

 e-ISSN: 2289-8131 Vol. 9 No. 1-3 83

A Novel Parallel Hardware Architecture for Inter

Motion Estimation in HEVC

Canh Dinh, Toan Nguyen, Cuong Pham, Phong Nguyen,

Duc Duong, Ha Phung, Tien Pham, Thang Nguyen
School of Electronics and Telecommunications,

Hanoi University of Science and Technology, Hanoi, Vietnam.

thang.nguyenvu@hust.edu.vn

Abstract—High Efficiency Video Coding (HEVC) standard,

generated by ITU, can provide compression ratio twice more

than current H.264/ MPEG-4. To date, only a few hardware

have been implementated for Integer Motion Estimation (IME)

to date. In this paper, a parallel hardware architecture for

IME in HEVC encoder is proposed. This design uses Rot-W-

Diamond (RWD) algorithm to reduce computational load and

parallelism to improve processing speed. Therefore, this design

can reach 4K (4096×2160) video in real time at 60 frames per

second (fps) and achieve the frequency of 125MHz.

Index Terms—H.265/HEVC; H.264/MPEG-4; FPGA;

Motion Estimation (ME); Inter Motion Estimation (IME).

I. INTRODUCTION

The multimedia applications with diverse services have

developed rapidly in recent years. This leads to higher

requirements of video quality and resolution. However, in

H.264 standard, the video coding standardization project of

the ITU VCEG [1] is no longer relevant to high-resolution

video processing. HEVC [1], the next generation of H.264 is

currently expected to double the compression ratio to

decrease the required bandwidth, while still ensuring video

quality. Therefore, the transmission of high quality video

like 4k (4096×2160) is completely possible.

In video coding, one of the most important widely

research topic is to find methods to effectively reduce video

space and temporal residual. Motion Estimation (ME),

which often takes 66% to 77% of encoder complexity [2], is

much known for reducing temporal redundancies by

detecting the location of current Prediction Unit (PU) in

reference frame and Motion Vector (MV) for each PU.

Figure 1 describes the movement of a PU of current frame

placed in reference frame.

ME is time-consuming although it has a major role in an

encoder. The better motion estimation process, the better

compression efficiency. ME process includes two stages:

integer-pixel motion estimation (IME) and fractional pixel

motion estimation (FME). The initial prediction is carried

out by IME, which occupies 21.33% - 25.6% of total

computational load of ME [3], to find the best-match integer

point in reference frame, while FME is responsible for

refining the identified results from the initial stage.

Recently, there have been many proposed fast search

algorithms, such as Wide Diamond and Square pattern, Rot-

W-Diamond [4], and parallel clustering tree search [5].

However, only a few hardware architecture designs for IME

have been proposed. Xu Yuan [6] uses full search algorithm,

which requires a great deal of search points and high

complexity computation.

Consequently, the design can only process medium

resolution videos (Full-HD), which is incapable of making

full use of H.265’s video high compression. In [7], J. Byun

uses full search algorithm with SRAM to increase reading

memory speed. Thus, his hardware consumes large memory

and has small search range (64×64). Although the

architecture IME in [8] has been improved in using fast

search algorithm to significantly reduce the number of

search points, its hardware design fails in optimizing

working speed. Therefore, the video resolution is only Full-

HD. In [5], a hardware-oriented IME based on a new

algorithm named “parallel clustering tree search” (PCTS)

can support video applications of QFHD (3840×2160), but

its frame rate achieves moderately 30 fps, much lower than

60fps in 4k standard. For that reason, the finding of

appropriate algorithms to design high-speed hardware like

4k for IME is very important.

In the published algorithms, Rot-W-Diamond deems to be

outstanding for its reduction of nearly 72% of computation

load of ME while keeping bitrate and PSNR virtually

unchanged. Moreover, Rot-W-Diamond algorithm is

compatible with the implementation of hardware

architecture, which is able to conduct fast search and

process high-resolution videos like 4K. In this paper, we

propose a novel IME architecture for HEVC video coding

based on RDW algorithm. With the capability of parallel

processing of all points in search range by using full PU

sizes, the proposed architecture can process high-resolution

videos, up to 4K at 60 fps.

The paper is organized as follows: Section II gives an

overview of motion estimation, Inter motion estimation in

HEVC encoders and describes RWD algorithm. The

Reference Frame

Current Frame

PU in Current
Frame

 PU in Reference
Frame

 M
o

tio
n

 V
ecto

r

Search
Window

Figure 1: Motion estimation

Journal of Telecommunication, Electronic and Computer Engineering

84 e-ISSN: 2289-8131 Vol. 9 No. 1-3

hardware implementation is presented in Section III. Section

IV shows the Synthesis results and the comparison with

other designs. Finally, Conclusion will be given in Section

V.

II. OVERVIEW OF RWD ALGORITHM

The Rot-W-Diamond (RWD) has three main stages:

finding starting position, fast search and second search, as

shown in Figure 2.

Second Search Stage

Finding Starting Position

Stage

First Search Stage

Distance == 0

T

F

Best Motion Vector

& Best SAD

Figure 2: Brief overview of RWD searching algorithm

Step 1 – Starting Position Selection: Starting position is

chosen between the ones of motion vector prediction (PMV)

and zero motion vector: The position that has the smallest

SAD will be chosen to be the initial starting point of First

Search Stage.

Step 2 – First Search: In this stage, ME process uses

diamond search pattern with a start position from the Step1

to find 40 points in Rot-W-Diamond Pattern with search

range -64÷64, as shown in Figure 3. The best point with the

smallest SAD will be chosen. If the distance between the

best point and the starting point is 0, the search will be

terminated. If the distance equals to 1 or 2, the neighboring

points of this point will be checked to find out the best point

of the First Search Stage by comparing SAD among these

points. If the distance is larger than five, a raster search will

divide search range into girds of 20x20 pixels to find out the

best point.

Step 3 – Second Search: This is a refinement stage. This

stage has the same procedure as the first search except that

there is no raster search. It terminates when the best point

and starting point are coincident.

Owing to the search point reduction and early termination

conditions, the RWD algorithm with small calculation load

is compatible with a hardware architecture that quickly

processes and satisfies high-resolution videos.

From the approach, the block diagram of our IME unit

that consists of Integer Search Motion Estimation (ISME),

Current PU RAM (CUR_RAM), Candidate Motion Vector

RAM (CMV_RAM), Reference RAM (REF_RAM) and Sum

of Absolute Differences & Comparator (SAD &

Comparator) is depicted in Figure 4.

Figure 3: Rot-W-Diamond Pattern

Integer Motion Estimation

Integer Search Motion Estimation

Reference RAM

Current PU
RAM

Sum of Absolute
Differences

&
Comparator

Candidate Motion
Vector RAM

SAD_min
&

Best point’s
 Position

Best MV
&

Min SAD MV(1,2,3)

Position Points

Ref_Data

Cur_Data

Motion
 Vector

Reference
frame

Current
 Block

Buffer
MV

Buffer

REF

Buffer

PU

read_cur

 Figure 4: IME architecture

III. HARDWARE ARCHITECTURE

As depicted in Figure 4, IME receives input data

including the Candidate Motion Vectors, Reference Frame,

and Current PU, which then stores them respectively into

CMV_RAM, REF_RAM and CUR_RAM. At first,

CMV_RAM sends the positions of the reference vectors to

ISME to find the starting point for searching procedure.

A Novel Parallel Hardware Architecture for Inter Motion Estimation in HEVC

 e-ISSN: 2289-8131 Vol. 9 No. 1-3 85

Once this point is detected, ISME block instantly the

transmit search point’s position to REF_RAM to obtain

corresponding Ref_Data (reference data). Then, the

Ref_Data along with the Cur_Data (current PU) are sent to

SAD & Comparator for the calculation of the smallest SAD.

ISME will constantly update the best positions until the

motion vector with the smallest SAD is identified. Details of

each component will be described in this section.

A. Candidate Motion Vector RAM (CMV_RAM)

The CMV_RAM is created by Blocks memory that store

the value of Candidate Median Vectors as predicted in

Figure 5. All of MV vectors are dispatched concurrently to

ISME module to calculate the starting point for the entire

searching process.

Current MB

MV 2 MV 3

MV 1

Figure 5: Positions of candidate median vectors

B. Integer Search Motion Estimation (ISME)

The ISME designed upon the RWD algorithm is the main

control of the architecture is shown Figure 6. It comprises

the Initial Point, Primary Search, Raster Scan and Neighbor

Search.

ISME

Initial Point

Primary
Search

Neighbor
Search

Raster
Scan

(x0, y0)

(x1, y1)

(x35, y35)

(x0,y0)

(x1,y1)

(x39,y39)

(x0,y0)

(x1,y1)

(x0,y0)

(x15,y15)

(x0,y0)

(x35,y35)

Min SAD
&

Best Position

Motion Vector

Best SAD output
&

 Best Motion Vector

Enae_Scan

Enae_Nei

(x39, y39)

(x15, y15)

Figure 6: ISME architecture

In Figure 5, the Initial point module receives 3 vectors to

calculate the median position (x1, y1), according to the

Equation (1).

1 1 1 2 3(,) (, ,).Median x y middle MV MV MV (1)

This position is sent together with the position (x0, y0) of

the Current PU to REF_RAM module to push the data to

SAD module. The starting point of the Primary Search will

select the one of smaller SADs between (x0, y0) and (x1,

y1).

After determining the starting point, the Primary Search

sends 40 positions (the tuples of (x0, y0) to (x39, y39)) to

REF_RAM, as shown in Figure 6. Then, the data from

REF_RAM and CMB_RAM are transferred to SAD &

Comparator to select the point with the lowest SAD value.

i. If dis is 0 then the search is terminated.

ii. If the dis is larger than 5, the signal Enae_Scan will

be set to enable the Raster Scan.

iii. If the dis is smaller than 5, the signal Enae_Nei will

be set to enable the Neighbor Search.

The Neighbor Search determines 16 positions around the

starting point following the algorithm and sends these

positions (the tuples of (x0, y0) till (x15, y15)) to

REF_RAM. The next process is the same as the Primary

Search.

The Raster Scan defines the search window ± 64 pixels

around the starting point, fragments it to 36 MBs [9] and

sends these MBs’ positions to RF RAM. The next process is

like the Primary Search.

After the searching processes are completed, the ISME

will find the Motion Vector and the SAD value of MB’s best

position. In each searching stage, all positions are sent

simultaneously to REF_RAM, which help effectively and

quickly speed up the searching process. However, the

processing in REF_RAM is very complicated as it requires a

full and accurate output.

C. Reference RAM (REF_RAM)

The main bottleneck introduced above is able to read the

memory with many output ports at the same time. Therefore,

instead of using Block memories or Dual Port RAM, which

allow to read only one or two addresses at the same time, the

new architecture for REF_RAM created by distributed RAM

allows to read multiple addresses at the same time. It

consists of 40 modules Generate Address, 40 modules

Reorder, and a Register Arrays module that are shown as

follows.

Generate
Address_0

Reorder_0

Generate
Address_39

Generate
Address_38

Generate
Address_1

Pos_0
(x0,y0)

(x1,y1)

(x38,y38)

(x39,y39)

Buffer2Ref_RAM

Ref_Data0

Register arrays
8Kx128

Pos_1

Pos_38

Pos_39

Addr_0

Addr_1

Addr_38

Addr_39

Reorder_1

Reorder_38

Reorder_39

Ref_Data1

Ref_Data38

Ref_Data39

Pos_0

Pos_39

Pos_38

D

D

D

D

Pos_1

ISME2Ref_RAM_read

Addr_i

Generate
Address_i

Pos_i(x_i,y_i) Reorder_i
Ref_Data_iD

Pos_i

Data

Signal_control

i from 2 to 37

Figure 7: Reference RAM architecture

Journal of Telecommunication, Electronic and Computer Engineering

86 e-ISSN: 2289-8131 Vol. 9 No. 1-3

At the beginning of the process, the data of reference

buffers are stored in 8Kx128 Register arrays. The Generate

Address modules receive the positions coming from the

ISME to calculate the addresses respectively. After that, the

output data from the Register arrays are sent to Reorder

modules to rearrange and obtain the correct data. Figure 8

describes the detailed design of the Generate Address and

the Reorder module.

> >

-1

>> 4

0

0

X

> >

-10

0

Pic_w

Pic_w
>> 4

+

+

+

Pic_h

X

Y

Addr

Counter

Counter

Coder
Pos

x’[0]

x’[1]

x’[2]

x’[3]

X’

M
u

x
M

u
x

M
u

x
M

u
x

Figure 8: Generate address diagram

Outputs of the Generate Address module are calculated

by the following assignments:

Addr = x_clip >> 4 + y_clip × (Pic_w >> 4). (2)

Pos = x%16. (3)

where:

x_clip = Clip (0, Pic_w, x_offset),

y_clip = Clip (0, Pic_h, y_offset)

x_offset = x + offset_x, y_offset = y + offset_y.

offset_x, offset_y is increased after each cycle.

𝐶𝑙𝑖𝑝(𝑥, 𝑦, 𝑧) = {

x; z < 𝑥
y; z > 𝑦

 z; otherwise
 (4)

The data storage and address management of the Register

Arrays are shown in Figure 9.

16 pixels

Pix
0 1 2 15143

Reg 0

Reg 1

Reg i

1 15

0127

Pix
0

PU

2

8

Register Arrays

MSB LSB

Figure 9: Storage and management of memory array

The Register Arrays includes many registers, each of

which has 128 bits. The reading of 16 pixels per clock is

more effective than one pixel, so each register will store 16

pixels of reference frame. However, the position of

reference PU is at random in reference to the frame, so

output data must be arranged by Reorder module to collect

the correct data. This process is depicted in Figure 10.

Pos = i

reg_n

reg_n+1 Ref_Data
_i

reg _n 1 1
6

2 3 .. i 1
5

1 2 3 .. i

1 2 3 .. i
i+
1

1
6

1
5

1
6

1
5

(1: i) pixels

(i:16) pixels

Ref_PU

Reference Frame

1615 i1 2

Reg_n Reg_n+1

i+1

Figure 10: Reorder unit processing

There are 16 pixels in the register, so there are 16

position’s pixels in the register (Pos). For instance, there is a

16×16 reference PU whose position is not at the top of

register (Pos is not equal by zero), it needs two continuous

registers to combine and arrange to create exact data.

By creating distributed RAM, which is capable of reading

lots of input, we only take 256 cycles to read the 40 PUs of

64 × 64 size, which is 20 times faster than the conventional

Dual port RAM; therefore, its ability of reading data is

optimum and efficient.

D. Current RAM (CMB_RAM)

The Current RAM stores current PU, which adapts from

4x4 to 64x64. The way it stores data and manages address is

resembling the Reference RAM; however, it is created by the

Block memory. The configuration of this memory is shown

in Figure 11.

Block RAM

buffe2din [127:0] Cur_data [127:0]

addr [7:0]

buffe2we

enabCounter

read_done

clk

reset

read_cur

 Figure 11: Current RAM diagram

To calculate the minimum residual value, all reference

PUs are compared with only a current PU, so Current RAM

does not claim to read multi addresses at the same time.

Therefore, this architecture uses Block Memory that has one

input, one output and rapid access.

E. Sum of Absolute Difference and Comparison (SAD

and Comparator)

The SAD & Comparator calculates the sum of absolute

differences (SAD) of 40 PUs to find out the smallest SAD. In

order to parallel the process, the SAD & Comparator are

divided into 40 SAD_128 modules and the Comparator as as

shown in Figure 12.

Each SAD_128 includes 16 AD circuits processing 16

A Novel Parallel Hardware Architecture for Inter Motion Estimation in HEVC

 e-ISSN: 2289-8131 Vol. 9 No. 1-3 87

pixels (128 bit), as described in Figure 13 and Figure 14.

The absolute difference (AD) of two pixels are calculated

by Equation (5).

|𝑋 − 𝑌| = {
𝑋′+𝑌+1 ,𝑖𝑓 𝑀𝑆𝐵=0

𝑋+𝑌′+1 ,𝑖𝑓 𝑀𝑆𝐵=1
 (5)

In the Equation (5), MSB is the most significant bit, X’

and Y’ are the complements of X and Y, respectively [10].

The design uses parallel SAD computation blocks, in

which, each adder is optimally designed by using 8-bit Full

Adder Width Carry. Therefore, the calculation speed of the

design is significantly improved. Thanks to the optimal

design for each basic SAD to reduce hardware resource and

concurrently run all SAD blocks, the calculation speed of

the entire architecture has been increased significantly.

SAD_128
0th

i from 2:37

Ref_Data 0

SAD_128
1th

SAD_128
i th

SAD_128
38th

SAD_128
39th

C
o

m
p

a
r
a
to

r

Ref_Data 1 Ref_Data i Ref_Data 38 Ref_Data 39

SAD_0

SAD_1

SAD_i

SAD_38

SAD_39

Cur_data

SAD min

 Figure 12: SADC architecture

SAD 128

AD
2

AD
3

AD
4

AD
5

AD
6

AD
7

AD
8

AD
9

AD
10

AD
11

AD
12

AD
15

AD
16

AD
1

AD
13

AD
14

AD

Ref_Data

Cur_Data

Reg

SAD

Adder

Figure 13: SAD_128 diagram

IV. RESULTS AND COMPARISON

The proposed architecture is implemented in Verilog

HDL and synthesized into Xilinx Virtex-7 FPGA using

Xilinx ISE tool. The synthesized results are given in Table

1.

The synthesized result shows that the implementation uses

294k LUTs, 14k Registers and 2 Block RAMs for one

current PU. Because the SAD calculations of points lying in

searching area are carried out parallel as much as possible,

LUTs occupies a large number of hardware. However, the

number of Registers and Block Rams is very low compared

to 44k Registers and 83 Block RAMs of architecture [5].

AD

Carry

Sum

8 Bit full
Adder Width

Carry

X

1

y

8 Bit full
Adder Width

Carry

X

1

y

Sum

Carry

a

b
AD

Figure 14: AD diagram

Table 1

Synthesized Results

Logic Utilization Used Available

Number of Slide Registers 15001 2443200

Number of LUTs 288918 1221600

Number of Block RAM 2 1292

Besides, following the RWD algorithm with three main

stages, our architecture uses only 266 (5+261) cycles for

step one, 261×2 cycles for step 2 and 261×2 cycles for step

three to process one 64×64 PU. As a result, in total, it takes

a maximum of 1310 clocks for one PU processing at system

clock 100MHz. Moreover, the algorithm frequently stops at

the first search with early termination conditions, and it only

takes 788 (5+261+261×2) clocks for one 64×64 PU. Hence,

calculating on average, it rapidly responses to the

requirements of 4k@60 fps.

Based on the comparison shown in Table 2, by dint of

using parallel architecture and optimization algorithms, the

proposed design achieves the highest video resolution with

the highest frame rate and the smallest memory compared to

the others.

Table 2

Comparison between Proposed Design and Previous Works for HEVC

 [5] [6] [8] Proposed

Algorithm PCTS
Full

search
DW RWD

Resolution
3840×

2160

1920×

1080

1920×

1080

4096×

2160

Frame Rate 30 30 30 60

Supported PU size All size All size 64×64 All size

Search Range
128×

128
128× 128 128× 128 128× 128

Frequency (MHz) 200 110 200 125

Technology
Virtex6

40nm

XC6VLX

-550T

Virtex6

40nm

Virtex7

40nm

V. CONCLUSION

In this paper, a relevant and efficient IME architecture

given for HEVC is implemented on Virtex-7 at 100MHz

Journal of Telecommunication, Electronic and Computer Engineering

88 e-ISSN: 2289-8131 Vol. 9 No. 1-3

system clock. By combining with Rot-W-Diamond

algorithms, the proposed parallel architecture is competent

to support 4k videos at 60 fps in real time.

ACKNOWLEDGMENT

This work has been supported by project No B2013-01-

59CT.

REFERENCES

[1] Sullivan, Gary J., Jens-Rainer Ohm, Woo-Jin Han, and Thomas

Wiegand. "Overview of the high efficiency video coding (HEVC)
standard." IEEE Transactions on circuits and systems for video

technology 22, no. 12, pp. 1649-1668, 2012.

[2] Zhao, Z. and Liang, P., "A statistical analysis of h. 264/avc fme mode
reduction." IEEE transactions on circuits and systems for video

technology 21, no. 1, pp. 53-61, 2011.

[3] Vanne, J., Viitanen, M., Hamalainen, T.D. and Hallapuro, A.,

“Comparative Rate-Distortion-Complexity Analysis of HEVC and
AVC Video Codecs” IEEE Transactions on Circuits and Systems for

Video Technology 22, no. 12, pp. 1885-1898, 2012.

[4] Nguyen, P., Tran, H., Nguyen, H., Nguyen, X.N., Vo, C., Nguyen, B.,
Ngo, V.D. and Nguyen, V.T. “Asymmetric diamond search pattern

for motion estimation in HEVC,” In Communications and Electronics

(ICCE), 2014 IEEE Fifth International Conference on, pp. 434-439,
2014.

[5] Ye, X., Ding, D. and Yu, L., "A hardware-oriented IME algorithm

and its implementation for HEVC," In Visual Communications and
Image Processing Conference, 2014 IEEE, pp. 205-208, 2014.

[6] Yuan, X., Jinsong, L., Liwei, G., Zhi, Z., and Teng, R. K. “A high

performance VLSI architecture for integer motion estimation in
HEVC”. In ASIC (ASICON), 2013 IEEE 10th International

Conference on, pp. 1-4, 2013.

[7] Byun, J., Jung, Y., and Kim, J. “Design of integer motion estimator of
HEVC for asymmetric motion-partitioning mode and 4K-UHD”.

Electronics Letters, vol. 49, no. 18, pp. 1142-1143, 2013.

[8] Vidyalekshmi, V. G., Yagain, D., and Rao, G..”Motion estimation
block for HEVC encoder on FPGA”. In Recent Advances and

Innovations in Engineering (ICRAIE), pp. 1-5, 2014.

