𝑖/𝑅𝐶𝑜𝑥. This equation is a non linear equation 

that need to be solve to find the appropriate value of α. 

From Gauss’ law, the classical charge density is  𝑄𝑖 =
𝜀𝑠𝑖(𝑑𝜓/𝑑𝑟)𝑟=𝑅, which is simply 

 

𝑄𝑖 =
4𝜀𝑠𝑖𝑘𝑇

𝑞𝑅

(1 − 𝛼)

𝛼
. (11) 

 

By integrating the current continuity equation [9], a 

continuous, analytical drain current expression is obtained for 

all regions of MOSFET operation [8]  

 

𝐼𝑑𝑠 = 𝜇
8𝜋𝜀𝑠𝑖

𝐿
(

𝑘𝑇

𝑞
)

2

[𝑓(𝛼𝑑) − 𝑓(𝛼𝑠)], (12) 

 

where μ is the electron mobility, L is the channel length, 𝛼𝑠 

and 𝛼𝑑 are solutions of Equation (10) corresponding to 𝑉 =
𝑉𝑠 and 𝑉 = 𝑉𝑑, respectively, and 𝑓(𝛼) = −2/𝛼 − ln 𝛼 +
𝑠(−1/𝛼2 + 2/𝛼).  
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Figure 2: (a) Conduction band along the radial direction and (b) 
normalized electron density of SG-MOSFETs with radius of silicon 

body R=5 nm and oxide thickness 𝑡𝑜𝑥 =1nm. 

 

To incorporate the quantization effects into the above 

classical analytical potential model, the following procedure 

was performed. 

 

i. Implement the threshold voltage shift by changing the 

gate work function in Equation (10) from Δ𝜙 to Δ𝜙 +
Δ𝑉𝑡ℎ, with Δ𝑉𝑡ℎ is given by Equation (5), then solve 

Equation (10) to find 𝛼. A simple explicit procedure to 

calculate 𝛼 can be found in [7]. 

ii. Compute the inversion charge density 𝑄𝑖  by 

substituting 𝛼 into Equation (11). 

iii. Compute the inversion layer centroid 𝑧𝐼 by putting 𝑄𝑖  

found in (b) into Equation (6) then find the corrected 

oxide capacitance 𝐶𝑜𝑥
∗  by substituting 𝑧𝐼  into Equation 

(8) and then Equation (7). 

iv. Put this new corrected oxide capacitance into Equation 

(10) inside the 𝑠 variable then compute the second 

value of 𝛼 as step (a). We name this 𝛼 as 𝛼𝑄𝑀 since its 

value determines all quantum-mechanically corrected 

parameters. 

v. Compute the drain current 𝐼𝑑𝑠 by substituting 𝛼𝑄𝑀 

and 𝐶𝑜𝑥
∗  into Equation (12) for the final result of the 

compact quantum I-V model. 
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Figure 3: Comparison of drain current 𝐼𝑑𝑠 vs. gate voltage 𝑉𝑔 between 

self-consistent data (dots), model from [2] (red dashed line), and our 

present model (blue line). Our analytic present model shows a better 
accuracy compared to [2] at the transition region near threshold voltage 

(square dashed box). 

 

IV. RESULTS AND DISCUSSION 

 

Before we go to the main result, we need to recall our self-

consistent Poisson and Schrödinger numerical simulation that 

have been discussed in section 2.1. To see how quantum 

consideration affects the electrons inside the channel, we can 

simply comparing some findings in our numerical simulation 

of quantum self-consistent method with the classical (non 

quantum) one. The purpose of this comparison is simply to 

give a sense that quantum and classical calculation would 

gives a different results. One-dimensional coupled Poisson-

Schrödinger solver was developed to solve equations 

Equation (1) and (3) using a simple finite difference method. 

To illustrate the difference between the classical (non-

quantum) and the quantum self-consistent method, the 

potential profile in the form of conduction band is presented 

in Figure 2. (a). It is shown that in the subthreshold region, 

the conduction band of the silicon is essentially flat and move 

along with the applied gate voltage (volume inversion). It is 

also shown that in general the quantum self-consistent 

method would results more conduction band bending in the 

surface. The difference between these two methods can also 

be seen in Figure 2(b), in which the normalized electron 

densities are plotted for different gate voltages. It can be seen 

that the electrons are spread throughout the silicon cylinder 

and get their maximum values at different points within the 

cylinder depending on the gate voltage. For low gate voltages, 

most of the charge is located at the center. As the gate voltage 

rises, the inversion charge gets closer to the surface. This 

quantum charge distribution makes it very different with its 

classical counterpart which always has maximum value at the 

surface. 

Moving to our major result, the advantage of our explicit 

model would be discussed in detail. A direct way to 

understand the accuracy of our I-V model is to compare it 

with I-V model obtained from self-consistent calculation. We 

also can compare our result to the work done by [2] since as 

we have mentioned before that Roldan et. al. [2] had 

previously proposed an I-V compact model that include 

quantum confinement effects for SG-MOSFETs. Figure 3 

gives the drain current (𝐼𝑑𝑠) vs. gate voltage (𝑉𝑔) calculated 

by our present model with those obtained from self-consistent 

simulation and also the model from [2] to show the accuracy 

of the model. For calculation of the present model, we use the 

procedures described in section 3 from step (a) to (e) 

thoroughly. It is shown that our model and model from [2] is 

in a good agreement with the self-consistent calculation. 

Compared to the model from [2], our model has a better 

behavior in the area around threshold voltage. This is due to 

the characteristics of classical charge control based approach 

proposed by Iniguez et.al [3], which has been used by [2] as 

the base analytical equation. This classical charge control was 

described by Yu et.al. [7] as not mathematically accurate. In 

the other way, in our model, we used the classical potential 

based approach [7] as our base analytical equation. This 

approach has higher degree of mathematical correctness 

compare to charge control based approach. 

 

V. CONCLUSION 

 

An analytic compact model with quantum corrections has 

been developed for cylindrical surrounding-gate MOSFETs. 

Two distinctive quantum effects have been extracted from 

numerical solutions obtained from a 1-D Poisson-

Schrödinger solver in the cylindrical coordinate system. First, 

the threshold voltage shift as a function of silicon radius has 

been implemented as an effective change in the gate work 

function. Second, quantum degradation of the gate 

capacitance has been expressed as a correction to the oxide 

capacitance by introduction of quantum inversion layer 

centroid. Quantum effects on the inversion charge density, 

capacitance and current are then incorporated into an analytic 

potential SG compact model by a simple procedure. The 

current versus voltage curves generated by compact model 

with quantum modifications were in excellent agreement with 

the self-consistent Poisson-Schrödinger simulation.   
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