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Abstract—The technology of computing and network 

communication is undergoing rapid development, leading to 

increasing number of applications and services being available 

online. As more applications are available online, network 

traffic becomes a significant problem as high network loads may 

limit access to users. In this paper, we propose an internet traffic 

Nonlinear Auto-Regressive Moving Average model (NARMA) 

prediction model to assist network managers in forecasting 

internet traffic and planning their resources accordingly. The 

Multi-Layer Perceptron (MLP) estimator was used in this 

paper. The performance of the model were evaluated using 

Mean Squared Error (MSE), correlation tests, and residual 

histogram tests with good agreement between the model and 

actual outputs. 

 

Index Terms—Network Traffic Prediction; Nonlinear Auto-

Regressive Moving Average (NARMA); System Identification; 

Forecasting. 

 

I. INTRODUCTION 

 

Computer networks are an essential part of modern 

computing with the ability to share data and information 

across geographical borders [1]. Due to the explosive demand 

for internet-based applications [2, 3], computer networks may 

experience congestion due to high traffic [4, 5]. When this 

occurs, the networks users may experience reduced quality of 

service, i.e. higher latency, delay and packet loss [4]. 

Therefore, there is a need for an effective network traffic 

prediction model prediction model for network 

administrators to plan and manage their resources [6], 

detection of security threats [7, 8], and early discovery of 

potential network errors [6]. 

In this paper, we present two Nonlinear Auto-Regressive 

Moving Average (NARMA) models for prediction of 

network traffic: Multi-Layer Perceptron (MLP) and 

polynomial. We construct the model based on data collected 

from the Internet Traffic Archive [9]. 

 The rest of this paper is organized as follows: Section 2.0 

presents the literature review, followed by the methodology 

in Section 3.0. Results and discussions are presented in 

Section 4.0. Finally, concluding remarks are presented in 

Section 5.0. 

 

II. LITERATURE REVIEW 

 

A. Internet Traffic Prediction  

Prediction of internet traffic is an active research field [6]. 

Among the advantages of internet traffic prediction is the 

ability to effectively allocate bandwidth, predicting unusual 

access patterns, and security reasons [6-8, 10]. Several works 

on internet traffic prediction are using traditional linear 

prediction models [11], such as Auto-Regressive (AR), 

Moving Average (MA), and Auto-Regressive Moving 

Average (ARMA) models. However, references [6, 11, 12] 

reported that these prediction models have low prediction 

accuracy, as the models are linear but the system is actually 

nonlinear [11, 12].  

Nonlinear predictors, such as Artificial Neural Networks 

(ANNs) [10], have been used to address this issue. The 

nonlinear nature of ANNs, and the ability of the ANNs to 

theoretically approximate any input/output relationship given 

sufficient hidden units [11, 13]. 

 

B. Artificial Neural Network 

ANNs are learning adaptive models inspired by the human 

neural system that is able to perform complicated tasks such 

as classification, clustering, prediction and association [7, 14-

17].  

Several learning paradigms exist for ANNs: supervised, 

unsupervised and reinforcement learning. Among them, 

supervised learning is most practical for various problems. 

The paradigm presents inputs and expected outputs for the 

ANN to learn from. The learning process associates the inputs 

and outputs by adjusting the weights of the ANN according 

to a training algorithm. The performance of the ANN is 

monitored via error measures such as Mean Squared Error 

(MSE). Supervised learning is typically used in classification 

and regression problems [7]. 

Among the most popular ANN is the Multi-Layer 

Perceptron (MLP) [13]. The MLP arranges its neurons 

(computation units) into three or more layers – one input 

layer, one or more hidden layer(s), and one output layer. The 

hidden layer(s) enable the MLP to learn complex functions. 

According to [18], the MLP has several distinguishing 

characteristics that separate it from other ANN subtypes [18]: 

i. The MLP contains one or more layers of hidden units 

that are not part the input/output of the network. The 

hidden units enable the MLP to learn complex tasks 

and meaningful features from the input/output 

relationship. 

ii. Presence of nonlinear activation functions in its hidden 

layer. 

iii. High degree of connectivity between the MLP layers, 

determined by the weights of the network. 
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C. The NARMA model 

The NARMA model is a nonlinear non-parametric system 

identification model. Together with its parent model, 

Nonlinear Auto-Regressive Moving Average model with 

Exogenous Inputs (NARMAX), they are powerful, efficient 

and unified representations of a variety of nonlinear systems 

[19-29]. Rich literature is available regarding its success in 

various electrical, mechanical, medical and natural 

applications [27, 30-32]. 

The identification method for NARMA and its class are 

performed in three steps [33]. Structure selection is 

performed to detect the underlying structure of a dataset. This 

is followed by parameter estimation to optimize some 

objective function (typically involving the difference 

between the identified model and the actual dataset) [30]. The 

structure selection and parameter estimation steps are 

typically performed using the Error Reduction Ratio (ERR) 

method [33]. Recursive models such as NARMAX and 

NARMA recursively adds residual terms to the NAR/NARX 

model to eliminate the bias and improve the model prediction 

capability [34-37]. Structure selection and parameter 

estimation for NARX are done twice as the steps are 

recursively repeated on the residual set until a satisfactory 

model is obtained [19]. Finally, the model is validated to 

ensure that it is acceptable. 

 

III. METHODOLOGY 

 

A. Hardware Description 

All of the experiments were done on an ASUSTM laptop 

with Intel® core™ i5 Central Processing Unit (CPU) running 

at 2.40GHz, with 6.00GB of Random Access Memory 

(RAM), Microsoft Windows 7 Home Premium (64-bit) was 

installed as the operating systems. All programs were 

implemented using MATLAB R2015a. 

 

B. Dataset Description 

The dataset was taken from open source data from The 

Internet Traffic Archive website [9]. The dataset was 

sponsored by ACM SIGCOMM where BC-Oct89Ext was 

taken as dataset. The trace of dataset BC-Oct89Ext began at 

23:46 on October 3, 1989, where the first 1 million external 

arrivals were captured. The traces was recorded in Eastern 

Daylight Time (EDT).  

During the measurements, the packet captured excludes 

corrupted ones. Approximately 99.5% data taken is from the 

IP encapsulated packets. Timestamps that used are to six 

decimal point with four microsecond precision and with the 

accuracy of ten microseconds. The tracing was done at the 

Bellcore Morristown Research and Engineering facility, 

where all traffic between Bellcore and the Internet was 

captured. 

The original data needs to be filtered prior to identification 

as the acquired traces timestamps are inconsistently spaced.  

After being filtered, the data consisted of 394 data points and 

divided into 3 sets where 276 data point was used for training 

set, 59 data point was used for the validation set and 59 data 

points were used for the testing set. The dataset for the input 

was plotted into graph as shown in Figure 1. 

 

C. Experimental Overview 

An overview of the experiments performed is shown in 

Figure 2. First, after the required dataset is obtained, the 

dataset was divided into three set which was training,  

validation and testing. The training set was used to adjust the 

weights of the MLPs, while the validation and testing sets 

were used to avoid overfitting and measure the performance 

of the MLPs with an unbiased dataset, respectively. 

The first MLP (MLP1) is responsible to estimate the 

Nonlinear Auto-Regressive (NAR) model, which is the first 

step in estimating the full NARMA model. Parameters such 

as lag space and number of hidden units were varied and the 

MLP1 with the optimal performance was used to estimate the 

output of the NAR model. A summary of the proposed 

method is presented in Figure 3. 

The residuals of MLP1 is produced when the prediction of 

the NAR model is compared with the actual output. The 

residuals were then used to construct the Moving Average 

(MA) model using the second MLP (MLP2). 

The final output of the NARMA model was constructed by 

combining the outputs from the optimal output of MLP1 and 

MLP2. The NARMA model was validated using Mean 

Squared Error (MSE), correlation tests, and residual 

histogram analysis, all of which are described in Section 3.4. 

 

D. Testing Methods 

This section describes the testing methods used in the 

performance analysis and model validation. The methods 

used were MSE, correlation tests and residual histogram 

analysis. 

A common method to measure model fit is by using MSE. 

MSE is defined as below [11, 38, 39]: 

 

𝑀𝑆𝐸 =  
1

𝑛
 ∑(ŷ(𝑛) − 𝑦(𝑛))

2
𝑛

𝑛=1

 (1) 

 

A low MSE score indicates a better model fit as this means 

the cumulative residuals are minimal. The residual produced 

by the model is in the form of: 

 
𝜀(𝑡) = 𝑦(𝑡) −  ŷ(𝑡) (2) 

 

In system identification research, in addition to small 

magnitude, the residuals need to exhibit properties similar to 

white noise in order for it to be accepted as a valid and 

unbiased representation of the system. To test this, we used 

the correlation test and residual histogram analysis method. 

 
 

Figure 1: Dataset used in the experiments (after filtering) 
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Figure 2: Experiment flowchart 

 

 

 
 

Figure 3:  Block diagram of the identification process. MLP1 is responsible 

to represent the NAR part, and MLP2 is responsible to represent the MA 
part of the NARMA model 

 

 Correlation tests measure the correlation between two 

signals at different lags. In system identification, the residuals 

are tested against itself and other output signals. The model 

can be considered sufficiently acceptable if the correlation 

results are within the 95% confidence limits [38, 40].  

Additionally, the distribution of the residuals can be tested 

using histogram analysis. The distribution of a white noise 

signal is similar to the Gaussian distribution (symmetric bell-

shaped distribution). 

 

IV. RESULTS & DISCUSSIONS 

 

Both MLPs were tested with different combinations of lags 

and hidden units. A summary of the best fitting results are 

shown in Table 1. There were some notable variations of 

MSE results when the two parameters (lag and hidden units) 

were adjusted. This was because the lag space variations 

includes more terms as inputs to the MLPs. Additionally, the 

hidden units variations effect the learning ability of the MLPs 

to represent more complex patterns. The results indicate that 

the addition of MA terms to MLP1 and MLP2 had helped 

improve the model fit, thus justifying the used of the 

NARMA model.  

The validation results are shown in Figure 4 to Figure 11. 

The residual plots show the residuals with small magnitudes, 

indicating small differences between the actual and predicted 

results. Additionally, the histogram tests shows a Gaussian 

curve, and the correlation tests show that the correlation 

coefficients were within the 95% confidence limits (with a 

small number of violations). These two observations indicate 

that the residuals were sufficiently random and that the model 

is valid and acceptable. 

 

 
 

 
 

Figure 4: Residuals for training set (NARMA model) 

 

 
Figure 5: Residuals for testing set (NARMA model) 

 

 
 

Figure 6: Histogram of residuals (training set, NARMA model) 

Table 1  

MSE results for NAR and NARMA models 

 

Params. TRAINING MSE TESTING MSE 
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5 25 0.0290 0.0224 22.7 0.1252 0.0768 38.7 

10 
5 0.2821 0.1856 34.2 0.2787 0.2687 3.6 

10 0.0626 0.0511 18.5 0.0659 0.0551 16.3 

15 
5 0.0306 0.0263 14.2 0.0384 0.0356 7.2 

20 0.0386 0.0361 6.4 0.1161 0.1090 6.1 

25 
5 0.0686 0.0435 36.5 0.1338 0.1148 14.3 

15 0.0161 0.0131 18.5 0.1321 0.1288 2.5 
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Figure 7:  Histogram of residuals (training set, NARMA model) 

 

 
 

Figure 8: Autocorrelation of residuals (training set, NARMA) 

 

 
 

Figure 9:  Autocorrelation of residuals (testing set, NARMA) 

 

 
 

Figure 10:  Crosscorrelation between residuals and output (training set, 

NARMA) 
 

 
 

Figure 11: Crosscorrelation between residuals and output (testing set, 
NARMA) 

V. CONCLUSION 

 
This paper has presented a MLP-based NARMA model for 

internet traffic prediction. The results indicate a good 

agreement between the model predictions with the actual 

output. Additionally, the histogram and correlation tests 

indicate that the model was sufficiently random and 

acceptable. 
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