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Abstract—High Efficiency Video Coding (HEVC) standard, 

generated by ITU, can provide compression ratio twice more 

than current H.264/ MPEG-4. To date, only a few hardware 

have been implementated for Integer Motion Estimation (IME) 

to date. In this paper, a parallel hardware architecture for 

IME in HEVC encoder is proposed. This design uses Rot-W-

Diamond (RWD) algorithm to reduce computational load and 

parallelism to improve processing speed. Therefore, this design 

can reach 4K (4096×2160) video in real time at 60 frames per 

second (fps) and achieve the frequency of 125MHz. 

 

Index Terms—H.265/HEVC; H.264/MPEG-4; FPGA; 

Motion Estimation (ME); Inter Motion Estimation (IME). 

 

I. INTRODUCTION 

 

The multimedia applications with diverse services have 

developed rapidly in recent years. This leads to higher 

requirements of video quality and resolution. However, in 

H.264 standard, the video coding standardization project of 

the ITU VCEG [1] is no longer relevant to high-resolution 

video processing. HEVC [1], the next generation of H.264 is 

currently expected to double the compression ratio to 

decrease the required bandwidth, while still ensuring video 

quality. Therefore, the transmission of high quality video 

like 4k (4096×2160) is completely possible.  

In video coding, one of the most important widely 

research topic is to find methods to effectively reduce video 

space and temporal residual. Motion Estimation (ME), 

which often takes 66% to 77% of encoder complexity [2], is 

much known for reducing temporal redundancies by 

detecting the location of current Prediction Unit (PU) in 

reference frame and Motion Vector (MV) for each PU. 

Figure 1 describes the movement of a PU of current frame 

placed in reference frame.  

ME is time-consuming although it has a major role in an 

encoder. The better motion estimation process, the better 

compression efficiency. ME process includes two stages: 

integer-pixel motion estimation (IME) and fractional pixel 

motion estimation (FME). The initial prediction is carried 

out by IME, which occupies 21.33% - 25.6% of total 

computational load of ME [3], to find the best-match integer 

point in reference frame, while FME is responsible for 

refining the identified results from the initial stage. 

Recently, there have been many proposed fast search 

algorithms, such as Wide Diamond and Square pattern, Rot-

W-Diamond [4], and parallel clustering tree search [5]. 

However, only a few hardware architecture designs for IME 

have been proposed. Xu Yuan [6] uses full search algorithm, 

which requires a great deal of search points and high 

complexity computation. 

Consequently, the design can only process medium 

resolution videos (Full-HD), which is incapable of making 

full use of H.265’s video high compression. In [7], J. Byun 

uses full search algorithm with SRAM to increase reading 

memory speed. Thus, his hardware consumes large memory 

and has small search range (64×64). Although the 

architecture IME in [8] has been improved in using fast 

search algorithm to significantly reduce the number of 

search points, its hardware design fails in optimizing 

working speed. Therefore, the video resolution is only Full-

HD. In [5], a hardware-oriented IME based on a new 

algorithm named “parallel clustering tree search” (PCTS) 

can support video applications of QFHD (3840×2160), but 

its frame rate achieves moderately 30 fps, much lower than 

60fps in 4k standard. For that reason, the finding of 

appropriate algorithms to design high-speed hardware like 

4k for IME is very important. 

In the published algorithms, Rot-W-Diamond deems to be 

outstanding for its reduction of nearly 72% of computation 

load of ME while keeping bitrate and PSNR virtually 

unchanged. Moreover, Rot-W-Diamond algorithm is 

compatible with the implementation of hardware 

architecture, which is able to conduct fast search and 

process high-resolution videos like 4K. In this paper, we 

propose a novel IME architecture for HEVC video coding 

based on RDW algorithm. With the capability of parallel 

processing of all points in search range by using full PU 

sizes, the proposed architecture can process high-resolution 

videos, up to 4K at 60 fps. 

The paper is organized as follows: Section II gives an 

overview of motion estimation, Inter motion estimation in 

HEVC encoders and describes RWD algorithm. The 

Reference Frame

Current Frame

PU in Current 
Frame

 PU in Reference 
Frame

 M
o

tio
n

 V
ecto

r 

Search 
Window

 

Figure 1: Motion estimation 
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hardware implementation is presented in Section III. Section 

IV shows the Synthesis results and the comparison with 

other designs. Finally, Conclusion will be given in Section 

V. 

 

II. OVERVIEW OF RWD ALGORITHM 

 

The Rot-W-Diamond (RWD) has three main stages: 

finding starting position, fast search and second search, as 

shown in Figure 2. 
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Figure 2: Brief overview of RWD searching algorithm 

 

Step 1 – Starting Position Selection: Starting position is 

chosen between the ones of motion vector prediction (PMV) 

and zero motion vector: The position that has the smallest 

SAD will be chosen to be the initial starting point of First 

Search Stage. 

Step 2 – First Search: In this stage, ME process uses 

diamond search pattern with a start position from the Step1 

to find 40 points in Rot-W-Diamond Pattern with search 

range -64÷64, as shown in Figure 3. The best point with the 

smallest SAD will be chosen. If the distance between the 

best point and the starting point is 0, the search will be 

terminated. If the distance equals to 1 or 2, the neighboring 

points of this point will be checked to find out the best point 

of the First Search Stage by comparing SAD among these 

points. If the distance is larger than five, a raster search will 

divide search range into girds of 20x20 pixels to find out the 

best point. 

Step 3 – Second Search: This is a refinement stage. This 

stage has the same procedure as the first search except that 

there is no raster search. It terminates when the best point 

and starting point are coincident.  

Owing to the search point reduction and early termination 

conditions, the RWD algorithm with small calculation load 

is compatible with a hardware architecture that quickly 

processes and satisfies high-resolution videos.  

From the approach, the block diagram of our IME unit 

that consists of Integer Search Motion Estimation (ISME), 

Current PU RAM (CUR_RAM), Candidate Motion Vector 

RAM (CMV_RAM), Reference RAM (REF_RAM) and Sum 

of Absolute Differences & Comparator (SAD & 

Comparator) is depicted in Figure 4. 

 
 

Figure 3: Rot-W-Diamond Pattern 
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 Figure 4: IME architecture 

 

III. HARDWARE ARCHITECTURE 

 

As depicted in Figure 4, IME receives input data 

including the Candidate Motion Vectors, Reference Frame, 

and Current PU, which then stores them respectively into 

CMV_RAM, REF_RAM and CUR_RAM. At first, 

CMV_RAM sends the positions of the reference vectors to 

ISME to find the starting point for searching procedure. 
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Once this point is detected, ISME block instantly the 

transmit search point’s position to REF_RAM to obtain 

corresponding Ref_Data (reference data). Then, the 

Ref_Data along with the Cur_Data (current PU) are sent to 

SAD & Comparator for the calculation of the smallest SAD. 

ISME will constantly update the best positions until the 

motion vector with the smallest SAD is identified. Details of 

each component will be described in this section. 

 

A. Candidate Motion Vector RAM (CMV_RAM) 

The CMV_RAM is created by Blocks memory that store 

the value of Candidate Median Vectors as predicted in 

Figure 5. All of MV vectors are dispatched concurrently to 

ISME module to calculate the starting point for the entire 

searching process. 
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Figure 5: Positions of candidate median vectors 

 

B. Integer Search Motion Estimation (ISME) 

The ISME designed upon the RWD algorithm is the main 

control of the architecture is shown Figure 6. It comprises 

the Initial Point, Primary Search, Raster Scan and Neighbor 

Search. 
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Figure 6:  ISME architecture 

 

In Figure 5, the Initial point module receives 3 vectors to 

calculate the median position (x1, y1), according to the 

Equation (1). 

1 1 1 2 3( , ) ( , , ).Median x y middle MV MV MV  (1) 

 

This position is sent together with the position (x0, y0) of 

the Current PU to REF_RAM module to push the data to 

SAD module. The starting point of the Primary Search will 

select the one of smaller SADs between (x0, y0) and (x1, 

y1). 

After determining the starting point, the Primary Search 

sends 40 positions (the tuples of (x0, y0) to (x39, y39)) to 

REF_RAM, as shown in Figure 6. Then, the data from 

REF_RAM and CMB_RAM are transferred to SAD & 

Comparator to select the point with the lowest SAD value. 

i. If dis is 0 then the search is terminated. 

ii. If the dis is larger than 5, the signal Enae_Scan will 

be set to enable the Raster Scan.  

iii. If the dis is smaller than 5, the signal Enae_Nei will 

be set to enable the Neighbor Search. 

The Neighbor Search determines 16 positions around the 

starting point following the algorithm and sends these 

positions (the tuples of (x0, y0) till (x15, y15)) to 

REF_RAM. The next process is the same as the Primary 

Search. 

The Raster Scan defines the search window ± 64 pixels 

around the starting point, fragments it to 36 MBs [9] and 

sends these MBs’ positions to RF RAM. The next process is 

like the Primary Search. 

After the searching processes are completed, the ISME 

will find the Motion Vector and the SAD value of MB’s best 

position. In each searching stage, all positions are sent 

simultaneously to REF_RAM, which help effectively and 

quickly speed up the searching process. However, the 

processing in REF_RAM is very complicated as it requires a 

full and accurate output.  

 

C. Reference RAM (REF_RAM) 

The main bottleneck introduced above is able to read the 

memory with many output ports at the same time. Therefore, 

instead of using Block memories or Dual Port RAM, which 

allow to read only one or two addresses at the same time, the 

new architecture for REF_RAM created by distributed RAM 

allows to read multiple addresses at the same time. It 

consists of 40 modules Generate Address, 40 modules 

Reorder, and a Register Arrays module that are shown as 

follows. 
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Figure 7: Reference RAM architecture 
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At the beginning of the process, the data of reference 

buffers are stored in 8Kx128 Register arrays. The Generate 

Address modules receive the positions coming from the 

ISME to calculate the addresses respectively. After that, the 

output data from the Register arrays are sent to Reorder 

modules to rearrange and obtain the correct data. Figure 8 

describes the detailed design of the Generate Address and 

the Reorder module. 
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Figure 8: Generate address diagram 

 

Outputs of the Generate Address module are calculated 

by the following assignments: 

 

Addr     =   x_clip >> 4 + y_clip × (Pic_w >> 4). (2) 

Pos     =    x%16. (3) 

 

where:  

x_clip    = Clip (0, Pic_w, x_offset),  

y_clip    = Clip (0, Pic_h, y_offset) 

x_offset = x + offset_x, y_offset = y + offset_y. 

offset_x, offset_y is increased after each cycle. 

 

𝐶𝑙𝑖𝑝(𝑥, 𝑦, 𝑧) = {

x;        z < 𝑥
y;         z > 𝑦

  z;  otherwise
 (4) 

 

The data storage and address management of the Register 

Arrays are shown in Figure 9. 
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Figure 9:  Storage and management of memory array 

 

The Register Arrays includes many registers, each of 

which has 128 bits. The reading of 16 pixels per clock is 

more effective than one pixel, so each register will store 16 

pixels of reference frame. However, the position of 

reference PU is at random in reference to the frame, so 

output data must be arranged by Reorder module to collect 

the correct data. This process is depicted in Figure 10. 
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Figure 10: Reorder unit processing 

 

There are 16 pixels in the register, so there are 16 

position’s pixels in the register (Pos). For instance, there is a 

16×16 reference PU whose position is not at the top of 

register (Pos is not equal by zero), it needs two continuous 

registers to combine and arrange to create exact data. 

By creating distributed RAM, which is capable of reading 

lots of input, we only take 256 cycles to read the 40 PUs of 

64 × 64 size, which is 20 times faster than the conventional 

Dual port RAM; therefore, its ability of reading data is 

optimum and efficient. 

 

D. Current RAM (CMB_RAM) 

The Current RAM stores current PU, which adapts from 

4x4 to 64x64. The way it stores data and manages address is 

resembling the Reference RAM; however, it is created by the 

Block memory. The configuration of this memory is shown 

in Figure 11. 
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 Figure 11:  Current RAM diagram 

 

To calculate the minimum residual value, all reference 

PUs are compared with only a current PU, so Current RAM 

does not claim to read multi addresses at the same time. 

Therefore, this architecture uses Block Memory that has one 

input, one output and rapid access. 

 

E. Sum of Absolute Difference and Comparison (SAD 

and Comparator) 

The SAD & Comparator calculates the sum of absolute 

differences (SAD) of 40 PUs to find out the smallest SAD. In 

order to parallel the process, the SAD & Comparator are 

divided into 40 SAD_128 modules and the Comparator as as 

shown in Figure 12. 

Each SAD_128 includes 16 AD circuits processing 16 
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pixels (128 bit), as described in Figure 13 and Figure 14. 

The absolute difference (AD) of two pixels are calculated 

by Equation (5). 

 

|𝑋 − 𝑌| =  {
𝑋′+𝑌+1 ,𝑖𝑓 𝑀𝑆𝐵=0

𝑋+𝑌′+1 ,𝑖𝑓 𝑀𝑆𝐵=1
   (5) 

 

In the Equation (5), MSB is the most significant bit, X’ 

and Y’ are the complements of X and Y, respectively [10]. 

The design uses parallel SAD computation blocks, in 

which, each adder is optimally designed by using 8-bit Full 

Adder Width Carry. Therefore, the calculation speed of the 

design is significantly improved. Thanks to the optimal 

design for each basic SAD to reduce hardware resource and 

concurrently run all SAD blocks, the calculation speed of 

the entire architecture has been increased significantly. 
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Figure 13: SAD_128 diagram 

 

IV. RESULTS AND COMPARISON 

 

The proposed architecture is implemented in Verilog 

HDL and synthesized into Xilinx Virtex-7 FPGA using 

Xilinx ISE tool. The synthesized results are given in Table 

1. 

The synthesized result shows that the implementation uses 

294k LUTs, 14k Registers and 2 Block RAMs for one 

current PU. Because the SAD calculations of points lying in 

searching area are carried out parallel as much as possible, 

LUTs occupies a large number of hardware. However, the 

number of Registers and Block Rams is very low compared 

to 44k Registers and 83 Block RAMs of architecture [5]. 
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Figure 14: AD diagram 

 
Table 1 

Synthesized Results 

 

Logic Utilization Used Available 

Number of Slide Registers 15001 2443200 

Number of LUTs 288918 1221600 

Number of Block RAM 2 1292 

 

Besides, following the RWD algorithm with three main 

stages, our architecture uses only 266 (5+261) cycles for 

step one, 261×2 cycles for step 2 and 261×2 cycles for step 

three to process one 64×64 PU. As a result, in total, it takes 

a maximum of 1310 clocks for one PU processing at system 

clock 100MHz. Moreover, the algorithm frequently stops at 

the first search with early termination conditions, and it only 

takes 788 (5+261+261×2) clocks for one 64×64 PU. Hence, 

calculating on average, it rapidly responses to the 

requirements of 4k@60 fps. 

Based on the comparison shown in Table 2, by dint of 

using parallel architecture and optimization algorithms, the 

proposed design achieves the highest video resolution with 

the highest frame rate and the smallest memory compared to 

the others. 

 
Table 2 

Comparison between Proposed Design and Previous Works for HEVC 

 

 [5] [6] [8] Proposed 

Algorithm PCTS 
Full 

search 
DW RWD 

Resolution 
3840× 

2160 

1920× 

1080 

1920×       

1080 

4096× 

2160 

Frame Rate 30 30 30 60 

Supported PU size All size All size 64×64 All size 

Search Range 
128× 

128 
128× 128 128× 128 128× 128 

Frequency (MHz) 200 110 200 125 

Technology 
Virtex6 

40nm 

XC6VLX

-550T 

Virtex6 

40nm 

Virtex7 

40nm 

 

V. CONCLUSION 

 

In this paper, a relevant and efficient IME architecture 

given for HEVC is implemented on Virtex-7 at 100MHz 
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system clock. By combining with Rot-W-Diamond 

algorithms, the proposed parallel architecture is competent 

to support 4k videos at 60 fps in real time. 
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