

 e-ISSN: 2289-8131 Vol. 9 No. 1-4 61

Real-Time UAV Global Pose Estimation Using 3D

Terrain Engine

Ali Abbas, Assef Jafara, Zouhair Dahrouja
HIAST Higher Institute for Applied Science and Technology,

Damascus, P.O.box: 31983, Syria.

ali.abbass@hiast.edu.sy

Abstract—We present a new approach that automatically

estimates global pose for a UAV in real-time using 3D terrain

engine. Inaccurate auxiliary sensors on the UAV were used to

obtain initial real camera pose that moves the virtual camera

inside the 3D terrain engine. We, then automatically found

multiple matches between the two images to find the 3D

coordinates of the matches using the 3D terrain engine. Finally,

we tested the co-planarity of the 3D points under the camera,

depending on this test. We used coplanar or non-coplanar

algorithm to estimate accurate global camera pose. We

executed feature detection, description and pair wise matching

algorithms on GPU to get a suitable frame rate (12 FPS)

needed in the navigation applications. The proposed approach

has been tested on a synthetic and real data. Experimental

results proved the feasibility and robustness of the proposed

approach, and the precision was the same order as the 3D

terrain engine used. Finally, we can say that the 3D terrain

engine succeeded when other methods failed.

Index Terms—UAV; Pose Estimation; 3D Terrain Engine;

Local Features.

I. INTRODUCTION

During the past decades, the UAV (Unmanned Aerial

Vehicle) has been used in monitoring and reconnaissance

operations, such as fire detection and monitoring of oil

pipelines and border areas. However, these tasks were only

done by rich countries because of the high costs for these

UAVs. Recent developments in material science, control

engineering and communications have led to the

development of a low cost UAV capable of carrying a

digital camera and fitted with a communication system and a

set of sensors that helps to determine the location and

orientation of the UAV, such as GPS (Global Positioning

System) and IMU (Inertial Measurement Unit). However,

cheap sensors suffer from the problem of low accuracy and

high sensitivity to noise. The UAV itself is unstable and

under the influence of wind. All of these reasons make it

impossible to accurately estimate the location and angles of

the UAV when using these sensors only. For this reason, we

used digital camera mounted on the UAV as an optical

sensor to improve the estimation accuracy.

The rest of this paper is organized as follows. We first

define problem formulation, related works, coordinate

systems, real and virtual camera models, 3D terrain engine

and calibration process, then we discuss our approach steps,

our testing environment and finally the experimental results

are presented followed by conclusions at the end.

II. PROBLEM FORMULATION

Given an image from a UAV, our goal is to estimate its

global pose in real-time using a 3D terrain engine. We

assumed that the camera's FOV (Field of View) is known, as

well as an approximate pose taken from a set of inaccurate

sensors mounted on the UAV, GPS for location, IMU for

angles. Given these hypotheses, we were looking for the

accurate location (longitude, latitude, altitude) and the

accurate rotations (azimuth, elevation, roll) that map the

camera frame to the frame of the 3D terrain engine.

III. RELATED WORKS

In general, to solve the problem of global pose estimation

for a camera with 6-DOF (Degrees of Freedom), we need a

3D model (consists minimum from 3 points) which we can

automatically find their 2D projections on the image plane.

In the case where the camera is mounted on a UAV, two

dominant approaches help to solve this problem: the first

one is based on the assumption that the earth model is a

plane textured with satellite Geo-referenced images [1] (3D

model here is a plane). This approach turns to image-image

registration problem, which basically uses feature-based

methods such as SIFT (Scale Invariant Feature Transform

[2]) or SURF (Speeded Up Robust Features [3]) techniques.

The second one is proposed by Hyon Lim et al. for real-time

camera localization inside 3D model reconstructed from off-

line using SFM (Structure from Motion) (3D model here is a

point cloud). This algorithm efficiently combines key-point

tracking in video with 2D-3D point matching, without using

salient features. This approach works well when the camera

faces a robust represented part from 3D point cloud [4]. To

avoid the limitations of the previous approaches, we

proposed a new approach, which depends on a 3D terrain

engine. The 3D terrain engine allows us to deal with a

complex model of the earth and process multiple views of

the same target. After finding the correspondences between

the 3D-2D points, the problem turns to estimate pose from

those correspondences. The traditional solutions for this

problem can be divided into two groups: closed-form

solutions and iterative solutions. In [5], there is a thorough

comparison between different closed-form solutions. In this

work, we used iterative algorithm, which uses multiple

points to handle errors of the camera’s measurements [6].

IV. PROBLEM GEOMETRY

Here, we discuss the coordinate systems, real camera

model (which give us real image), virtual camera model

Journal of Telecommunication, Electronic and Computer Engineering

62 e-ISSN: 2289-8131 Vol. 9 No. 1-4

(which give us virtual image), 3D terrain engine and

calibration process.

A. Coordinate systems

We used geographic coordinates (longitude, latitude,

altitude) to represent a point over the earth surface, and we

used normalized Euclidean coordinates (X,Y,Z) for rendering

earth and implementing algorithms. We also used UTM

(Universal Transverse Mercator) [7] map projection to

project geographic coordinates on earth tangent plane to

calculate azimuth angle relative to the northpole and

elevation angle from the horizontal plane. To do this, we

defined a non-linear transform LL2UTM to convert from

geographic to UTM coordinates (easting, northing) =

LL2UTM(lon, lat) and another non-linear transform

UTM2LL to convert from UTM to geographic coordinates

(lon, lat) = UTM2LL(easting, northing).

B. Geographic to Euclidean coordinates conversion

We defined a non-linear transform LLA2XYZ to convert

from geographic to Euclidean coordinates (X, Y, Z) =

LLA2XYZ(lon, lat, alt) by the following equations:

1
earth

alt
r

R
  (1)

cos
2

Y r lat
 

  
 

 (2)

 cos tan
2

Z Y lon lat
 

   
 

(3)

 tanX Z lon

(4)

where: Rearth = 6378137 is Earth radius in meters.

C. Euclidean to Geographic coordinates conversion

We defined a non-linear transform XYZ2LLA to convert

from Euclidean to geographic coordinates (lon, lat, alt) =

XYZ2LLA(X, Y, Z) by the following equations:

2 2 2r Z X Y   (5)

 1earthalt R r  (6)

arctan
X

ion
Y

 
  

 

(7)

arccos
2

Y
lat

r

  
   

 

(8)

D. Azimuth and Elevation angles calculation

If we have two geographic points (lon1, lat1, alt1) and

(lon2, lat2, alt2), we need to calculate azimuth and

elevation angles between them; hence, we defined a function

(azi, ele) = AziEleAngles(lon1, lat1, alt1, lon2, lat2, alt2)

implemented by the following equations:

   1 1 1 1, 2 ,e n LLT UTM ion lat (9)

   2 2 2 2, 2 ,e n LLT UTM ion lat (10)

   
2 2

2 1 2 12len e n n   

(11)

2 1arctan
alt alt

elevation
len

 
  

 

(12)

2 1

2 1

arctan
e e

azimuth
n n

 
  

 

(13)

E. Real camera model (real image)

We represented the points in the homogeneous

coordinates, where a 3D point v in world coordinate system

is represented as (X, Y, Z, 1)T and its projection on the

image plane v’ is represented in the camera coordinate

system as (x, y, 1)T and given by:

'v Rv T  (14)

where T=(Tx, Ty, Tz)T is a translation vector and R is 3×3

rotation matrix, and this mapping can be defined by the

perspective projection equation as:

'

mv P v (15)

where Pm is the 3×4 projection matrix and can be

decomposed as:

 |mP K R T (16)

where K is a 3×3 upper triangular matrix, specifying the

internal camera calibration parameters.

0

0 0 1

x x

y y

f P

K f P

 
 

  
 
 

(17)

where fx, fy are the focal lengths in the x and y directions, α

is the skew parameter, and (px, py) is the principal point

location. Since the camera is known a priori, it may be

calibrated off-line to find f and the other components of K.

Given Pm and the depth winZ at each pixel (x, y) in the

image from 3D terrain engine (see Figure 2), the

corresponding 3D point v can be obtained using equation

(15).

F. Virtual camera model (virtual image)

In this research, we used OpenGL library to represent

virtual camera, which is defined via view parameters eye

e(ex, ey, ez), view v(vx, vy, vz), right r(rx, ry, rz) and up u(ux, uy,

uz) measured in world space (see Figure 1).The view matrix

M is given by:

0 0 0 1

x y z

x y z

x y z

r r r A

u u u B
K

v v v C

 
 
 


   
 
  

(18)

where A=-(e.r), B=-(e.u) and C=-(e.v).

Real-Time UAV Global Pose Estimation Using 3D Terrain Engine

 e-ISSN: 2289-8131 Vol. 9 No. 1-4 63

Figure 1: Virtual camera model (Virtual Image)

G. Extracting camera pose from view matrix

We found the camera position by:

x y zc

c x y z

c x y z

r r rX A

Y u u u B

CZ v v v

    
    

     
           

(19)

Next, we obtained the geographic coordinates for the

camera by (lonc, latc, altc) = XYZ2LLA(Xc, Yc, Zc), to find the

azimuth and elevation angles. We searched for a point (Xv,

Yv, Zv) placed at a distance D = 0.00001 from the camera

position toward the view vector:

v c x

v c y

v c z

X X v

Y Y D v

Z Z v

    
    

      
         

(20)

Then we obtained geographic coordinates by (lonv, latv,

altv) = XYZ2LLA(Xv, Yv, Zv). Finally, we searched for the

angles using the function (azimuth, elevation) =

AziEleAngles(lonc, latc, altc, lonv, latv, altv).

Now, to calculate roll angle, we searched for a vertical

point placed at a distance 100 meters from the camera

position using (Xvert, Yvert, Zvert) = LLA2XYZ(lonc, latc, altc +

100). Then we projected this point on a plane defined by the

camera position as the center and the view vector v as a

normal vector to obtain a new point g(Xg, Yg, Zg). Next we

defined a new vector G from the camera position to this

point G(Xg - Xc, Yg - Yc, Zg - Zc). Finally, we searched for a

roll angle by calculating the angle between G and u(ux, uy,

uz) vectors.

H. 3D terrain engine

We defined a 3D terrain engine in this work by a 3D

software model or representation of the Earth built using

OpenGL library (see Figure 2). It provides the user with the

ability to freely move around in the virtual environment by

changing the viewing angle and position and could capture

current virtual image and depth map in real-time.

We presented the earth as a unit sphere covered by a 3D

mesh generated from a DEM (Digital Elevation Model) and

textured by satellite images.

We can extract current OpenGL model-view, projection

and view-port matrices using the following OpenGL

commands:

glGetDoublev(GL_MODELVIEW_MATRIX,modelview)

glGetDoublev(GL_PROJECTION_MATRIX,projection)

glGetIntegerv(GL_VIEWPORT,viewport), and we can

change the camera view using the command

gluLookAt(ex,ey,ez,vx,vy,vz,ux,uy,uz). We can also capture

current virtual image and depth map using the commands

glReadPixels(0,0,w,h,GL_BGRA_EXT,GL_UNSIGNED_B

YTE,virtual_image)

glReadPixels(0,0,w,h,GL_DEPTH_COMPONENT,GL_FL

OAT,depth_map). Finally, we can find a 3D point (X, Y, Z)

which have a 2D projection (x, y) on the virtual image and

winZ as the depth using the following command

gluUnProject(x,y,winZ,modelview,projection,viewport,X,Y,

Z).

Figure 2: 3D Terrain Engine (Virtual image and depth map)

I. Camera calibration

Before using our system, we must calibrate the camera to

find intrinsic parameters; hence, we used the calibration

method described in [8] to simultaneously estimate the focal

length and principal point parameters. Standard values were

assumed for the remaining intrinsic parameters (i.e. zero

skew, zero radial distortion and unit aspect ratio), or we can

use Matlab calibration toolbox [9].

V. PROPOSED APPROACH

The 3D Terrain Engine enabled us to get multi-views at

real time to implement the proposed computer vision

algorithms. Now, we will explain some processes before

describing the approach steps, such as feature extraction and

pairwise feature matching.

A. Feature Extraction

We evaluated many local features to find correspondences

between real and virtual images, and we found that SIFT

key-point detector and descriptor [2] is very suitable

because it is invariant to scale and rotation, and it is partially

invariant to viewpoint and illumination changes [10]. It has

also been found to be highly distinctive and repeatable in

performance evaluation [11], although SIFT needs more

time to calculate on CPU (Central Processing Unit)

compared with the other methods. Therefore, we

implemented it on a GPU (Graphics Processor Unit) to

represent point features in real-time.

B. Pairwise Feature Matching

We evaluated many pairwise feature matching algorithms

implemented on a CPU, and we found that the linear search

algorithm is the best one in accuracy. However, it is the

worst in performance, when we used a large number of key-

points [12,13]. To solve this problem, we used the sufficient

number of key-points (in our work, we just need 200 key-

points) and we implemented the algorithm on GPU to work

in real-time.

Journal of Telecommunication, Electronic and Computer Engineering

64 e-ISSN: 2289-8131 Vol. 9 No. 1-4

C. Approach steps

We resume the proposed approach by the following steps

(see Figure 3) taking in consideration the co-planarity of the

3D points (Because when dealing with planes, there are

doubt about the pose because several poses that are very

different have the same perspective projection [14]).

 Calibrate the camera to find its internal parameters,

then calculate its horizontal field of view FOVh from

its focal length f and the image width in Pixels w

using the following equation

)2/arctan(2 fwFOVh  then change FOV for the 3D

terrain engine using FOVh value.

 Estimate initial pose (longitude, latitude, altitude) and

(azimuth, elevation, roll) from GPS/IMU.

 Move and rotate the virtual camera according to

initial pose.

 Capture the real image from the mounted camera and

the virtual image from the 3D terrain engine. Next,

find best correspondences between the two images

automatically using SIFT and pairwise matching

algorithms, after filtering them by sorting matches

distances in ascending order. Then, take the first

N=30 points that spread in the whole image (we

reject points that are near taken points).

 Estimate the robust Homography matrix H from the

correspondences by rejecting the outliers using

RANSAC (RANdom SAmple Consensus) [15].

Apply the Homography matrix to reject the

corresponding points that have a projection distance

more than a predefined threshold (2 pixels).

 Get the 3D coordinates of the accepted

correspondences from the 3D terrain engine.

 Test if these points are coplanar. If coplanar, then

rotate the virtual camera multiple times to obtain new

multi-views. Next, apply coplanar calibration

algorithm with multiple views to estimate rotation

matrix and translation vector [16]. If it is non-

coplanar, apply the non-coplanar calibration

algorithm with one view [6].

 Use the estimated rotation matrix and the translation

vector to find view matrix M. Then, extract the global

camera pose using the equations shown in section

Extracting camera pose from view matrix.

VI. TESTING ENVIRONMENT

We created a new testing environment MapViewer.exe

using C++Builder XE5 (see Figure 4). This testing

environment consists of 2D top-view satellite images, 3D

terrain engine (virtual camera), 3D path planner and image

database.

Figure 4: Our Testing Environment (MapViewer)

Figure 3: Our pose estimation approach

A. 3D path planning

We created a set of tools that let us to design a UAV path

in the 3D environment to test our approach in different

scenarios like those in the real world (see Figure 5). These

paths were generated with UAV speed (150 km/h), elevation

speed (1 m/s). We also made sure that the path did not

intersect the terrain and each point has a line of sight with

the ground station.

Change virtual camera
view using
Initial pose

Capture virtual image from
3d terrain engine and
increase views by one

A. Initial pose
from GPS/IMU
B. Real image
C. views = 0

Find correspondences
between the two images
and their 3d coordinates

3d coordinates are non-
coplanar and more than 7

Apply coplanar calibration
algorithm with multiple

views

Apply non-coplanar
calibration algorithm with

one view

Yes No

views >= 3

Yes

Change virtual camera
view using new proposed

pose

views = 0Yes No

No

Pose not estimated and
views less than 3

Yes

End

No

Start

Real-Time UAV Global Pose Estimation Using 3D Terrain Engine

 e-ISSN: 2289-8131 Vol. 9 No. 1-4 65

VII. EXPERIMENTAL RESULTS

We tested our approach on synthetic and real images with

dimensions of 384×288 pixels on a PC with Intel CPU i7 4-

cores, NVIDIA GeForce GTX 570 graphics card, 4GB RAM

and Windows7 64-bits operating system, the frame rate was

12 FPS.

A. Synthetic test

We used the testing environment to generate new

scenarios for the UAV paths, without adding any noise to

use them as a reference (see Figure 5). Then we tested the

proposed approach in two cases, Ideal and Noisy.

i. Ideal case

In the ideal case, we tested the approach without adding

any noise (see Figure 6). The errors after applying our pose

estimation algorithm are shown in Table 1.

Figure 5: 3D path generated by our UAV path planner

Figure 6: Estimated POSE parameters errors (Ideal Case), where horizontal
axis shows errors and the vertical axis shows occurrence count

Table 1
Ideal case errors

Easting [m] Northing [m] Altitude [m]

0.2 0.2 0.5
Azimuth [deg] Elevation [deg] Roll [deg]

0.3 0.2 0.3

ii. Noisy case

In the noisy case, we added a Gaussian noise with

mean=0.0 and stddev=10 meters for position and stddev=10

degrees for angles (see Figure 7 and Figure 8). The errors

after applying our pose estimation algorithm are shown in

Table 2.

B. Real test

We tested our approach on real images taken from a

UAV. Each image has inaccurate pose, which we used as

initial pose to our algorithm. Because we did not know the

accurate pose for those images, (unexpected sensor noise

and weather conditions) we could not compare our results

with them like in ideal case. Therefore, we validated our

results by making a comparison between two images: the

real and the corrected virtual image (virtual image after

changing 3D engine using estimated pose). The re-

projection error was so small (2 pixels) and acceptable for

Navigation or Target Localization applications (see Figure

9). We could see that the real image coincides with the 3D

Terrain Engine Image, so we could get the geographic

coordinates for any pixel in the real image. There were cases

where we could not find good correspondences between the

real and virtual image, especially when there was a long

period between the time of capturing of the two images. We

could solve this problem by updating the 3D terrain engine

periodically. In the worst case, we could fly the UAV to

capture images from the work area before the real mission.

We could also generate an Ortho-photo (for example, using

Agisoft PhotoScan) to update the 3D terrain engine (if we

use Google Earth, we can do that using KML files).

Figure 7: Estimated POSE parameters (Noisy Case), where horizontal axis

shows frame index and the vertical axis shows values

Figure 8: Estimated POSE parameters errors (Noisy Case), where

horizontal axis shows errors and the vertical axis shows occurrence count

Journal of Telecommunication, Electronic and Computer Engineering

66 e-ISSN: 2289-8131 Vol. 9 No. 1-4

Table 2

Noisy case errors

Easting [m] Northing [m] Altitude [m]

1.0 1.0 4.0

Azimuth [deg] Elevation [deg] Roll [deg]
2.0 1.0 2.0

VIII. CONCLUSION

This paper presented a new approach to automatically

estimate in real-time a global pose for a UAV using 3D

terrain engine. Our system works well when the UAV flies

at a suitable altitude This depends on the 3D terrain engine

used, for example when we used a 3D terrain engine built on

a DEM, we must fly with high altitudes to compensate the

insufficient 3D model accuracy. However, when we used a

3D City Model as engine, this constraint is not needed. Also,

our approach is near real-time (12 FPS) and can be used in

navigation and multiple targets localization. In the future,

we will use 3D City models to enhance the results and we

will work on auto-calibration algorithms using 3D terrain

engine to allow user to change the field of view on-line,

without the need to re-calibrate off-line. Finally, we can say

that the 3D terrain engine succeeded when other methods

failed.

Figure 9: Real test: (a) Real image, (b) Virtual image, (c) matching between

images (a-b), (d) Real image (even slides) and Virtual image (odd slides)

before applying our algorithm, (e) Real image (even slides) and Virtual
image (odd slides) after the algorithm

REFERENCES

[1] Son K.-H., Hwang Y., and Kweon I. S., “Uav global pose estimation

by matching forward-looking aerial images with satellite images,” in

Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ

International Conference on. IEEE, pp. 3880–3887, 2009.
[2] Lowe D. G., “Distinctive image features from scale-invariant

keypoints,” International journal of computer vision, vol. 60, no. 2,

pp. 91–110, 2004.
[3] Bay H., Ess A., Tuytelaars T., and Van Gool L., “Speeded-up robust

features (surf) ,” Computer vision and image understanding, vol.

110, no. 3, pp. 346–359, 2008.
[4] Lim H., Sinha S. N., Cohen M. F., and Uyttendaele M., “Realtime

image-based 6-dof localization in large-scale environments,” in IEEE

Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2012), June 2012.

[5] Haralick B. M., Lee C.-N., Ottenberg K., and Nolle M., “Review and

analysis of solutions of the three point perspective pose estimation
problem,” International journal of computer vision, vol. 13, no. 3, pp.

331–356, 1994.

[6] Lourakis M. and Zabulis X., “Model-based pose estimation for rigid
objects,” in Computer Vision Systems. Springer, pp. 83–92, 2013.

[7] Snyder J. P., “Map projections–A working manual,” US Government

Printing Office, pp. 1395, 1987.

[8] Irschara A., Kaufmann V., Klopschitz M., Bischof H., and Leberl F.,

Towards fully automatic photogrammetric reconstruction using digital
images taken from UAVs. Na, 2010.

[9] Heikkila J. and Silven O., “A four-step camera calibration procedure

with implicit image correction,” in Computer Vision and Pattern
Recognition Proceedings, IEEE Computer Society Conference on.

IEEE, pp. 1106–1112, 1997.

[10] Lingua A., Marenchino D., and Nex F., “Performance analysis of the
sift operator for automatic feature extraction and matching in

photogrammetric applications,” Sensors, vol. 9, no. 5, pp. 3745–3766,

2009.
[11] Mikolajczyk K., Tuytelaars T., Schmid C., Zisserman A., Matas J.,

Schaffalitzky F., Kadir T., and Van Gool L., “A comparison of affine

region detectors,” International journal of computer vision, vol. 65,
no. 1-2, pp. 43–72, 2005.

[12] Silpa-Anan C. and Hartley R., “Optimised kd-trees for fast image

descriptor matching,” in Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on, pp. 1–8, 2008.

[13] Muja M. and Lowe D. G., “Fast approximate nearest neighbors with

automatic algorithm configuration,” VISAPP, vol. 2, no. 1, 2009.
[14] Petersen T., A comparison of 2d-3d pose estimation methods.

Master’s thesis, Aalborg University-Institute for Media Technology

Computer Vision and Graphics, Lautrupvang, vol. 15, pp. 2750.
[15] Fischler M. A. and Bolles R. C., “Random sample consensus: a

paradigm for model fitting with applications to image analysis and

automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[16] Zhang Z., “A flexible new technique for camera calibration,” Pattern

Analysis and Machine Intelligence, IEEE Transactions on, vol. 22,
no. 11, pp. 1330–1334, 2000.

