

 e-ISSN: 2289-8131 Vol. 9 No. 1-3 133

Applying Hybrid Reinforcement and Unsupervised

Weightless Neural Network Learning Algorithm on

Autonomous Mobile Robot Navigation

Yusman Yusof1, H. M. Asri H. Mansor2, H. M. Dani Baba3
1Industrial Automation Section, Universiti Kuala Lumpur Malaysia.

2France Institute, Bandar Baru Bangi, Selangor, Malaysia.
3Faculty of Electrical Engineering, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia.

yusman@unikl.edu.my

Abstract—An autonomous system constructed using written

computer programs based on human expert knowledge only

handles anticipated and verified states. On the other hand, a

self-learning algorithm allows an autonomous system to

instinctively acquire knowledge, learn from experience and be

more prepared to expect the unexpected. A novel hybrid self-

learning algorithm which combines reinforcement and

unsupervised weightless neural network algorithm learning was

formulated. The self-learning algorithm was applied to an

autonomous mobile robot navigation system in simulation and

physical world. The result shows that the simulated and physical

robot possesses the ability to self-learn by acquiring knowledge,

learn and record experience without having prior information

on the environment. The mobile robot was able to distinguish

different types of obstacles i.e. corners and walls; and generate

complex control sequences of actions in order to avoid these

obstacles.

Index Terms—Reinforcement Learning; Q-learning;

AutoWiSARD; Autonomous Navigation; Unsupervised

Learning; Weightless Neural Network; LeJOS; Lego

Mindstroms.

I. INTRODUCTION

This paper describes the research, formulation and

implementation of a novel self-learning algorithm. The

algorithm was derived from the combination of unsupervised

weightless neural network learning, which employs

AutoWiSARD [1] and reinforcement learning algorithm,

which employs Q-learning [12]. By integrating both

algorithm, a system will be able to acquire knowledge, learn,

record and recall past experience thus achieving self-learning

state.

In contrast to developing an autonomous system using pre-

defined expert knowledge which was converted into

computer program or by utilizing exhaustively trained and

tested Artificial Intelligence (AI) algorithm; self-learning

algorithm allows a system to instinctively acquire knowledge,

learn from experience and better prepared to expect the

unexpected.

In order to study its effectiveness, the formulated self-

learning algorithm will first be applied to a simulated mobile

robot, then implemented in physical mobile robot. Both in

simulation and physical world, the mobile robot will wander

in an unknown environment while avoiding obstacles. The

mobile robot application was selected because the method of

acquiring knowledge and learning from experience while

wandering and navigating to avoid obstacles is similar to

human learning process [2].

II. LITERATURE REVIEWS

A. Other Researches

Since 2005, several relevant studies were conducted on

developing self-learning systems such as by Kamath [3], Guo

[4] and others [5]–[7] which employs various AI algorithms

such as Experts System, Fuzzy Logic and others. Out of these

researches, only Yousif et al [2] develop a self-learning

system for an autonomous system. They developed a mobile

robot simulation with self-learning capabilities but the

technique employs combination of rules based and path

planning algorithm that were hard coded into the system thus

making the system inflexible.

B. Autonomous System Control Algorithm

An autonomous system that controls a mobile robot

navigation can be classified as reactive system which reacts

to the changes in the external environment. Reactive system

gathers information about the current state/situation by

sensing its surrounding environment, and reacts by

performing finite number of actions [8].

Based on characteristics of control algorithm which

governs reactive systems behaviors, it can be concluded that

states of environment will determine sequences of actions to

be taken. Therefore, in order to autonomously learn, the

formulated algorithm must be able to independently: a)

classify new and differentiate existing states; b) determine

sequences of actions to be taken.

Close examinations of various autonomous systems

developed by others [9]–[17] reveals that both WiSARD [18],

a Weightless Neural Network (WNN) algorithm; and Q-

learning, reinforcement learning algorithm were applicable

for self-learning algorithm formulation. Both algorithm were

fast and efficient, can be implemented in resource constrained

embedded systems and the combination of these two

algorithms are able to classify and create complex control

algorithm for robot navigation.

WiSARD algorithm requires exhaustive training of

anticipated states as demonstrated by Nurmaini [12] and

Mcelroy [11]. As an alternative, AutoWisARD, an

unsupervised learning version of WiSARD will be used to

autonomously classify states. As highlighted by Sahin et al

[19] it is expected that the combinations of two or more

intelligent technologies are able to support generalizations

Journal of Telecommunication, Electronic and Computer Engineering

134 e-ISSN: 2289-8131 Vol. 9 No. 1-3

and can handle incomplete cases.

III. SELF-LEARNING ALGORITHM

A. Q-learning Algorithm

Figure 1 summarizes the Q-learning learning loop when

implemented in a system, whereby:

i. Q(s, a) – component of Q table;

ii. s – current state;

iii. s' – next state;

iv. a – current action;

v. a' – next action;

vi. r – reward;

vii. α – learning rate;

viii. and γ – discount factor.

Figure 1: Q-learning algorithm [15]

As time progresses, Q(s, a) values stored in Q table shown

in Figure 2 will be updated. Correct action taken by the

system will be rewarded or otherwise it will be penalized.

Figure 2: Q-learning’s state action table

The progressively updated stored Q(s, a) values located in

the table will provide information about the action to be taken

in what state in the future. For a system which utilizes Q-

learning algorithm, prior to the system development,

knowledge expert will provide information about states, s and

actions, a.

Shown in Figure 3, in contrast to the self-learning

algorithm, the information about the state, s will be generated

automatically by AutoWiSARD as learned information when

the system autonomously classifies the environment.

B. AutoWisard (Unsupervised WiSARD) Algorithm

As stated earlier, the newly formulated self-learning

algorithm was derived from the combinations of Q-learning

and AutoWiSARD. AutoWiSARD is an unsupervised

learning version of WiSARD algorithm. Previous research

performed by others had successfully demonstrated that

WiSARD, can positively classifies the states or different

types of obstacles or environments when applied in reactive

system such as mobile robot applications [9], [12] but

requires comprehensive training and retraining of anticipated

situations or states.

The presumptions that AutoWiSARD can successfully be

used to automatically classify states without supervision was

based on:

i. AutoWiSARD is an extended version of WiSARD

algorithm, therefore it retains similar traits and

capabilities as WiSARD and with the improvements of

unsupervised learning;

ii. AutoWiSARD was successful in classifying optical

recognition of handwritten digits [1];

Figure 4 illustrates the WiSARD WNN structure. In

summary, WiSARD inputs will be mapped as 1 or 0 value

onto row by column table which represents a pattern. This

pattern will then be converted into RAM type discriminator

during training. The input will be compared with every RAM

discriminators and their R value will be calculated during

recognition process. The input will belong to a particular

class represented by the RAM discriminator if it has the

highest R value.

Figure 3: Self-learning algorithm

Figure 4: WiSARD WNN structure [10]

By manipulating the outcome R, the supervised learning

version of WiSARD can be transformed into unsupervised

learning AutoWiSARD as demonstrated by Wickert [1]. The

automated classifier was realized when the R value was be

Initialize Q(s,a) arbitrarily
Repeat (for each episode):

Initialize s

Repeat (for each step of episode):
Choose a from s using policy derived from Q (e.g. ε-

greedy)

Take action a, observer r, s’

Q(s,a)  Q(s,a) + [r +  maxa’Q(s’,a’) – Q(s,a)]

s  s’

Until s is terminal

Applying Hybrid Reinforcement and Unsupervised Weightless Neural Network Learning Algorithm on Autonomous Mobile Robot

Navigation

 e-ISSN: 2289-8131 Vol. 9 No. 1-3 135

mapped to a learning window shown in Figure 5 and then

applied with the learning policy shown in Figure 6.

Figure 5: AutoWiSARD R learning window [1]

Figure 6: AutoWiSARD learning policy [1]

C. Self-learning Algorithm Formulation

The formulated hybrid self-learning algorithm which

derived from the combination of AutoWiSARD and Q-

Learning does not require prior knowledge. During

implementation, the algorithm will gradually differentiate the

states and eventually learn to react. Both algorithm were

chosen due to the speed, size and efficiency which is suitable

when implemented in resource constrained embedded

system. Figure 7 describes the self-learning algorithm loop.

Figure 7: Self-learning algorithm loop

IV. MOBILE ROBOT SIMULATION

A. Simulation Environment and Key Parameters

The self-learning algorithm was simulated in an open-

source Simple 2D Robot Simulator in Python+Pygame

simulator developed by M. Agapie [20]. Figure 8 depicts the

simulated mobile robot.

The mobile robot was equipped with thirteen sonar sensors

that will provide information about the distance of an object.

Data collected from the sensor will then be mapped onto a

6x5 array for AutoWiSARD input as shown in Table 1.

Referring to Table 1, Sx represents thirteen sensor inputs

attached to the robot shown in Figure 8. The t, denotes

distance threshold. When Sx ≤ t, then column value will be set

to 1 or otherwise 0. Figure 9 shows two different pattern

sensed by the robot while wandering in the simulation

environment. From visual inspection it is clear that both

pattern can be classified into different classes because they

look totally different.

Figure 8: Mobile robot with 13 sonar sensors

Table 1

Sensor pattern mapping rules represented by 6x5 array for AutoWiSARD

input

S5 ≤ t S0 > t Ss6 ≤ t S7 ≤ t S12 > t

S4 ≤ t S1 > t 0 S8 ≤ t S11 > t

S3 ≤ t S2 > t 0 S9 ≤ t S10 > t

S2 ≤ t S3 > t 0 S10 ≤ t S9 > t

S1 ≤ t S4 > t 0 S11 ≤ t S8 > t

S0 ≤ t S5 > t S6 > t S12 ≤ t S7 > t

Figure 9: Sensor patterns

Throughout the simulation, the key parameters such as

reward value and learning parameters values were set as

according to Table 2 and Table 3 respectively.

Table 2

Q-learning reward function

Actions Reward

Move forward and hit obstacle -0.7

Move forward and did not hit obstacle 1
Spin in same direction -0.1

Spin in opposite direction -0.3

Table 3
 Q-learning parameters

Parameters Value

α – learning rate 0.1
γ – discount factor 0.9

ε-greedy exploration algorithm (ε value) 0.1

B. Result and Discussion

The robot was set to wander in two different simulation

environment and results were recorded. Prior to this

simulation, the robot did not have any information about the

obstacles and methods to evade them. First, the robot was set

to wander in the environment shown in Figure 10.

 System: Read the sensors.

 AutoWiSARD: Classifies and determines in what state the
robot is.

 Q-learning: Select the action according to the state and
values of the corresponding action.

 Q-Learning: execute the selected action.

 System: Read the sensors

 Q-Learning: Computes the reward, calculates and
updates the state-action pair(s) Q values.

Journal of Telecommunication, Electronic and Computer Engineering

136 e-ISSN: 2289-8131 Vol. 9 No. 1-3

Figure 10: Traced path in environment 1

Shown in Figure 11, during the first 500 simulation cycles

the robot discovers 17 different types of obstacles and tries to

determine best sequences of action to evade them. The final

path for the robot is shown in Figure 10.

Figure 11: Observed result for environment 1

The final path taken when introduced to the second

environment is shown in Figure 12. In this environment, the

robot found three new obstacles as shown in Figure 13.

Figure 12: Traced path in environment 2

Figure 13: Observed result for environment 2

V. PHYSICAL IMPLEMENTATION

A. Mobile Robot Configurations and Key Parameters

The robot shown in Figure 15 was constructed using Lego

Mindstorms EV3 Kit and having the followings

configurations:

i. EV3 IntelliBrick, programmed using Java on LeJOS

EV3 0.9.0-beta JVM platform;

ii. Touch sensors on the input ports 1 and 2, 2 servos for

the wheels on output ports A and D; and 1 ultrasonic

sensor for avoiding obstacles/walls connected to input

port 4.

Figure 14: Lego EV3 mobile robot

For AutoWiSARD inputs shown in Table 4: a) values X in

columns will be set to 1 when the ultrasonic sensor sense an

obstacles is less than 30 cm or; b) otherwise the values of Y

will be set to 1; c) when the front-left touch sensor touches

any object the L values will be set to 1; d) when the front-

right touch sensor touches any object the R values will be set

to 1.

Table 4

Sensor Mapping Pattern for AutoWiSARD Input

L L L 0 0

L 0 0 X X

L X 0 X R

X X 0 0 R

0 Y R R R

Y Y Y Y Y

Table 5 and 6 shows the Q-learning parameters

implemented in the mobile robot.

Applying Hybrid Reinforcement and Unsupervised Weightless Neural Network Learning Algorithm on Autonomous Mobile Robot

Navigation

 e-ISSN: 2289-8131 Vol. 9 No. 1-3 137

Table 5

Q-learning reward function

Actions Reward

Hit obstacle -3.0

Move forward 3.0
Spin in same direction 0.5

Spin in opposite direction 0.05

Table 6

 Q-learning Parameters

Parameters Value

α – learning rate 0.1

γ – discount factor 0.9

ε-greedy exploration algorithm (ε value) 0.2

VI. RESULT AND DISCUSSION

Figure 15 and 16 indicates that during the experiment the

robot will start to classify the environment and spins few

times at the start-up position then determine the best

sequences of action in order to avoid both the static and

randomly placed obstacles.

Figure 15: Start-up position

Figure 16: Random obstacles 1

Shown Figure 17, the physical robot classifies 6 different

types of obstacles. Due to limited ultrasonic sensor usage

compared to the simulated robot, the physical robot tries to

find best possible way to avoid from hitting the obstacles.

Result shown in Figure 18 indicates that the robot hits the

obstacles 16 times during the 250 run cycles, which is 6.4%

hit rate.

VII. CONCLUSION AND FUTURE WORKS

In this paper we present a novel hybrid self-learning

algorithm derived from AutoWiSARD and Q-learning

algorithm implemented in an autonomous mobile robot

navigation. Both the simulation and physical implementation

result verifies that the algorithm enables the robot to self-

learn without having prior knowledge of its environment by

differentiating various types of obstacles, keeps learning and

correcting itself to avoid them with more efficiency while

wandering in dynamically changing environment.

In the future the self-learning algorithm will be implemented

in other types of application in order to demonstrate its

adaptability and capability of solving other problems. The

currently formulated self-learning algorithm will be extended

to include an autonomous discovery of reward thus making

the more truly independent from human intervention. Other

approach of formulating self-leaning algorithm will be

investigated and implemented utilizing other combination of

unsupervised and reinforcement learning algorithm; and

implemented in other system which requires autonomous

learning.

Figure 17: Number of states classified (States vs. Run cycles)

Figure 18: Robot hit walls (Hit vs Run cycles)

REFERENCES

[1] Iuri Wickert and Felipe M. G. França. 2001. AUTOWISARD:

Unsupervised Modes for the WISARD. 6th International Work-
Conference on Artificial and Natural Neural Networks, IWANN 2001.

Granada, Spain. 13-15 June 2001. 435-441.

[2] R. W. Yousif and M.A.H., Mansor. 2009. Design and Simulation of a
New Self-Learning Expert System for Mobile Robot. International

Journal of Computer, Electrical, Automation, Control and Information

Engineering. 3(2).
[3] U., Kamath U. 2008. Self-learning expert systems using rule classifier

in detection engines. International Conference on Artificial Intelligence
and Pattern Recognition, AIPR 2008, Orlando, Florida, USA. 7-10 July

2008. 224–227.

[4] Y., Liu, Wang and M. Guo. 2005. The research and application of the
self-learning expert system based on BP network. Fourth International

Conference on Machine Learning and Cybernetics. 2005. China. 18-21

August 2005. 18–21.
[5] C., Kirby, A., Sadlier, C.,Wood and M.,Vinther. 2013. Filling the

Experience gap in the Drilling Optimization Continuous Improvement

Cycle Through a Self-Learning Expert System. SPE Middle East Oil

Journal of Telecommunication, Electronic and Computer Engineering

138 e-ISSN: 2289-8131 Vol. 9 No. 1-3

and Gas Show and Conference. 2013. Manama, Bahrain. 10-13 March

2013.
[6] E., Piga and A., Geschiere. 2009 Self learning expert system (SLES)

for power transformers. 20th International Conference and Exhibition

on Electricity Distribution, CIRED 2009, Prague, Czech Republic.
2009. 8-11 June 2009. 1-3.

[7] L., Chen and J., Li. 2012. Development and application of blast furnace

expert system with self-learning function based on pattern recognition.
Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal Southeast Univ.

(Natural Sci. Ed.). 42(1):117–121.

[8] D., Harel and A., Pnueli . 1985, Logics and Models of Concurrent
Systems. New York: Springer-Verlag New York.

[9] B., Mcelroy, M., Gillham, G., Howells, S., Spurgeon, S., Kelly, J.,

Batchelor and M.,Pepper. 2012. Highly efficient Localisation utilising
Weightless neural systems. European Symposium on Artificial Neural

Networks, Computational Intelligence and Machine Learning. 2012.

Bruges, Belgium. 25-27 April 2012. 25–27.
[10] S., Nurmaini . 2009. Modular Weightless Neural Network Architecture

for Intelligent Navigation. International Journal of Soft Computing

Application. 1(1): 1–18.
[11] M., Gillham, B., McElroy, G., Howells, S., Kelly, S., Spurgeon and M.,

Pepper. 2012. Weightless Neural System Employing Simple Sensor

Data for Efficient Real-Time Round-Corner, Junction and Doorway
Detection for Autonomous System Path Planning in Smart Robotic

Assisted Healthcare Wheelchairs. 2012 Third International Conference

Emerging Security Technology. Lisbon, Portugal. 5-7 Sept. 2012. 161–
164.

[12] S. Nurmaini and B. Tutuko. 2011. A New Classification Technique in

Mobile Robot Navigation. TELKOMNIKA. 9(3): 453–464.
[13] Building a Light-seeking Robot with Q-learning: InformIT retrieved

October, 18, 2015 from

http://www.informit.com/articles/article.aspx?p=26423&seqNum=3.
[14] Z., Wang, Z., Shi , Y., Li and J., Tu . 2013. The Optimization of Path

Planning for Multi-robot System using Boltzmann Policy based Q-

Learning Algorithm. 2013 IEEE International Conference on Robotics
and Biomimetics (ROBIO). Shenzhen, China. 12-14 December 2013.

1199–1204.

[15] H., Wicaksono. 2011. Q learning behavior on autonomous navigation
of physical robot. 8th International Conference on Ubiquitous Robots

and Ambient Intelligence (URAI). 2011. Incheon, Korea. 23-26

November 2011. 50–54.
[16] H.,G.,A.,M., Víctor Ricardo Cruz-Álvarez and Enrique Hidalgo-Peña.

2012. A line follower robot implementation using Lego’s Mindstorms

Kit and Q-Learning. Acta University. 22. 113–118.
[17] S., Dini and M., Serrano. 2012. Combining Q-Learning with Artificial

Neural Networks in an Adaptive Light Seeking Robot.

[18] I., Aleksander and T.J., Stonham. 1979. Guide to pattern recognition
using random access memories. IEE Journal Computing and Digital

Technology. 2(1):29.

[19] S., Sahin, M.R., Tolun and R., Hassanpour. 2012. Hybrid expert
systems: A survey of current approaches and applications. Journal of

Expert Systems and Applications. 39(4):4609–4617.

[20] Simple Python robot simulator 2D download | SourceForge.net
retrieved September, 14, 2015 from

http://sourceforge.net/projects/pyrobosim2d/.

