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Abstract—We present a new approach that automatically 

estimates global pose for a UAV in real-time using 3D terrain 

engine. Inaccurate auxiliary sensors on the UAV were used to 

obtain initial real camera pose that moves the virtual camera 

inside the 3D terrain engine. We, then automatically found 

multiple matches between the two images to find the 3D 

coordinates of the matches using the 3D terrain engine. Finally, 

we tested the co-planarity of the 3D points under the camera, 

depending on this test. We used coplanar or non-coplanar 

algorithm to estimate accurate global camera pose. We 

executed feature detection, description and pair wise matching 

algorithms on GPU to get a suitable frame rate (12 FPS) 

needed in the navigation applications. The proposed approach 

has been tested on a synthetic and real data. Experimental 

results proved the feasibility and robustness of the proposed 

approach, and the precision was the same order as the 3D 

terrain engine used. Finally, we can say that the 3D terrain 

engine succeeded when other methods failed. 

 

Index Terms—UAV; Pose Estimation; 3D Terrain Engine; 

Local Features. 

 

I. INTRODUCTION 

 

During the past decades, the UAV (Unmanned Aerial 

Vehicle) has been used in monitoring and reconnaissance 

operations, such as fire detection and monitoring of oil 

pipelines and border areas. However, these tasks were only 

done by rich countries because of the high costs for these 

UAVs. Recent developments in material science, control 

engineering and communications have led to the 

development of a low cost UAV capable of carrying a 

digital camera and fitted with a communication system and a 

set of sensors that helps to determine the location and 

orientation of the UAV, such as GPS (Global Positioning 

System) and IMU (Inertial Measurement Unit). However, 

cheap sensors suffer from the problem of low accuracy and 

high sensitivity to noise. The UAV itself is unstable and 

under the influence of wind. All of these reasons make it 

impossible to accurately estimate the location and angles of 

the UAV when using these sensors only. For this reason, we 

used digital camera mounted on the UAV as an optical 

sensor to improve the estimation accuracy. 

The rest of this paper is organized as follows. We first 

define problem formulation, related works, coordinate 

systems, real and virtual camera models, 3D terrain engine 

and calibration process, then we discuss our approach steps, 

our testing environment and finally the experimental results 

are presented followed by conclusions at the end. 

 

 

II. PROBLEM FORMULATION 

 

Given an image from a UAV, our goal is to estimate its 

global pose in real-time using a 3D terrain engine. We 

assumed that the camera's FOV (Field of View) is known, as 

well as an approximate pose taken from a set of inaccurate 

sensors mounted on the UAV, GPS for location, IMU for 

angles. Given these hypotheses, we were looking for the 

accurate location (longitude, latitude, altitude) and the 

accurate rotations (azimuth, elevation, roll) that map the 

camera frame to the frame of the 3D terrain engine. 

 

III. RELATED WORKS 

 

In general, to solve the problem of global pose estimation 

for a camera with 6-DOF (Degrees of Freedom), we need a 

3D model (consists minimum from 3 points) which we can 

automatically find their 2D projections on the image plane. 

In the case where the camera is mounted on a UAV, two 

dominant approaches help to solve this problem: the first 

one is based on the assumption that the earth model is a 

plane textured with satellite Geo-referenced images [1] (3D 

model here is a plane). This approach turns to image-image 

registration problem, which basically uses feature-based 

methods such as SIFT (Scale Invariant Feature Transform 

[2]) or SURF (Speeded Up Robust Features [3]) techniques. 

The second one is proposed by Hyon Lim et al. for real-time 

camera localization inside 3D model reconstructed from off-

line using SFM (Structure from Motion) (3D model here is a 

point cloud). This algorithm efficiently combines key-point 

tracking in video with 2D-3D point matching, without using 

salient features. This approach works well when the camera 

faces a robust represented part from 3D point cloud [4]. To 

avoid the limitations of the previous approaches, we 

proposed a new approach, which depends on a 3D terrain 

engine. The 3D terrain engine allows us to deal with a 

complex model of the earth and process multiple views of 

the same target. After finding the correspondences between 

the 3D-2D points, the problem turns to estimate pose from 

those correspondences. The traditional solutions for this 

problem can be divided into two groups: closed-form 

solutions and iterative solutions. In [5], there is a thorough 

comparison between different closed-form solutions. In this 

work, we used iterative algorithm, which uses multiple 

points to handle errors of the camera’s measurements [6]. 

 

IV. PROBLEM GEOMETRY 

 

Here, we discuss the coordinate systems, real camera 

model (which give us real image), virtual camera model 
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(which give us virtual image), 3D terrain engine and 

calibration process. 

 

A. Coordinate systems 

We used geographic coordinates (longitude, latitude, 

altitude) to represent a point over the earth surface, and we 

used normalized Euclidean coordinates (X,Y,Z) for rendering 

earth and implementing algorithms. We also used UTM 

(Universal Transverse Mercator) [7] map projection to 

project geographic coordinates on earth tangent plane to 

calculate azimuth angle relative to the northpole and 

elevation angle from the horizontal plane. To do this, we 

defined a non-linear transform LL2UTM to convert from 

geographic to UTM coordinates (easting, northing) = 

LL2UTM(lon, lat) and another non-linear transform 

UTM2LL to convert from UTM to geographic coordinates 

(lon, lat) = UTM2LL(easting, northing). 

 

B. Geographic to Euclidean coordinates conversion 

We defined a non-linear transform LLA2XYZ to convert 

from geographic to Euclidean coordinates (X, Y, Z) = 

LLA2XYZ(lon, lat, alt) by the following equations: 
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where: Rearth = 6378137 is Earth radius in meters. 

 

C. Euclidean to Geographic coordinates conversion 

We defined a non-linear transform XYZ2LLA to convert 

from Euclidean to geographic coordinates (lon, lat, alt) = 

XYZ2LLA(X, Y, Z) by the following equations: 
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D. Azimuth and Elevation angles calculation 

If we have two geographic points (lon1, lat1, alt1) and 

(lon2, lat2, alt2),  we need to calculate azimuth and 

elevation angles between them; hence, we defined a function 

(azi, ele) = AziEleAngles(lon1, lat1, alt1, lon2, lat2, alt2) 

implemented by the following equations: 
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E. Real camera model (real image) 

We represented the points in the homogeneous 

coordinates, where a 3D point v in world coordinate system 

is represented as (X, Y, Z, 1)T and its projection on the 

image plane v’ is represented in the camera coordinate 

system as (x, y, 1)T and given by: 

 

'v Rv T   (14) 

 

where T=(Tx, Ty, Tz)T is a translation vector and R is 3×3 

rotation matrix, and this mapping can be defined by the 

perspective projection equation as: 

 

'

mv P v  (15) 

 

where Pm is the 3×4 projection matrix and can be 

decomposed as: 

 

 |mP K R T  (16) 

 

where K is a 3×3 upper triangular matrix, specifying the 

internal camera calibration parameters. 
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where fx, fy are the focal lengths in the x and y directions, α 

is the skew parameter, and (px, py) is the principal point 

location. Since the camera is known a priori, it may be 

calibrated off-line to find f and the other components of K. 

Given Pm and the depth winZ at each pixel (x, y) in the 

image from 3D terrain engine (see Figure 2), the 

corresponding 3D point v can be obtained using equation 

(15). 

 

F. Virtual camera model (virtual image) 

In this research, we used OpenGL library to represent 

virtual camera, which is defined via view parameters eye 

e(ex, ey, ez), view v(vx, vy, vz), right r(rx, ry, rz) and up u(ux, uy, 

uz) measured in world space (see Figure 1).The view matrix 

M is given by: 
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where A=-(e.r), B=-(e.u) and C=-(e.v). 
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Figure 1: Virtual camera model (Virtual Image) 

 

G. Extracting camera pose from view matrix 

We found the camera position by: 
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Next, we obtained the geographic coordinates for the 

camera by (lonc, latc, altc) = XYZ2LLA(Xc, Yc, Zc), to find the 

azimuth and elevation angles.  We searched for a point (Xv, 

Yv, Zv) placed at a distance D = 0.00001 from the camera 

position toward the view vector: 
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Then we obtained geographic coordinates by (lonv, latv, 

altv) = XYZ2LLA(Xv, Yv, Zv). Finally, we searched for the 

angles using the function (azimuth, elevation) = 

AziEleAngles(lonc, latc, altc, lonv, latv, altv). 

Now, to calculate roll angle, we searched for a vertical 

point placed at a distance 100 meters from the camera 

position using (Xvert, Yvert, Zvert) = LLA2XYZ(lonc, latc, altc + 

100). Then we projected this point on a plane defined by the 

camera position as the center and the view vector v as a 

normal vector to obtain a new point g(Xg, Yg, Zg). Next we 

defined a new vector G from the camera position to this 

point G(Xg - Xc, Yg - Yc, Zg - Zc). Finally, we searched for a 

roll angle by calculating the angle between G and u(ux, uy, 

uz) vectors. 

 

H. 3D terrain engine 

We defined a 3D terrain engine in this work by a 3D 

software model or representation of the Earth built using 

OpenGL library (see Figure 2). It provides the user with the 

ability to freely move around in the virtual environment by 

changing the viewing angle and position and could capture 

current virtual image and depth map in real-time. 

We presented the earth as a unit sphere covered by a 3D 

mesh generated from a DEM (Digital Elevation Model) and 

textured by satellite images. 

We can extract current OpenGL model-view, projection 

and view-port matrices using the following OpenGL 

commands:  

glGetDoublev(GL_MODELVIEW_MATRIX,modelview) 

glGetDoublev(GL_PROJECTION_MATRIX,projection) 

glGetIntegerv(GL_VIEWPORT,viewport), and we can 

change the camera view using the command 

gluLookAt(ex,ey,ez,vx,vy,vz,ux,uy,uz). We can also capture 

current virtual image and depth map using the commands 

glReadPixels(0,0,w,h,GL_BGRA_EXT,GL_UNSIGNED_B

YTE,virtual_image) 

glReadPixels(0,0,w,h,GL_DEPTH_COMPONENT,GL_FL

OAT,depth_map). Finally, we can find a 3D point (X, Y, Z) 

which have a 2D projection (x, y) on the virtual image and 

winZ as the depth using the following command 

gluUnProject(x,y,winZ,modelview,projection,viewport,X,Y,

Z). 

 

 
 

Figure 2: 3D Terrain Engine (Virtual image and depth map) 
 

I. Camera calibration 

Before using our system, we must calibrate the camera to 

find intrinsic parameters; hence, we used the calibration 

method described in [8] to simultaneously estimate the focal 

length and principal point parameters. Standard values were 

assumed for the remaining intrinsic parameters (i.e. zero 

skew, zero radial distortion and unit aspect ratio), or we can 

use Matlab calibration toolbox [9]. 

 

V. PROPOSED APPROACH 

 

The 3D Terrain Engine enabled us to get multi-views at 

real time to implement the proposed computer vision 

algorithms. Now, we will explain some processes before 

describing the approach steps, such as feature extraction and 

pairwise feature matching. 

 

A. Feature Extraction 

We evaluated many local features to find correspondences 

between real and virtual images, and we found that SIFT 

key-point detector and descriptor [2] is very suitable 

because it is invariant to scale and rotation, and it is partially 

invariant to viewpoint and illumination changes [10]. It has 

also been found to be highly distinctive and repeatable in 

performance evaluation [11], although SIFT needs more 

time to calculate on CPU (Central Processing Unit) 

compared with the other methods. Therefore, we 

implemented it on a GPU (Graphics Processor Unit) to 

represent point features in real-time. 

 

B. Pairwise Feature Matching 

We evaluated many pairwise feature matching algorithms 

implemented on a CPU, and we found that the linear search 

algorithm is the best one in accuracy. However, it is the 

worst in performance, when we used a large number of key-

points [12,13]. To solve this problem, we used the sufficient 

number of key-points (in our work, we just need 200 key-

points) and we implemented the algorithm on GPU to work 

in real-time. 
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C. Approach steps 

We resume the proposed approach by the following steps 

(see Figure 3) taking in consideration the co-planarity of the 

3D points (Because when dealing with planes, there are 

doubt about the pose because several poses that are very 

different have the same perspective projection [14]). 

 Calibrate the camera to find its internal parameters, 

then calculate its horizontal field of view FOVh from 

its focal length f and the image width in Pixels w 

using the following equation 

)2/arctan(2 fwFOVh   then change FOV for the 3D 

terrain engine using FOVh value. 

 Estimate initial pose (longitude, latitude, altitude) and 

(azimuth, elevation, roll) from GPS/IMU. 

 Move and rotate the virtual camera according to 

initial pose. 

 Capture the real image from the mounted camera and 

the virtual image from the 3D terrain engine. Next, 

find best correspondences between the two images 

automatically using SIFT and pairwise matching 

algorithms, after filtering them by sorting matches 

distances in ascending order. Then, take the first 

N=30 points that spread in the whole image (we 

reject points that are near taken points). 

 Estimate the robust Homography matrix H from the 

correspondences by rejecting the outliers using 

RANSAC (RANdom SAmple Consensus) [15]. 

Apply the Homography matrix to reject the 

corresponding points that have a projection distance 

more than a predefined threshold (2 pixels). 

 Get the 3D coordinates of the accepted 

correspondences from the 3D terrain engine. 

 Test if these points are coplanar. If coplanar, then 

rotate the virtual camera multiple times to obtain new 

multi-views. Next, apply coplanar calibration 

algorithm with multiple views to estimate rotation 

matrix and translation vector [16]. If it is non-

coplanar, apply the non-coplanar calibration 

algorithm with one view [6]. 

 Use the estimated rotation matrix and the translation 

vector to find view matrix M. Then, extract the global 

camera pose using the equations shown in section 

Extracting camera pose from view matrix. 

 

VI. TESTING ENVIRONMENT 

 

We created a new testing environment MapViewer.exe 

using C++Builder XE5 (see Figure 4). This testing 

environment consists of 2D top-view satellite images, 3D 

terrain engine (virtual camera), 3D path planner and image 

database. 

 

 
 

Figure 4: Our Testing Environment (MapViewer) 

 
 

Figure 3: Our pose estimation approach 

 

A. 3D path planning 

We created a set of tools that let us to design a UAV path 

in the 3D environment to test our approach in different 

scenarios like those in the real world (see Figure 5). These 

paths were generated with UAV speed (150 km/h), elevation 

speed (1 m/s). We also made sure that the path did not 

intersect the terrain and each point has a line of sight with 

the ground station. 
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VII. EXPERIMENTAL RESULTS 

 

We tested our approach on synthetic and real images with 

dimensions of 384×288 pixels on a PC with Intel CPU i7 4-

cores, NVIDIA GeForce GTX 570 graphics card, 4GB RAM 

and Windows7 64-bits operating system, the frame rate was 

12 FPS. 

 

A. Synthetic test 

We used the testing environment to generate new 

scenarios for the UAV paths, without adding any noise to 

use them as a reference (see Figure 5). Then we tested the 

proposed approach in two cases, Ideal and Noisy. 

 

i. Ideal case 

In the ideal case, we tested the approach without adding 

any noise (see Figure 6). The errors after applying our pose 

estimation algorithm are shown in Table 1. 

 

 
 

Figure 5: 3D path generated by our UAV path planner 

 

 

 
 

Figure 6: Estimated POSE parameters errors (Ideal Case), where horizontal 
axis shows errors and the vertical axis shows occurrence count 

 

Table 1 
Ideal case errors 

 

Easting [m] Northing [m] Altitude [m] 

0.2 0.2 0.5 
Azimuth [deg] Elevation [deg] Roll [deg] 

0.3 0.2 0.3 

 

ii. Noisy case 

In the noisy case, we added a Gaussian noise with 

mean=0.0 and stddev=10 meters for position and stddev=10 

degrees for angles (see Figure 7 and Figure 8). The errors 

after applying our pose estimation algorithm are shown in 

Table 2. 

 

B. Real test 

We tested our approach on real images taken from a 

UAV. Each image has inaccurate pose, which we used as 

initial pose to our algorithm. Because we did not know the 

accurate pose for those images, (unexpected sensor noise 

and weather conditions) we could not compare our results 

with them like in ideal case. Therefore, we validated our 

results by making a comparison between two images: the 

real and the corrected virtual image (virtual image after 

changing 3D engine using estimated pose). The re-

projection error was so small (2 pixels) and acceptable for 

Navigation or Target Localization applications (see Figure 

9). We could see that the real image coincides with the 3D 

Terrain Engine Image, so we could get the geographic 

coordinates for any pixel in the real image. There were cases 

where we could not find good correspondences between the 

real and virtual image, especially when there was a long 

period between the time of capturing of the two images. We 

could solve this problem by updating the 3D terrain engine 

periodically. In the worst case, we could fly the UAV to 

capture images from the work area before the real mission. 

We could also generate an Ortho-photo (for example, using 

Agisoft PhotoScan) to update the 3D terrain engine (if we 

use Google Earth, we can do that using KML files). 

 

 

 
 

Figure 7: Estimated POSE parameters (Noisy Case), where horizontal axis 

shows frame index and the vertical axis shows values 

 
 

 
 

Figure 8: Estimated POSE parameters errors (Noisy Case), where 

horizontal axis shows errors and the vertical axis shows occurrence count 
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Table 2 

Noisy case errors 
 

Easting [m] Northing [m] Altitude [m] 

1.0 1.0 4.0 

Azimuth [deg] Elevation [deg] Roll [deg] 
2.0 1.0 2.0 

 

VIII. CONCLUSION 

 

This paper presented a new approach to automatically 

estimate in real-time a global pose for a UAV using 3D 

terrain engine. Our system works well when the UAV flies 

at a suitable altitude This depends on the 3D terrain engine 

used, for example when we used a 3D terrain engine built on 

a DEM, we must fly with high altitudes to compensate the 

insufficient 3D model accuracy. However, when we used a 

3D City Model as engine, this constraint is not needed. Also, 

our approach is near real-time (12 FPS) and can be used in 

navigation and multiple targets localization. In the future, 

we will use 3D City models to enhance the results and we 

will work on auto-calibration algorithms using 3D terrain 

engine to allow user to change the field of view on-line, 

without the need to re-calibrate off-line. Finally, we can say 

that the 3D terrain engine succeeded when other methods 

failed. 

 

 
 

Figure 9: Real test: (a) Real image, (b) Virtual image, (c) matching between 

images (a-b), (d) Real image (even slides) and Virtual image (odd slides) 

before applying our algorithm, (e) Real image (even slides) and Virtual 
image (odd slides) after the algorithm 
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