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Abstract—An autonomous system constructed using written 

computer programs based on human expert knowledge only 

handles anticipated and verified states. On the other hand, a 

self-learning algorithm allows an autonomous system to 

instinctively acquire knowledge, learn from experience and be 

more prepared to expect the unexpected.  A novel hybrid self-

learning algorithm which combines reinforcement and 

unsupervised weightless neural network algorithm learning was 

formulated. The self-learning algorithm was applied to an 

autonomous mobile robot navigation system in simulation and 

physical world. The result shows that the simulated and physical 

robot possesses the ability to self-learn by acquiring knowledge, 

learn and record experience without having prior information 

on the environment. The mobile robot was able to distinguish 

different types of obstacles i.e. corners and walls; and generate 

complex control sequences of actions in order to avoid these 

obstacles. 

 

Index Terms—Reinforcement Learning; Q-learning; 

AutoWiSARD; Autonomous Navigation; Unsupervised 

Learning; Weightless Neural Network; LeJOS; Lego 

Mindstroms. 

 

I. INTRODUCTION 

 

This paper describes the research, formulation and 

implementation of a novel self-learning algorithm. The 

algorithm was derived from the combination of unsupervised 

weightless neural network learning, which employs 

AutoWiSARD [1] and reinforcement learning algorithm, 

which employs Q-learning [12]. By integrating both 

algorithm, a system will be able to acquire knowledge, learn, 

record and recall past experience thus achieving self-learning 

state. 

In contrast to developing an autonomous system using pre-

defined expert knowledge which was converted into 

computer program or by utilizing exhaustively trained and 

tested Artificial Intelligence (AI) algorithm; self-learning 

algorithm allows a system to instinctively acquire knowledge, 

learn from experience and better prepared to expect the 

unexpected. 

In order to study its effectiveness, the formulated self-

learning algorithm will first be applied to a simulated mobile 

robot, then implemented in physical mobile robot. Both in 

simulation and physical world, the mobile robot will wander 

in an unknown environment while avoiding obstacles.  The 

mobile robot application was selected because the method of 

acquiring knowledge and learning from experience while 

wandering and navigating to avoid obstacles is similar to 

human learning process [2]. 

 

II. LITERATURE REVIEWS 

 

A. Other Researches 

Since 2005, several relevant studies were conducted on 

developing self-learning systems such as by Kamath [3], Guo 

[4] and others [5]–[7] which employs various AI algorithms 

such as Experts System, Fuzzy Logic and others. Out of these 

researches, only Yousif et al [2] develop a self-learning 

system for an autonomous system. They developed a mobile 

robot simulation with self-learning capabilities but the 

technique employs combination of rules based and path 

planning algorithm that were hard coded into the system thus 

making the system inflexible. 

 

B. Autonomous System Control Algorithm 

An autonomous system that controls a mobile robot 

navigation can be classified as reactive system which reacts 

to the changes in the external environment. Reactive system 

gathers information about the current state/situation by 

sensing its surrounding environment, and reacts by 

performing finite number of actions [8].  

Based on characteristics of control algorithm which 

governs reactive systems behaviors, it can be concluded that 

states of environment will determine sequences of actions to 

be taken. Therefore, in order to autonomously learn, the 

formulated algorithm must be able to independently: a) 

classify new and differentiate existing states; b) determine 

sequences of actions to be taken.   

Close examinations of various autonomous systems 

developed by others [9]–[17] reveals that both WiSARD [18], 

a Weightless Neural Network (WNN) algorithm; and Q-

learning, reinforcement learning algorithm were applicable 

for self-learning algorithm formulation. Both algorithm were 

fast and efficient, can be implemented in resource constrained 

embedded systems and the combination of these two 

algorithms are able to classify and create complex control 

algorithm for robot navigation. 

WiSARD algorithm requires exhaustive training of 

anticipated states as demonstrated by Nurmaini [12] and 

Mcelroy [11]. As an alternative, AutoWisARD, an 

unsupervised learning version of WiSARD will be used to 

autonomously classify states. As highlighted by Sahin et al  

[19]  it is expected that the combinations of two or more 

intelligent technologies are able to support generalizations 
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and can handle incomplete cases. 

 

III. SELF-LEARNING ALGORITHM 

 

A. Q-learning Algorithm 

Figure 1 summarizes the Q-learning learning loop when 

implemented in a system, whereby:  

i. Q(s, a) – component of Q table; 

ii. s – current state; 

iii. s' – next state; 

iv. a – current action; 

v. a' – next action; 

vi. r – reward; 

vii. α – learning rate; 

viii. and γ – discount factor. 

 

 
 

Figure 1: Q-learning algorithm [15] 

 

As time progresses, Q(s, a) values stored in Q table shown 

in Figure 2 will be updated. Correct action taken by the 

system will be rewarded or otherwise it will be penalized.  

 
 

Figure 2: Q-learning’s state action table 
 

The progressively updated stored Q(s, a) values located in 

the table will provide information about the action to be taken 

in what state in the future. For a system which utilizes Q-

learning algorithm, prior to the system development, 

knowledge expert will provide information about states, s and 

actions, a. 

Shown in Figure 3, in contrast to the self-learning 

algorithm, the information about the state, s will be generated 

automatically by AutoWiSARD as learned information when 

the system autonomously classifies the environment. 

 

B. AutoWisard (Unsupervised WiSARD) Algorithm 

As stated earlier, the newly formulated self-learning 

algorithm was derived from the combinations of Q-learning 

and AutoWiSARD. AutoWiSARD is an unsupervised 

learning version of WiSARD algorithm. Previous research 

performed by others had successfully demonstrated that 

WiSARD, can positively classifies the states or different 

types of obstacles or environments when applied in reactive 

system such as mobile robot applications [9], [12] but 

requires comprehensive training and retraining of anticipated 

situations or states. 

The presumptions that AutoWiSARD can successfully be 

used to automatically classify states without supervision was 

based on: 

i. AutoWiSARD is an extended version of WiSARD 

algorithm, therefore it retains similar traits and 

capabilities as WiSARD and with the improvements of 

unsupervised learning; 

ii. AutoWiSARD was successful in classifying optical 

recognition of handwritten digits [1]; 

Figure 4 illustrates the WiSARD WNN structure. In 

summary, WiSARD inputs will be mapped as 1 or 0 value 

onto row by column table which represents a pattern. This 

pattern will then be converted into RAM type discriminator 

during training. The input will be compared with every RAM 

discriminators and their R value will be calculated during 

recognition process. The input will belong to a particular 

class represented by the RAM discriminator if it has the 

highest R value. 
 

 
Figure 3: Self-learning algorithm 

 

 
 

Figure 4: WiSARD WNN structure [10] 
 

By manipulating the outcome R, the supervised learning 

version of WiSARD can be transformed into unsupervised 

learning AutoWiSARD as demonstrated by Wickert [1]. The 

automated classifier was realized when the R value was be 

Initialize Q(s,a) arbitrarily 
Repeat (for each episode): 

Initialize s 

Repeat (for each step of episode): 
Choose a from s using policy derived from Q (e.g. ε-

greedy) 

Take action a, observer r, s’ 

Q(s,a)  Q(s,a) + [r +  maxa’Q(s’,a’) – Q(s,a) ] 

s  s’ 

Until s is terminal 
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mapped to a learning window shown in Figure 5 and then 

applied with the learning policy shown in Figure 6. 

 

 
 

Figure 5: AutoWiSARD R learning window [1] 

 

 
 

Figure 6: AutoWiSARD learning policy [1] 

 

C. Self-learning Algorithm Formulation 

The formulated hybrid self-learning algorithm which 

derived from the combination of AutoWiSARD and Q-

Learning does not require prior knowledge. During 

implementation, the algorithm will gradually differentiate the 

states and eventually learn to react. Both algorithm were 

chosen due to the speed, size and efficiency which is suitable 

when implemented in resource constrained embedded 

system. Figure 7 describes the self-learning algorithm loop.  

 

  
 

Figure 7: Self-learning algorithm loop 

 

IV. MOBILE ROBOT SIMULATION 

 

A. Simulation Environment and Key Parameters 

The self-learning algorithm was simulated in an open-

source Simple 2D Robot Simulator in Python+Pygame 

simulator developed by M. Agapie [20]. Figure 8 depicts the 

simulated mobile robot.  

The mobile robot was equipped with thirteen sonar sensors 

that will provide information about the distance of an object. 

Data collected from the sensor will then be mapped onto a 

6x5 array for AutoWiSARD input as shown in Table 1.  

Referring to Table 1, Sx represents thirteen sensor inputs 

attached to the robot shown in Figure 8. The t, denotes 

distance threshold. When Sx ≤ t, then column value will be set 

to 1 or otherwise 0. Figure 9 shows two different pattern 

sensed by the robot while wandering in the simulation 

environment. From visual inspection it is clear that both 

pattern can be classified into different classes because they 

look totally different. 
 

 
 

Figure 8: Mobile robot with 13 sonar sensors 

 
Table 1  

Sensor pattern mapping rules represented by 6x5 array for AutoWiSARD 

input 

 

S5 ≤ t S0 > t Ss6 ≤ t S7 ≤ t S12 > t 

S4 ≤ t S1 > t 0 S8 ≤ t S11 > t 

S3 ≤ t S2 > t 0 S9 ≤ t S10 > t 

S2 ≤ t S3 > t 0 S10 ≤ t S9 > t 

S1 ≤ t S4 > t 0 S11 ≤ t S8 > t 

S0 ≤ t S5 > t S6 > t S12 ≤ t S7 > t 

 

 

 
 

Figure 9: Sensor patterns 

 

Throughout the simulation, the key parameters such as 

reward value and learning parameters values were set as 

according to Table 2 and Table 3 respectively. 

 
Table 2  

Q-learning reward function 
 

Actions Reward 

Move forward and hit obstacle -0.7 

Move forward and did not hit obstacle 1 
Spin in same direction -0.1 

Spin in opposite direction -0.3 

 

Table 3 
 Q-learning parameters 

 

Parameters Value 

α – learning rate 0.1 
γ – discount factor 0.9 

ε-greedy exploration algorithm (ε value) 0.1 

 

B.  Result and Discussion 

The robot was set to wander in two different simulation 

environment and results were recorded. Prior to this 

simulation, the robot did not have any information about the 

obstacles and methods to evade them.  First, the robot was set 

to wander in the environment shown in Figure 10.  

 

 

 System: Read the sensors. 

 AutoWiSARD: Classifies and determines in what state the 
robot is. 

 Q-learning: Select the action according to the state and 
values of the corresponding action. 

 Q-Learning: execute the selected action. 

 System: Read the sensors 

 Q-Learning: Computes the reward, calculates and 
updates the state-action pair(s) Q values. 
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Figure 10: Traced path in environment 1 

 

Shown in Figure 11, during the first 500 simulation cycles 

the robot discovers 17 different types of obstacles and tries to 

determine best sequences of action to evade them. The final 

path for the robot is shown in Figure 10.  

 

 
 

Figure 11: Observed result for environment 1 

 

The final path taken when introduced to the second 

environment is shown in Figure 12. In this environment, the 

robot found three new obstacles as shown in Figure 13.  

 

 
 

Figure 12: Traced path in environment 2 

 
  

Figure 13: Observed result for environment 2 

 

 

V. PHYSICAL IMPLEMENTATION 
 

A. Mobile Robot Configurations and Key Parameters 

The robot shown in Figure 15 was constructed using Lego 

Mindstorms EV3 Kit and having the followings 

configurations: 

i. EV3 IntelliBrick, programmed using Java on LeJOS 

EV3 0.9.0-beta  JVM platform;  

ii. Touch sensors on the input ports 1 and 2, 2 servos for 

the wheels on output ports A and D; and 1 ultrasonic 

sensor for avoiding obstacles/walls connected to input 

port 4. 

 

 
 

Figure 14: Lego EV3 mobile robot 
 

For AutoWiSARD inputs shown in Table 4: a) values X in 

columns will be set to 1 when the ultrasonic sensor sense an 

obstacles is less than 30 cm or; b) otherwise the values of Y 

will be set to 1; c) when the front-left touch sensor touches 

any object the L values will be set to 1; d) when the front-

right touch sensor touches any object the R values will be set 

to 1. 

 
Table 4  

Sensor Mapping Pattern for AutoWiSARD Input 
 

L L L 0 0 

L 0 0 X X 

L X 0 X R 

X X 0 0 R 

0 Y R R R 

Y Y Y Y Y 

 

Table 5 and 6 shows the Q-learning parameters 

implemented in the mobile robot. 
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Table 5  

Q-learning reward function 

 

Actions Reward 

Hit obstacle -3.0 

Move forward 3.0 
Spin in same direction 0.5 

Spin in opposite direction 0.05 

 
Table 6 

 Q-learning Parameters 

 

Parameters Value 

α – learning rate 0.1 

γ – discount factor 0.9 

ε-greedy exploration algorithm (ε value) 0.2 

 

VI. RESULT AND DISCUSSION 
 

Figure 15 and 16 indicates that during the experiment the 

robot will start to classify the environment and spins few 

times at the start-up position then determine the best 

sequences of action in order to avoid both the static and 

randomly placed obstacles. 

 

 
 

Figure 15: Start-up position 

 

 

 
 

Figure 16: Random obstacles 1 

 

Shown Figure 17, the physical robot classifies 6 different 

types of obstacles. Due to limited ultrasonic sensor usage 

compared to the simulated robot, the physical robot tries to 

find best possible way to avoid from hitting the obstacles. 

Result shown in Figure 18 indicates that the robot hits the 

obstacles 16 times during the 250 run cycles, which is 6.4% 

hit rate.   

 

VII. CONCLUSION AND FUTURE WORKS 

 
In this paper we present a novel hybrid self-learning 

algorithm derived from AutoWiSARD and Q-learning 

algorithm implemented in an autonomous mobile robot 

navigation. Both the simulation and physical implementation 

result verifies that the algorithm enables the robot to self-

learn without having prior knowledge of its environment by 

differentiating various types of obstacles, keeps learning and 

correcting itself to avoid them with more efficiency while 

wandering in dynamically changing environment. 

In the future the self-learning algorithm will be implemented 

in other types of application in order to demonstrate its 

adaptability and capability of solving other problems. The 

currently formulated self-learning algorithm will be extended 

to include an autonomous discovery of reward thus making 

the more truly independent from human intervention. Other 

approach of formulating self-leaning algorithm will be 

investigated and implemented utilizing other combination of 

unsupervised and reinforcement learning algorithm; and 

implemented in other system which requires autonomous 

learning. 

 

 
 

Figure 17: Number of states classified (States vs. Run cycles) 

 

 
 

Figure 18: Robot hit walls (Hit vs Run cycles) 
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