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Abstract—Recently, we have introduced Multi-Leader 

Particle Swarm Optimization (MLPSO) algorithm for multi-

objective optimization problem. Better convergence and 

diversity have been observed over the conventional Multi-

Objective Particle Swarm Optimization. In this paper, the 

same concept is extended to Gravitational Search Algorithm 

(GSA). The performance was investigated by solving a set of 

ZDT test problem. An analysis was also performed by varying 

the value of initial gravitational constant. 

 

Index Terms—About Gravitational search algorithm; multi-

objective optimization. 

 

I. INTRODUCTION 

 

The Gravitational Search Algorithm (GSA) has been 

introduced in 2009 as an alternative approach for solving 

optimization problems [1]. GSA is inspired by nature 

(gravity) and belongs to a class of population-based meta-

heuristics. In GSA, agents are considered as an object and 

their performance is expressed by their masses. The position 

of a particle corresponds to the solution of the problem. 

Consider a population consists of N agents, the position of 

ith agent can be presented by: 

 

𝑋𝑖 = (𝑥𝑖
1 … 𝑥𝑖

𝑑 … 𝑥𝑖
𝑛) 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁 (1) 

 

The mass of ith particle at time t is derived from Equation 

(2) and Equation (3), denoted as 𝑀𝑖(𝑡). 

 

𝑚𝑖(𝑡) =
𝑓𝑖𝑡𝑖(𝑡) − 𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑏𝑒𝑠𝑡(𝑡) − 𝑤𝑜𝑟𝑠𝑡(𝑡)
 (2) 

𝑀𝑖(𝑡) =
𝑚𝑖(𝑡)

∑ 𝑚𝑗(𝑡)𝑁
𝑗=1

 (3) 

 

where N is a population size, 𝑚𝑖(𝑡) is an intermediate 

variable in agent mass calculation, 𝑓𝑖𝑡𝑖(𝑡) is the fitness 

value of ith agent at time t, 𝑏𝑒𝑠𝑡(𝑡) and 𝑤𝑜𝑟𝑠𝑡(𝑡) denote 

the best and the worst fitness value of the population at time 

t. The best and the worst fitness for the case of minimization 

problem are defined as follows; 

  
𝑏𝑒𝑠𝑡(𝑡) = min

𝑗∈{1,…,𝑁}
𝑓𝑖𝑡𝑗(𝑡)

𝑤𝑜𝑟𝑠𝑡(𝑡) = max
𝑗∈{1,…,𝑁}

𝑓𝑖𝑡𝑗(𝑡)
 (4) 

 

whereas, for maximization problem, 

 
𝑏𝑒𝑠𝑡(𝑡) = max

𝑗∈{1,…,𝑁}
𝑓𝑖𝑡𝑗(𝑡)

𝑤𝑜𝑟𝑠𝑡(𝑡) = min
𝑗∈{1,…,𝑁}

𝑓𝑖𝑡𝑗(𝑡)
 (5) 

 

At specific time “t”, the force acting on agent “i” from 

agent “j” in dth dimension can be represented as the 

following: 

 

𝐹𝑖𝑗
𝑑(𝑡) = 𝐺(𝑡)

𝑀𝑝𝑖(𝑡) × 𝑀𝑖𝑗(𝑡)

𝑅𝑖𝑗(𝑡) + 𝜀
(𝑥𝑗

𝑑(𝑡) − 𝑥𝑖
𝑑(𝑡)) (6) 

 

 

where , 𝑀𝑝𝑖(𝑡) is the passive gravitational mass of agent “i”, 

𝑀𝑎𝑗(𝑡) is the active gravitational mass of agent “i”, 𝐺(𝑡) is 

the gravitational constant, ɛ is a small constant, and 𝑅𝑖𝑗(𝑡) is 

the Euclidian distance between agent “i” and “j”. The 

distance is calculated using a standard formula as follows: 

 

𝑅𝑖𝑗(𝑡) = ‖𝑋𝑖(𝑡), 𝑋𝑗(𝑡)‖
2
 (7) 

 

while gravitational constant is defined as a decreasing 

function of time, which is set to 𝐺0 at the beginning and 

decreases exponentially towards zero with a lapse of time. 

 

𝐺(𝑡) = 𝐺0 × 𝑒
−𝛼

𝑡
𝑡𝑚𝑎𝑥 (8) 

 

The total force acted on agent “i” in “d” dimension is a 

randomly weighted sum of dth components of the forces 

exerted from other agents; 

 

𝐹𝑖
𝑑(𝑡) = ∑ 𝑟𝑎𝑛𝑑𝑖𝐹𝑖𝑗

𝑑(𝑡)

𝑁

𝑗=1,𝑗≠𝑖

 (9) 

 

where, 𝑟𝑎𝑛𝑑𝑖  is a random number in the interval of [0,1].  

According to the law of motion, the current velocity of 

any mass is equal to the sum of the fraction of its previous 

velocity and the variation in the velocity. Variation or 

acceleration of any mass is equal to the force acted on the 

system divided by the mass of inertia, which is shown in the 

following formula. 
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𝑎𝑖
𝑑(𝑡) =

𝐹𝑖
𝑑(𝑡)

𝑀𝑖𝑖(𝑡)
 𝑓𝑜𝑟 𝑀𝑎𝑖 = 𝑀𝑝𝑖 = 𝑀𝑖𝑖 (10) 

 

Therefore, the new agent velocity and position are 

calculated using these equations: 

 

𝑣𝑖
𝑑(𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑖 × 𝑣𝑖

𝑑(𝑡) + 𝑎𝑖
𝑑(𝑡) (11) 

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑(𝑡) + 𝑣𝑖
𝑑(𝑡 + 1) (12) 

 

Finally, the next iteration is executed until the maximum 

number of iterations, 𝑡𝑚𝑎𝑥, is reached. The principle of 

standard GSA is shown in Figure 1. 
 

 
Figure 1: The gravitational search algorithm 

 

Since 2009, the GSA algorithm has been extended 

extensively, for example, in solving multi-objective 

optimization problems [2-6], combinatorial optimization 

problems [7-9], and in solving engineering problems [10-

12]. 

In solving multi-objective optimization problems, we 

have recently introduced Multi-Leader Particle Swarm 

Optimization (MLPSO) [13]. In MLSPO, the movement of a 

particle is determined by all leaders that dominate that 

particle. This concept allows for more information sharing 

between particles. As opposed to most of the algorithms, 

one or two leaders are used to guide the movement of every 

particle in a search space. The previous study has shown the 

superiority of MLPSO. In this study, similar concept is 

extended to GSA. 

 

II. THE MULTI-LEADER GSA 

 

In multi-leader concept [13], multiple leader set, MLs,i, is 

defined as the set of non-dominated solutions that dominate 

the i-th agent from the s-th group as: 

 

MLs,i = { ≺ ps,i } (13) 

Consider the agents and the non-dominated solutions 

shown in Figure 2. For example, the agent labelled with ‘1’ 

is dominated by the non-dominated solution ‘A’, and thus, 

MLs,1 = {𝝍𝐴}. The second agent is dominated by the non-

dominated solutions ‘A’ and ‘B’, and thus, MLs,2 = 

{𝝍𝐴, 𝝍𝐵}. Similarly, MLs,3 = {𝝍𝐴, 𝝍𝐵, 𝝍𝐶} because the 

non-dominated solutions ‘A’, ‘B’, and ‘C’ dominate the 

third agent. For the rest of the agent, MLs,4 = {𝝍𝐵, 𝝍𝐶} and 

MLs,5 = {𝝍𝐶}. Furthermore, if an agent is a member of the 

archive, then the other members in the archive are selected 

to be its leaders. In this case, MLs,A = {𝝍𝐵, 𝝍𝐶}. Hence, the 

non-dominated solutions 𝝍 in the MLs,i are the leaders 

which dominate the ps,i. Also, if an agent is a non-dominated 

solution itself, then there will be no leader in the multi 

leader set. 
 

 
Figure 2: Multi-leader concept 

 

The MLGSA algorithm includes two equal-size groups 

since only two objectives are considered in this study. Both 

groups employ the RANDOM selection method [14] to 

determine the leaders. The first group utilises the 

information from all leaders. The second group uses the 

information from one leader only. Figure 3 shows the flow 

chart of the proposed MLGSA algorithm. The solid line and 

the dotted line represent the flow of the first and the second 

groups, respectively.  

Since multi-leader is introduced in MLGSA, the 

formulation for mass of i-th agent is modified as follows: 

 

𝑚𝑖(𝑡) =
𝑀𝑂𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖(𝑡) − 𝑤𝑜𝑟𝑠𝑡(𝑡))

𝑏𝑒𝑠𝑡(𝑡) − 𝑤𝑜𝑟𝑠𝑡(𝑡)
 (14) 

 

To calculate the mass according to Equation (14), best(t), 

worst(t), and MOFitness(xi) are formulated as follows: 

 

𝑏𝑒𝑠𝑡(𝑡) = 𝑀𝑂𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑗(𝑡))𝑗 ∈ |1,….,𝑁|
min         (15) 

𝑤𝑜𝑟𝑠𝑡(𝑡) = 𝑀𝑂𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑗(𝑡))𝑗 ∈ |1,….,𝑁|
max         (16) 

𝑀𝑂𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = ∑ 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑀𝐿𝑖,𝑗 , 𝑥𝑖,2)
|𝑀𝐿𝑖|

𝑗=1
 (17) 

 

where i represents the index of agent, the multi-leader set for 
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each i-th agent is denoted as MLi = { MLi,1, MLi,2, …., 

MLi,|MLi|}, and Euclidean(a,b) is the Euclidean distance in 

objective space between solution a and b. Figure 4 

illustrates this formulation. Agent with label 'A' is 

dominated by three non-dominated solutions and thus 

MOFitness(xA) = d1+d2+d3. On the other hand, agent 

labelled as 'B' is a non-dominated solution. Thus, 

MOFitness(xB) = 0. Lastly, particle with label 'C' is 

dominated by two non-dominated solutions. Hence, 

MOFitness(xA) = d4+d5. 
 

 
 

Figure 3: The multi-leader gravitational search algorithm 
 

 
 

Figure 4: Agents and non-dominated solutions for two objective problems 

 

Based on the mass calculation in MLGSA, the mass is 

evaluated based on the sum of Euclidean distance in 

objective space between an agent and its leaders. Agent 

which are far and has many leaders are considered as a weak 

solution; thus, having less mass and lesser overall attraction. 

In contrast, agents with short distance and less leaders are a 

better solution. If an agent has no leader, the agent itself is a 

non-dominated solution and will result in the largest overall 

attraction to other agents.  

 

III. EXPERIMENT AND RESULT 

 

In this work, each experiment was repeated for 100 runs. 

Then, the average of the performance measures were 

calculated. The MLGSA used 100 agents and 1000 

maximum number of iterations. Archive was limited to 100 

solutions. The MLGSA’s agents were equally divided into 

two groups. The performance measures in terms of number 

of solution (NS), generational distance (GD), spread (SP), 

and hypervolume (HV), were evaluated based on ZDT test 

problems [15]. The NS shows the number of solution in 

archive, SP indicates spread and HV indicates the area 

covered by non-dominated solutions. Thus, greater NS, SP, 

and HV values are desired. Meanwhile, GD and SP indicate 

the distance between non-dominated solutions to actual 

solution (Pareto front). Hence, smaller GD values are 

desired. Recent finding shows that the initial value of 

gravitational constant, G0, contributes to the performance of 

GSA [16]. Hence, various G0 values were considered in 

experiments as well. 

Experimental results, which show the individual 

performance, in average, of MLGSA in terms of NS, GD, 

SP, and HV, were calculated as tabulated in Table 1, Table 

2, Table 3, and Table 4, respectively. The best value of NS, 

GD, SP, and HV are written in bold. Then, statistical 

analysis was performed. 

 

IV. DISCUSSION 

 

Friedman average ranked test was conducted using the 

results tabulated in Table 1, 2, 3 and 4. The null hypotheses 

of the Friedman test state that the performances of different 

values of G0 are statistically identical to each other. If the 

statistical value of the test shows otherwise, then a post hoc 

procedure is conducted. The Holm post hoc procedure was 

chosen here.  

The Friedman’s average ranks for the different values of 

G0 based on NS, GD, SP and HV are listed in Table 5. 

Based on the average ranks, it can be seen that 

G0=1.00E+04 was ranked the highest in all measures with 

the exception for the HV. G0=1.00E+05 was ranked the best 

for the HV measure.  

The Friedman statistical value for NS shows significant 

difference between the different values of G0. The Holm 

procedure shows that G0=1.00E+04 was significantly better 

than G0=1.00E+10.  

Significant difference was also detected for GD measure. 

The result of Holm procedure shows that G0=1.00E+04 and 

G0=1.00E+06 were significantly better than G0=1.00E+10. 

However, according to SP and HV measures, the 

performance of MLGSA using different value of G0 was 

statistically identical to each other. Overall, G0=1.00E+04 

was recommended to ensure good performance of MLGSA.
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Table 1 

Performance based on NS (average values) 
 

 

G0 = 

1.00E+01 

G0 = 

1.00E+02 

G0 = 

1.00E+03 

G0 = 

1.00E+04 

G0 = 

1.00E+05 

G0 = 

1.00E+06 

G0 = 

1.00E+07 

G0 = 

1.00E+08 

G0 = 

1.00E+09 

G0 = 

1.0E+010 

ZDT1 44.98 50.28 54.9 57.12 62.04 74.92 73.82 78 81.98 50.04 

ZDT2 70.88 68.52 64.16 70.64 67.26 55.76 46.94 39.88 29.92 16.38 

ZDT3 88.44 84.5 78.84 91.38 88.52 88.76 92.52 94.18 89.66 54.04 

ZDT4 99.94 99.9 100 100 99.94 100 100 100 97.68 15.86 

ZDT6 14.08 14.74 15.16 15.88 16.8 17.5 15.58 14.82 13.04 11.22 

 

Table 2 
Performance based on NS (average values) 

 

 

G0= 

1.00E+01 

G0 = 

1.00E+02 

G0 = 

1.00E+03 

G0 = 

1.00E+04 

G0 = 

1.00E+05 

G0 = 

1.00E+06 

G0 = 

1.00E+07 

G0 = 

1.00E+08 

G0 = 

1.00E+09 

G0 = 

1.0E+10 

ZDT1 0.115791316 0.105874855 0.093888551 0.084888125 0.072544855 0.056012272 0.064507659 0.061400351 0.064865319 0.136939225 
ZDT2 0.076452809 0.078056115 0.071067565 0.072842267 0.083126788 0.103826065 0.14499852 0.182063885 0.273121717 0.479869079 
ZDT3 0.048244816 0.045857654 0.0434758 0.036203188 0.035663001 0.039353845 0.036083 0.042161391 0.05112472 0.090545517 
ZDT4 0.518834661 0.874589207 0.904728599 0.785232629 0.911079538 0.960885892 1.09365798 1.256501249 1.678942133 10.24328026 
ZDT6 1.418292612 1.261812056 1.200378313 1.172968823 1.102118007 1.021186126 1.066745185 1.211843502 1.344754495 1.768550523 

 

Table 3 

Performance based on SP (average values) 
 

 

G0 = 

1.00E+01 

G0 = 

1.00E+02 

G0 = 

1.00E03 

G0 = 

1.00E+04 

G0 = 

1.00E+05 

G0 = 

1.00E+06 

G0 = 

1.00E+07 

G0 = 

1.00E+08 

G0 = 

1.00E+09 

G0 = 

1.0E+10 

ZDT1 1.161836109 1.171298398 1.161979505 1.157957065 1.169180016 1.181774422 1.150313049 1.107985077 1.026377655 0.911392796 

ZDT2 0.992196781 1.022425063 1.00312344 1.065315755 1.04709536 1.074282171 1.049827387 1.033858086 1.011032293 0.947968153 

ZDT3 1.199944439 1.217386285 1.184204006 1.222116205 1.212792592 1.182526993 1.18115598 1.147644014 1.091744416 0.960684213 

ZDT4 1.234614879 1.313699077 1.333295322 1.274984116 1.315022503 1.277046508 1.345645944 1.325045857 1.380917932 1.117863813 

ZDT6 1.065925748 1.072137786 1.088359826 1.078718938 1.063264558 1.064064373 1.026683797 0.99246382 0.973068882 0.941319412 

 

 
Table 4 

Performance based on HV (average values) 

 
 G0 = 

1.00E+01 

G0 = 

1.00E+02 

G0 = 

1.00E+03 

G0 = 

1.00E+04 

G0 = 

1.00E+05 

G0 = 

1.00E+06 

G0 = 

1.00E+07 

G0 = 

1.00E+08 

G0 = 

1.00E+09 

G0 = 

1.0E+10 

ZDT1 0.076576906 0.153793297 0.174082847 0.203995548 0.220267438 0.228384002 0.204197266 0.161659771 0.122852008 0.02964863 

ZDT2 0.016644881 0.025527456 0.027023884 0.023177816 0.018065432 0.005285086 8.02E-04 4.69E-07 0 0 

ZDT3 0.050481446 0.12267938 0.159302145 0.17872138 0.197930891 0.184794984 0.185295533 0.149478017 0.113492529 0.046910798 

ZDT4 0.045001147 0.044014034 0.013207949 0.012744517 0.008140334 0.002585183 3.25E-05 0 0 0 

ZDT6 0 0 0 0 0 0 0 0 0 0 

 
Table 5 

Friedman Average Rank 
 

Go NS GD SP HV 

1.00E+01 6.5 6 6.2 5.9 

1.00E+02 6.8 5.8 3.8 4.7 

1.00E+03 5.8 4.6 4.2 3.9 

1.00E+04 3.4 3.4 3.8 4.1 

1.00E+05 4.7 3.8 4.2 3.5 
1.00E+06 3.6 3.6 4 4.3 

1.00E+07 4 4.2 5.2 4.9 

1.00E+08 4 5.8 6.6 6.9 
1.00E+09 6.4 7.8 7 8 

1.00E+10 9.8 10 10 8.8 

 

V. CONCLUSION 

 

Previously, multi-leader concept has been introduced in 

PSO for multi-objective optimization problems. In this 

study, the same multi-leader concept has been employed in 

GSA. Different G0 values were considered as well and 

G0=1.00E+04 was recommended for implementing Multi-

Leader GSA. The next step of this study is to compare the 

performance of Multi-Leader GSA with Multi-Leader PSO. 

Finally, the concept of multi-leader could be incorporated 

into other optimization algorithms such as simulated 

Kalman filter [17]. 
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