

 e-ISSN: 2289-8131 Vol. 9 No. 1-4 29

Timing Attack: An Analysis of Preliminary Data

Yasin Fitri Alias, Mohd Anuar Mat Isa, Habibah Hashim
Faculty of Electrical Engineering,

Universiti Teknologi Mara, Selangor, Malaysia.

yasinalias90@gmail.com

Abstract—Timing attacks have caused an unprecedented

evolution in the present cryptographic era where more and more

cryptographic applications are running on embedded systems in

a wireless environment. Paul Kocher, a well-known cryptanalyst

was the first to successfully implement a timing attack on a

cryptosystem. Subsequently many other timing attacks have

been recorded while cryptographers tirelessly work on making

the schemes more resistant to these and other side channel

attacks. In this work, we examine timing information leaked

from the computation of 𝒈𝒂 (𝒎𝒐𝒅 𝒑) and observe the timing

variations of modular exponential computations by varying the

key length as well as the operating frequency of our

experimental Raspberry Pi board. We have chosen to compute

the algebraic expression on a U-Boot Bare Metal platforms our

platform and use the GMP bignum library to compute the

numbers which are greater than 64 bit. We believe that the

timing variations and patterns can lead to the early extraction

of secret information in systems based on modular

exponentiation. From our observations, there is a strong

correlation of timing patterns when computing keys of the same

length while the operating frequency used in the computation

only affects the computational delay.

Index Terms—Side Channel Attack; Cryptographic; Timing

Attack; Modular Exponentiation; Raspberry Pi; Embedded

Device; U-Boot Bare Metal; GMP Bignum Library.

I. INTRODUCTION

Exhaustive key search attack [1] such as Brute Force can be

an efficient tool for a finite key space and simple random key

search also might be efficient. These kind of methods will no

longer acceptable if the key space increases. 20 years ago,

Paul Kocher implemented the first timing attack [2]. Timing

attack is a side channel attack first presented by Paul Kocher

whose work has become a major reference for timing and

power analysis attacks. Side channel attack or side channel

analysis is an attack on the implementation of a cryptosystem

commonly dealing with the leakage of privacy data through

side channel information [3]. In timing analysis based attack,

timing channel can leak data or keys across a hardware

implementation. An attacker will attack the cryptosystem by

analyzing the time taken to execute the cryptographic

algorithm. To solve the mathematical problems that

embedded in the cryptosystem is very difficult [4]. So, the

attack only focuses on the hardware or software that executes

the schemes. Cryptanalysts or attackers only analyzed

information that might lead to secret key disclosure or data

compromise.

The author had implemented timing attacks on several

cryptosystems based on their modular exponential [5] (e.g.

Diffie-Hellman Key Exchange, RSA and El-Gamal). In this

research we will implement timing attack on Diffie-Hellman

Key Exchange (DHKE). The meaning of DHKE will be

explained in section below. This paper will present how the

initial data been collected in order to implement this timing

attack. Based on our previous work [6], we decided to use U-

Boot [7] bare metal in ARM based embedded devices to do

this experiment.

A. Difiie-Hellman Key Exchange (DHKE)

DHKE [8] is used for exchanging cryptographic keys in

unsecure network communication. The earliest idea about

public key infrastructure is to do encryption and decryption

algorithms using different keys. The DHKE method allows

two entities that have no prior knowledge of each other to

jointly establish a shared secret key over an insecure

communications channel based on discrete log hard problems

(DLP) as cryptographic strength [9][10]. The section below,

we present how the DHKE protocol occur between two

parties.

Let p be a prime and g be a generator of the multiplicative

group
pz common for all participants [11]. Each party; Along

and Busu, chooses randomly a secret number such as, a and

compute the public parameter modaA g p . A is made

public. The public numbers are sufficient to establish a secret

and common key for each pair of participants. Let us assume

that Along has secret a and has computed:

 modaA g p (1)

and similarly Busu has secret 𝑏 and computed:

 modbB g p (2)

Along then sends 𝑔𝑎 to Busu and Busu sends 𝑔𝑏 to Along.

The shared secret key is 𝐾 = 𝑔𝑎𝑏. Along knowing 𝑎 and 𝑔𝑏,

can easily calculated 𝑔𝑎𝑏 . Busu can determine the secret in

similar manner by computing 𝑔𝑏𝑎. Thus the both parties

obtain:

 modabK g p (3)

They can use as a common secret key. For passive

eavesdropper to determine this key, he must find key

satisfying the (3) with suitable 𝑎 and 𝑏 satisfying (1) and (2)

where the gathered data is just:

 , , ,p g A B (4)

This problem called Diffie-Hellman Problem. An obvious

way to solve it is to solve the Discrete Log Problem. With

input (𝑝, 𝑔, 𝐴) and then use the value of 𝑎 to compute K by:

Journal of Telecommunication, Electronic and Computer Engineering

30 e-ISSN: 2289-8131 Vol. 9 No. 1-4

aK B (5)

The critical question is can 𝐾 be found without obtaining

much information about 𝑎 𝑜𝑟 𝑏 in the process. In

[8][11][12]the authors stated that solving 𝑎 𝑜𝑟 𝑏 is basically

the only way to solve the Diffie-Hellman Problem. More

precisely they assume that the Diffie-Hellman Problem is

hard if the Discrete Log Problem is hard.

II. RELATED WORK

In this section, we review several related methods in

implementing the timing attack effectively. Kocher (1996)

[2] had implemented the timing attack on modular

exponentiations and was able to break the cryptosystem.

Dhem et al. (2000) [3] proposed several improvements based

on Kocher’s idea and was able to break a 512-bit key in a

few hours. The authors state that the most of the smart cards

did not change their design to prevent timing attack against

them. Schindler (2000) [13] presented a new technique of

timing attack. Using very limited knowledge, the author was

able to obtain a secret key from an RSA with the Montgomery

multiplication. However, he did not mention the tools that

were used to attack the cryptosystem. Song et al. (2001) [14]

had devised a timing attack to gain information from SSH.

The weakness from the SSH enable attackers to gain secret

information from the server. The authors also explained the

method to prevent such attacks.

Hamza (2004) [15] had developed an attack based on

genetic algorithm to attack the RSA cryptosystem. Based on

the authors, this attack will not succeed if the cryptosystem

used blinding technique and Montgomery algorithm.

Brumley et al. (2005) [4] show that timing attacks from an

OpenSSL-based web server over a local network can reveal

RSA private keys. They modified the Kocher’s attack [2] and

successfully demonstrated that the attack can be conducted

remotely against the server which is running OpenSSL.

Bernstein (2005) [16] performed a timing attack to recover

the AES key from the OpenSSL network server from another

computer. The author claimed that the implementation of

AES to write constant-time high-speed for common general-

purpose CPU is extremely difficult and this made the attack

successful. Maired et al. (2005) [17] explained the method

used by Bernstein to attack the AES using timing attack. The

authors had stated that Bernstein’s attack can be prevented by

several methods.

Scott et al. (2009) [18] had proposed a remote timing attack

by analyzing jitter and network response time over internet

and local network. The authors mentioned that by filtering the

jitter; they can reduce the time measurement to get the critical

information from the server. Strenzke (2010) [19] performed

how timing attack can used to steal information from

browser. We will use these case studies of timing attack to

further our research in implementation of timing attack.

III. PROPOSED METHOD

We wish to eventually propose a method to reduce the time

to search the private key (𝑎 𝑜𝑟 𝑏) in the DHKE. Instead of

using the brute force method, we will use timing attack as our

method [6]. Timing information that leaked from the

computation of the 𝑔𝑎 (𝑚𝑜𝑑 𝑝) will be used to extract the

secret key or secret information unlike the man-in-the-middle

attack which needs to know the values of 𝑎, 𝑝 𝑎𝑛𝑑 𝑔.

Therefore, we need to record the computational time, 𝑡𝑎

which compute the value of (𝑔𝑎 𝑚𝑜𝑑 𝑝).

All the values of 𝑝, 𝑔, 𝑎 𝑎𝑛𝑑 𝑏 must be within the same bit

size as the key length (e.g. 2048 bit) used. Assume that the

most significant bit (MSB) for the minimum value of the key

length is one (1) for the private key to be secure. Therefore,

we need to find the lower and upper bound for the key length

to limit the search for the value of 𝑎. To summarize this

method, we state below the information that an attacker needs

in order to launch the timing attack and the information the

attacker wishes to uncover in the finality of the attack:

 Attacker’s knowledge: 𝐴, 𝑔, 𝑝, 𝑡𝑎

 Attacker’s goal: 𝑎

IV. METHODOLOGY

This section present the sequence of activities performed

towards the completion of this experiment. For the

experiments, two key lengths will be used, namely 1024 bits

and 2048 bits and computation will be conducted on the

Raspberry Pi board at two different frequencies, which are

700 MHz and 100MHz. Firstly, some random numbers

𝑝, 𝑔 𝑎𝑛𝑑 𝑎 are generated to produce keys of length 1024 bit

and 2048 bit. The values of 𝑝, 𝑔 𝑎𝑛𝑑 𝑎 must be primes of the

multiplicative group 𝑧𝑃 respectively [11]. For each

experiment of different key length, the value for 𝑝 is the

largest prime number of 1024 bit and 2048 bit depending on

the key length in use. Meanwhile the value of 𝑔 is the second

largest prime number in the key length bit size. As for the

secret value 𝑎, the random value must be in the range of the

lower bound and the upper bound based on the key length.

The source code must be compiled into U-Boot Bare Metal

by using the ARM toolchain. Debian 7 is the operating system

that been used to compile the U-Boot by using the ARM tool

chain on the Raspberry Pi device. Besides, MobaXterm

software is used in this experiment to take control of the

raspberry pi board through the serial line. With it, we can

access the U-Boot without physically connecting additional

peripheral screen or keyboard. We connected the raspberry pi

using the general purpose input/output (GPIO) to the

computer through the serial port and the configuration for the

serial port is shown as below:

 Baud rate : 115200

 Parity : none

 Bits : 8

The objective of this experiment is to observe the time

taken to compute modular exponentiation 𝑔𝑎 (𝑚𝑜𝑑 𝑝)

between the lower bound and upper bound of value 𝑎 by using

different frequency (e.g. 100MHz and 700 MHz). The

frequency of the raspberry pi can be modified in the config.txt

[7] as shown in Figure 1. This computation will be using same

value of 𝑝 𝑎𝑛𝑑 𝑔 but different value of 𝑎 for one thousand

iterations. While, the value of 𝑎 will be incremented from the

lower bound by ten thousand for one thousand times. The

tabulation of data will be explained in the next section.

Timing Attack: An Analysis of Preliminary Data

 e-ISSN: 2289-8131 Vol. 9 No. 1-4 31

Figure 1: Config.txt

V. RESULT AND DISCUSSION

This section analyze the results of the experiment that

conducted by using Raspberry Pi. The results have been taken

for one thousand iterations of modular exponential

(𝑔𝑎 𝑚𝑜𝑑 𝑝) computations by using two different key lengths

and frequencies. The value of 𝑝 and 𝑔 are same for the whole

experiment, while the random value of 𝑎 is different as it is

incremented by ten thousand for each iteration.

Figure 2: 700 MHz (2048 bit)

Figure 1: 100 MHz (2048 bit)

Figure 5: 100 MHz (1024 bit)

Figure 2 and 3 show the time taken for 2048-bit running in

700 MHz and 100 MHz raspberry pi operating frequency

respectively. While Figure 4 and 5 show the time taken for

1024-bit running in 700 MHz and 100 MHz raspberry pi

operating frequency respectively. For 2048-bit keys, the

timing pattern remains the same even though the frequency is

changed. Similarly, the same is observed for the 1024-bit

keys. The difference in frequency is used to analyse the effect

of the computational time of the modular exponentiation.

Undoubtedly, we can identify the key length based on the

patterns even when the frequency has changed. The most

unexpected finding is the results for each key length have the

similarity at certain points.

VI. CONCLUSION

In this paper, we present our observations on the timing

data relating to the computation of modular exponential

expression. The results obtained showed that different key

length exhibit similar timing patterns when computing the

modular exponentiation () even though the frequency is

changed. We believe the findings will help us to devise a

timing attack to uncover the secret parameters by reducing

the area of key-search. We have considered to implement this

attack on embedded devices (e.g. raspberry pi) as more and

more embedded devices are running cryptographic

applications and are more susceptible to timing attacks. In the

next stage of our study, we will expand our experiment to

recover the secret key or information using our method in

timing attack.

ACKNOWLEDGMENT

The authors would like to thank Universiti Teknologi

MARA (UiTM) for providing research grant “600-

RMI/FRGS 5/3 (160/2013)” for this research work.

REFERENCES

[1] .Zhou Y. and Feng D., “Side-Channel Attacks: Ten Years After Its

Publication and the Impacts on Cryptographic Module Security

Testing,” IACR Cryptol. ePrint Arch. no. 60503014, pp. 1–34, 2005.
[2] Kocher P., “Timing attacks on implementations of Diffie-Hellman,

RSA, DSS, and other systems,” Adv. Cryptology—CRYPTO’ 1996.

[3] Dhem J., Koeune F., and Leroux P., “A practical implementation of the
timing attack,” Smart Card Res, 2000.

[4] Brumley D. and Boneh D., “Remote timing attacks are practical”

Comput. Networks, 2005.
[5] key exchange Images W., “Diffie–Hellman key exchange,”

cinqueterreliguria.net.

[6] Alias M., Anuar Y.F., Isa M., Hashim H., “ Sieving Technique to Solve
the Discrete Log Hard Problem in Diffie-Hellman Key Exchange, pp.

129–133, 2015.
[7] Engineering D. S., 2014. http://www.denx.de/wiki/U-Boot.

[8] Diffie W. and Hellman M., “New directions in cryptography,” Inf.

Theory, IEEE Trans, 1976.

[9] Bellare M. and Rogaway P., “Introduction to modern cryptography,”

UCSD CSE, pp. 1–10, 2005.

[10] Goldwasser S., “New Directions in Cryptography: Twenty Some Years
Later,” in Proceedings 38th Annual Symposium on Foundations of

Computer Science, pp. 314–324, 1997.

[11] den Boer B., “Diffie-Hellman is as strong as discrete log for certain
primes,” Adv. cryptology—CRYPTO’88, pp. 530–539, 1990.

[12] Boneh D., “The decision diffie-hellman problem,” Algorithmic number

theory, pp. 1–14, 1998.
[13] Schindler W., “A timing attack against RSA with the chinese remainder

theorem,” Hardw. Embed. Syst, pp. 109–124, 2000.

[14] Song D., Wagner D., and Tian X., “Timing Analysis of Keystrokes and
Timing Attacks on SSH,” USENIX Secur. Symp.

Journal of Telecommunication, Electronic and Computer Engineering

32 e-ISSN: 2289-8131 Vol. 9 No. 1-4

[15] Ali H. and Al-Salami M.,“Timing attack prospect for RSA

cryptanalysis using genetic algorithm technique,” Int. Arab J. Inf. vol.
1, no.1, pp. 80–84, 2004.

[16] Bernstein D., “Cache-timing attacks on AES,” Compute, pp. 37, 2005.

[17] O’Hanlon M. and Tonge A., Investigation of cache timing attacks on
AES. Sch. Comput. Dublin City Univ, 2005.

[18] Crosby S., Wallach D., and Riedi R., “Opportunities and limits of

remote timing attacks,” ACM Trans. Inf, vol. 12, no. 3, 2009.
[19] Strenzke F., “A timing attack against the secret permutation in the

McEliece PKC,” Post-Quantum Cryptogr. no. July. 1–29, 2010.

