

 e-ISSN: 2289-8131 Vol. 9 No. 1-3 53

A Multi-Level Scheduling for Resource

Provisioning Mechanism in Cloud Systems

Mohd Hairy Mohamaddiah, Azizol Abdullah, Masnida Hussin, Shamala Subramaniam
Faculty of Computer Science and Information Technology, Universiti Putra Malaysia.

azizol@upm.edu.my

Abstract—Cloud computing has emerged as one of the

paradigm in supplying compute resources to the users. It is

capable to support heterogeneous applications demands and

requirements for its job processing. Hence, agility of demands

for job processing from the clients often affects the resource

states, resulting to over or under provision resources state.

This will impact the cloud provider’s performance in executing

the required jobs within the shortest amount of time. In this

paper, we address the over and under provision of resources to

execute the heterogeneous jobs within shortest time possible.

We proposed a multi-level scheduling for provisioning

mechanism by incorporating job ranking mechanism and best

match resource allocation. Our simulation results show that

our mechanism achieves better execution time compared to

other scheduling mechanisms

Index Terms—Provisioning Mechanism; Scheduling;

Allocation; Multi-Level Scheduling.

I. INTRODUCTION

Cloud offerings such as compute elements, platform or

software as a service had diverted the norms of application

processing environment. The cloud deployment services will

provision servers, storage and its associated components to

fulfill clients’ demand. However, heterogeneity of

applications complicates the resource provisioning process

in fulfilling their demand. For instance, complex scientific

applications which handle large scale data require a huge

sum of compute resources. In addition, complex scientific

jobs are often represented by a workflow consisting of a

series of interdependent services [1]. However, difficulties

may be faced by the execution process due to remaining

jobs being processed at the providers. Moreover, unavailable

resources during resource request will influence the

execution time for the jobs [2-3]. Therefore, these situations

require dynamic provisioning mechanisms to cater

heterogeneity of jobs to be processed in the cloud.

Hence, in detail, our proposed mechanism introduced a

multi-level scheduling scheme which combines scheduling

at job and resource levels. Our mechanism is realized using

two different procedures. The first procedure is at the job

level, by determining the highest rank of jobs. The second

procedure is at the resource level, where we adopted work

by Li et al. [3], in finding the best fit resources based on

feedback information generated by different resources in the

cloud. Our work is evaluated by using discrete event

simulations by varying the number of tasks and comparing it

with other scheduling mechanisms. Our results show that the

proposed approach minimizes job execution time compared

to other scheduling mechanisms.

The remainder of this paper is organized as follows. A

review of related works is presented in Section 2. In Section

3, we described the problem formulation and our system

model used in the paper. Our proposed mechanism is

presented in Section 4. Section 5 details our simulation

settings and presented the results obtained. Finally,

conclusions are made in Section 6.

II. RESOURCE PROVISIONING

Resource provisioning is a broad area. According to

Manvi & Shyam [4], resource provisioning can be defined

as the allocation of a service provider's resources to a client.

It involves releasing the requested compute resources in the

midst of other resources that are simultaneously running.

Hence, due to uncertainty of resources [2,5], heterogeneities

and criticalities of jobs, might result to resources become

fierce if the available compute resources are not enough to

process the jobs. In resource provisioning, several

mechanisms for heterogeneous jobs have been proposed in

multi-environment cloud computing [2,5-8] to provide a

better job execution time in uncertainty status of resources

(i.e. over or underutilized resources). Work by Babu &

Krishna [6] resolved a problem of over and under loaded

resources for processing tasks by proposing an algorithm

called honey bee behavior inspired load balancing. The

proposed mechanism improved the average execution time

and showed reduction in waiting time for tasks on queue.

Another work by Ryan & Lee [7] also improved job

execution time significantly via their proposed approach;

Multi-Tier Resource Allocation scheme in the data intensive

applications environment. In mobile cloud, for task

allocation, Hung & Huh [8], used a genetic mechanism to

improve task scheduling and allocation, achieving better

performance in task processing time. Other mechanisms

being attempted on job level, such as job preemption

mechanism proposed by Li et al. [3] and the two multi-

criteria meta-heuristic algorithms proposed by Moschakis &

Karatza [9] had also improved performance and job

execution time. While these works treated resource

allocations mechanisms between job and resources

separately, our mechanism deals with both job and resources

simultaneously.

III. PROBLEM FORMULATION AND SYSTEM MODEL

In this section we will elaborate on the problem

formulation by defining our application model which

comprises of application and computation resources

representations. We also define our system model to

introduce our proposed mechanism.

Journal of Telecommunication, Electronic and Computer Engineering

54 e-ISSN: 2289-8131 Vol. 9 No. 1-3

A. Problem Formulation

In this section, we will define the terms used in this paper.

Then, we will formulate our problems based on several

preconditions.

Definition 1: Our applications denoted as Ai consists of

numbers of jobs Ji and each job consists of number of tasks

ti;

𝑡𝑖 ∈ 𝑗𝑖 ∈ 𝐴𝑖 (1)

Our target applications are complex applications, which

can be decomposed into jobs and tasks as lowest levels, such

that, each task is interdependent of each other [10].

Therefore, our strategy in the proposed mechanism is to

execute a given a set of jobs to set of machines with their

uncertainty availability. We also imposed job allocation

mechanism without any job preemption in a minimum

execution time. We modeled our application based on

Definition 2;

Definition 2: The pool of tasks decomposed from the jobs

will be represented as directed acyclic graph (DAG),

G=(V,E,w,c) model with its precedence relations, where

V={V1,V2,…,Vn}. V is tally with their tasks and the directed

edge eij; (i,j) ∈ E presents the communication between

subtasks Vi and Vj, w(vi) associated with task vi ∈ V

represents its computation time and c(eij) represents its

communication time between task Vi and task Vj with a

corresponding transferred data, d(eij), if and only if Vi is

completed before Vj. Every job has its different tasks with

different task weights. A task with no predecessor is called

an entry task, Ventry, whereas an exit task, Vexit, is one that

does not have any successor [11]. In our implementation

that will be discussed in the next section, categorize the jobs

into two different modes; Advanced Reservation (AR) mode

and Best Effort (BE) mode. The AR mode is where

resources for the jobs are reserved in advanced. While for

the BE mode, resources will be provisioned the soonest

based on resources availability.

Definition 3: Let R={R1,R2,R3,…,Rn} is set of pool

resources from multi-cloud providers. These resources

which are virtual machines in the private cloud will be

represented as a resource pool graph. The topology of the

resources is denoted as R=(C,D). C is set of vertices which

represents the resource nodes where dij ∈ D is directed link

between resources node [8]. Each resource has its own

processing rate and bandwidth.

The generated DAG model will display the dependency

between each task in a job. In our proposed mechanism

there is no job-preemption when the job is scheduled to be

executed even though we have an AR mode type of jobs.

Our proposed job prioritized mechanism will assist in

making decision for the best jobs to be processed without

decrementing the criticality of job under the AR mode.

B. System Model

Our focus for this work is on Infrastructure-as-a-service

(IaaS) clouds. We can say that our system model setup in

Figure 1 is similar to the interconnecting grid platform setup

[11,12].

We introduced two service provisioning managers;

Distributed Virtual Environment (DVi) manager and

Resource Infrastructure Manager (RiM). The DVi manager

is responsible for the allocation of designated resources

requested, while RiM manages local and outsource

Figure 1: System model

resources. The information sent and received between DVi

and RiM is crucial in order to avoid scenarios such as over-

provisioning or under-provisioning of resources.

Each cloud managed by RiM and DVi are interconnected

via a high speed link. The bandwidth and

intercommunication are assumed to vary. We also assumed

that message between both managers can be transmitted,

meaning that there is a communication route between them

via the high speed link. Each cloud contains set of machines,

m with identical resources (virtual machines), r and each

resource has their own associated processing capacity. We

adopt the processing capacity model Pr by Hussin & Latip

[14]. We will use the calculated values from the adopted

model in our allocation mechanism.

IV. RESOURCE ALLOCATION FOR PROVISIONING

One of the major challenges for job allocation is on how

to schedule complex and computing intensive applications

faster and more efficiently. Furthermore, with the ever

growing demands for these applications, it is crucial to

provide fit resources from wide variety of processing power

provided by the cloud providers. In this section, we begin

with the description on how we model the application, and

followed by the proposed mechanism for job allocation.

A. Application Model

As mention in 3.1, complex and computation intensive

applications come from formation of different jobs. Each job

has pool of tasks. First, our application model will be based

on job processing requirement, job ranking and scheduling.

The jobs model is part of an allocation process which is

solely managed by RiM and DVi. The processing

requirement of a task in a job, as defined in Equation (2),

will depict the task sizes.

On = ∑
𝑆𝑖

𝑝

𝑛

𝑖=1

 (2)

where Si: Size Task of Job Vi

 p: Processing capacity of a referred processor node

Our assumption for this model is that the processing

requirement must be less then available resource capacity.

B. Proposed Mechanism

Basically, our mechanism is based on job prioritization

and cloud resource allocation scheme. The job prioritizing

A Multi-Level Scheduling for Resource Provisioning Mechanism in Cloud Systems

 e-ISSN: 2289-8131 Vol. 9 No. 1-3 55

stage is the stage where we identify and rank the jobs based

on our multi-condition priority mechanism. We had adopted

work by Li et al. [3] for the cloud resource allocation

scheme, where the cloud selection is based on cloud

resource information status. We then execute the job by

applying both mechanisms.

i. Job Prioritizing Stage

During the request stage, the cloud subscribers will

submit their requests for computation resources as a service

request. Then, these jobs will be transformed into job

requests. This approach will then be formulated into a DAG

model. This is where our proposed DVi and RiM managers

function. This subsection will explain our two-level

prioritization stage for the proposed mechanism.

Stage 1: Identifying the priority list

This stage comprises of the generation of priority task list

from the jobs and identification of the group of critical path

tasks from the defined priority lists. To generate the job

priority task, we first utilized the same technique described

by Islam et al. [15] (which will provide a feasible schedule

for the jobs). This technique will come out with the job

deadlines. The generated deadlines will be treated as job

priority criteria. To generate job priority, we will first

perform experiments without the cloud resources by using

easy backfilling algorithm. Then, the job priority, Dd, is

calculated based on the Equation (3):

𝐷𝑑

= {
sti + (𝑠𝑓 . tai) if [sti + (𝑠𝑓. tai)] < 𝑒𝑥𝑒

exe otherwise

(3)

where sti is the request of job submission time, exe is its

completion time, tai is the job’s turnaround time (i.e., the

difference between the tasks completion and submission

times), and sf is a stringency factor that indicates the

urgency of the applications. If sf = 1, then the job deadline is

completion under the easy backfilling scenario. We evaluate

the strategies based on different stringency factors (i.e., from

0–1); the factors indicate different scenarios, such as tight,

normal, and relaxed deadline scenarios [12]. This

assumption will generate a realistic job priority for each job

request setup. The derived values will be the first condition.

The next step is to define the job criticality, which will be

derived from the critical paths of tasks from the DAG model

generated. As mentioned, the jobs are heterogeneous. This

value is calculated based on a set of vertices in the DAG, of

which the values of EST (5) and LST (6) are equal [3]. The

earliest start time EST(vi) of node Vi can be computed

recursively by traversing the DAG downward starting from

the entry node Ventry [8]. We will evaluate the values

derived using the earliest start time and latest finish time of

a task as defined in Equation (4) and (5):

EST(𝑣𝑖) = max

 v𝑖 ∈pred(v𝑗)
{EST(v𝑗) + AT(v𝑗) } (4)

LST(𝑣𝑖) = min
vj ∈succ(vi)

{LST (v𝑗)} − AT(vi)} (5)

The second condition is the critical path tasks of the jobs

that will be computed from Equations (5) and (6). Then,

from the identified tasks, we will calculate the

communication/computation ratio, CCr, by using the

equation below:

∑ 𝑊𝑣𝑖

∑ 𝐶𝑒𝑖𝑗

 (6)

where ∑ 𝑊𝑣𝑖
is the total computation cost of the tasks of job

i, and ∑ 𝐶𝑒𝑖𝑗
 is the total startup communication cost of edge

i and j. The calculation will determine the job granularity

and classification, that is, whether the job is computationally

intensive or not. A higher value indicates that the job is

computationally intensive and will be assigned the highest

priority; this will be our next condition for job prioritization.

On the basis of the previous equations, the relationship

between critical paths of tasks i, CPti in a job with the ratio

can be defined as follows:

𝐶𝑃𝑡𝑖 = max

0≤𝑖≤1
𝐶𝐶𝑟 (7)

Therefore, the maximum value for each job indicates that

the job is critical and will have the highest priority for

resource allocation.

Stage 2: Determining the job rank

During this stage, each job is assigned a preliminary job

rank, Jru. The rank results will assist in determining the

highest-priority job to be scheduled. Here, the ranks are

calculated by adopting a job ranking phase mechanism

applied by Yousaf & Welzl [16]. The work uses HEFT

algorithm to define the job rank. In HEFT, an upward rank

is generated and recursively calculated starting from the exit

tasks of a job. The job rank, Jru calculation is as follows:

𝐽𝑟𝑢 = {
𝑤𝑖̅̅ ̅ + max

𝑣𝑖 ∈𝑠𝑢𝑐𝑐 (𝑣𝑗)
{𝑤𝑖̅̅ ̅ + 𝑟𝑎𝑛𝑘𝑢(𝑣𝑗)}

𝑤𝑖̅̅ ̅ 𝑣𝑖 = 𝑒𝑛𝑑𝑡𝑎𝑠𝑘

 (8)

where 𝑤𝑖̅̅ ̅ is the average computation cost for all tasks in

the job. Note that succ (vj) is a set of immediate successors

of vi. The termination point of this rank is where 𝑣𝑖 ≠𝑒𝑛𝑑𝑡𝑎𝑠𝑘 ,

and its value is equal to 𝑤𝑖̅̅ ̅.

Our proposed mechanism will use the calculated values

from (3–8) to form a job ranking. Jobs identified with the

highest ranks in the list based on the four conditions stated

above will be given utmost priority to be processed in the

cloud, whereas jobs with the lowest rank will be prioritized

ii. Cloud Resources Allocation Scheme

We had adopted online adaptive scheduling introduced by

Li et al. [3] for scheduling tasks to the available resources

by selecting the best fit resources for the pool of tasks. The

adopted mechanism is using the latest resource information

state updated by the resource manager. In the resource

information, the estimated job finish time, Tjft for a job is

stored in its resource information and defined as below:

𝑇𝑗𝑓𝑡 = 𝐸𝑅𝐴𝑇𝑖 + 𝐸𝑇𝑀𝑖𝑚 + 𝑆𝑖/𝑏 (9)

where ERATm is estimated resources available time of cloud

m and ETMim is the execution time matrix of job i running

on cloud m, and Si/b is the data transfer time assuming the

size of the job, i is Si and b is the network bandwidth.

However, the estimated job finish time may not be

accurate. Therefore, the mechanism we adopted from Li et

al. [3] will be adjusted to hinder any delay for resource

allocation and job processing. This mechanism will then re-

examine the static resource allocation with the actual

Journal of Telecommunication, Electronic and Computer Engineering

56 e-ISSN: 2289-8131 Vol. 9 No. 1-3

execution time of a finished job and a predefined feedback

factor for each cloud resource, m. Therefore, the actual

execution time of job i in cloud m is:

∆𝑇𝑗𝑓𝑡 = 𝑇𝑗𝑓𝑡 − 𝐸𝑅𝐴𝑇𝑖 (10)

With the feedback factor, fdm:

𝑓𝑑𝑖𝑚 = 𝛼 ×
∆𝑇𝑗𝑓𝑡 − 𝑆𝑖/𝑏 − 𝐸𝑇𝑀𝑖𝑚

𝑆𝑖/𝑏 + 𝐸𝑇𝑀𝑖𝑚
 (11)

where α is the constant value from 0 to 1. For every job

completed, RiM will update the feedback factor value, and

this feedback factor is copied to other cloud providers.

Therefore, when the next job arrives for processing, the

feedback estimated earliest finish time is calculated as:

𝑇𝑓𝑑𝑖𝑚 = 𝐸𝑅𝐴𝑇𝑖𝑚

 + (1 + 𝑓𝑑𝑖𝑚) × (𝑆𝑖/𝑏 + 𝐸𝑇𝑀𝑖𝑚) (12)

From the calculated value, the resources to process the

jobs will be discovered based on the best fit cloud resources

available time.

V. RESULTS ANALYSIS AND DISCUSSION

A. Simulation Setup

We developed a discrete event simulations based on Java

Programming. Our system setup in the simulation is based

on system model in Figure 1. In each simulation run, we

simulate a set of 64 different jobs. Among these sets of Jobs,

we differentiate the jobs with two types of job mode;

Advanced Reservation (AR) mode and Best Effort (BE)

mode as mentioned in section 2; with 52 jobs running in BE

Mode and 12 jobs in AR mode. Each job composed of up to

16 tasks. There are 4 clouds in the simulation. All 64 jobs

will be submitted to random clouds at a random arrival time.

In the simulation, we set the parameters randomly according

to the maximum and minimum values shown in Table 1. We

executed 10 simulation runs with different sets of jobs.

Table 1

Range of Set Parameters

Parameters Minimum Maximum

ETMij 25 100

Number of VMs in a Cloud 20 100
Number of CPU in a VM 1 8

Network bandwidth in a VM 2 100

Memory in a VM 32 2048
Disk space in a VM 5,000 100,000

Speed of Copy in a disk 100 1000

Number of CPU in a lease 50 100
Network bandwidth in a lease 10 800

Memory in a lease 100 10000

Disk space in a lease 500,000 20,000,000

The performance metrics chosen for our simulations is the

average job execution time. It is computed by subtracting

the job finish time from the job submission time [3]. We

then implemented our proposed mechanism in two different

scenarios: tight scenario and loose scenario. For the first

scenario, we set the inter-arrival time of the AR tasks

randomly; they should start not later than 30 seconds after a

task arrives. For the second scenario inter-arrival times of

the tasks are set close to each other. We implemented the

generated DAG task graph using our proposed mechanism.

In the implementation, the constant α is being used to

compare between different mechanisms affecting the

average job execution in a unit of time.

B. Results

Experimental results are presented in two different

scenarios explained in the previous section. As a baseline

for comparison, we compared our mechanism with two

dynamic scheduling mechanisms, dynamic min-min

scheduling (DMMS) and dynamic list scheduling (DCLS)

[17]. We name our mechanism as Multi-Level Scheduling

(MLS). Figure 2 shows the average execution time in the

loose scenario. As shown in the figure, our mechanism has a

better execution time compared to the other two dynamic

scheduling mechanisms. The average execution time in

MLS is, on average, about 46% faster. This performance can

be explained by the two levels of scheduling mechanism

applied that are able to reduce the waiting time, hence

improve the execution time. Our mechanism is able to rank

the jobs efficiently even though there are two different

modes of jobs. It shows that no preemption needed, although

the BE job mode is higher ranked compared to AR mode.

Furthermore, the dynamic updating resource information in

the combined mechanism helps to discover the best

available resources. We believed that in loose situation, the

underutilized resources are being managed efficiently,

therefore improving all incoming jobs processing.

Figure 2: Average execution time with different allocation
mechanisms in Loose Scenario

Meanwhile, Figure 3 shows the average execution time in

the tight scenario. In this scenario, our mechanism work

comparatively similar to other mechanisms. However, the

execution time by using MLS slightly outperforms other

mechanisms. This may due to, in tight situations, the arrival

gaps are tight between jobs, and we believed that our job

ranks mechanism needs a longer execution time to rank the

jobs thus execute the jobs to the matched resources. The

same also happens for the resources best match mechanism.

The dynamic updating resource information is based on

estimated finish time of previous job. Thus, in this scenario,

the actual finish time is later than estimated, resulting to

delay in the jobs execution time. However, our proposed

mechanism has successfully tackled this issue. It showed a

better execution time compared to other mechanisms

because it ranks the most important jobs to be processed

first.

A Multi-Level Scheduling for Resource Provisioning Mechanism in Cloud Systems

 e-ISSN: 2289-8131 Vol. 9 No. 1-3 57

Figure 3: Average execution time with different allocation
mechanism in Tight Scenario

VI. CONCLUSION

Cloud users’ demands are becoming more agile and

heterogeneous. This will affect the resources capability in

the cloud. It will result to uncertainty of resources, either

over or under provision. In this paper, we present a resource

provisioning mechanism for heterogeneous applications in

cloud systems. We proposed one scheduling algorithms,

Multi-Level Scheduling (MLS) algorithm purposely for

resource provisioning mechanism. Our mechanism

combined scheduling mechanisms from two levels, jobs and

resource levels. The jobs level forms job ranks and

determines jobs ranking in a cloud system. Resource level

determines the best matched resources based on the dynamic

updated resource information. Simulations results show that

the MLS outperforms DCLS and DMMS in both scenarios,

tight and loose scenario. The proposed provisioning

mechanism demonstrates a robust job execution regardless

of different scenarios.

REFERENCES

[1] Wei,Y.., Blake, M. B. and Saleh, I. “Adaptive Resource Management

for Service Workflows in Cloud Environments,” 2013 IEEE Int.
Symp. Parallel Distrib. Process. Work. Phd Forum, pp. 2147–2156,

2013.

[2] Tchernykh, A., Schwiegelsohn, U., Alexandrov, V. and Talbi, E.

“Towards Understanding Uncertainty in Cloud Computing Resource
Provisioning,” Procedia Comput. Sci., vol. 51, pp. 1772–1781, 2015.

[3] Li,J., Qiu,M., Ming,Z., Quan,G., Qin,X., and Gu,Z., “Online

optimization for scheduling preemptable tasks on IaaS cloud
systems,” J. Parallel Distrib. Comput., vol. 72, no. 5, pp. 666–677,

2012.

[4] Manvi, S. S. and Krishna Shyam, G. “Resource management for
Infrastructure as a Service (IaaS) in cloud computing: A survey,” J.

Netw. Comput. Appl., vol. 41, no. 1, pp. 424–440, 2014.

[5] Hussin,M. Abdullah,A. and Subramaniam, S. “Adaptive Resource
Allocation for Reliable Performance in Heterogeneous Distributed

Systems,” Algorithms Archit. Parallel Process., pp. 51–58, 2013.

[6] Dhinesh Babu, L. D. and Venkata Krishna, P. “Honey bee behavior
inspired load balancing of tasks in cloud computing environments,”

Appl. Soft Computer Journal, vol. 13, no. 5, pp. 2292–2303, 2013.

[7] Ryan, T. and Choon Lee, Y. “Multi-Tier Resource Allocation for
Data-Intensive Computing,” (2015) Big Data Res., vol. 1, pp. 1–7,

2015.

[8] Hung, P. P. and Huh, E. “An Adaptive Procedure for Task
Scheduling Optimization in Mobile Cloud Computing,” Math. Probl.

Eng. (2015).

[9] Moschakis, I. a. and Karatza, H. D. “A meta-heuristic optimization
approach to the scheduling of bag-of-tasks applications on

heterogeneous clouds with multi-level arrivals and critical jobs,”

Simul. Model. Pract. Theory, vol. 57, pp. 1–25, 2015.
[10] Babu, L. D. D., Gunasekaran, A. and Krishna, P. V. “A decision-

based pre-emptive fair scheduling strategy to process cloud
computing work-flows for sustainable enterprise management,” Int. J.

Bus. Inf. Syst., vol. 16, no. 4, pp. 409, 2014.

[11] Hung, P. P. , Van Nguyen, M., Aazam, M. , and Huh, E. “Task
Scheduling for Optimizing Recovery Time in Cloud Computing,” in

Computing, Management and Telecommunications (ComManTel),

2014 International Conference on, pp. 188-193, 2014.
[12] Javadi, B. , Abawajy, J. , and Buyya, R. “Failure-aware resource

provisioning for hybrid Cloud infrastructure,” J. Parallel Distrib.

Comput., vol. 72, no. 10, pp. 1318–1331, 2012.
[13] Javadi, B. , Thulasiraman, P. and Buyya, R. “Cloud Resource

Provisioning to Extend the Capacity of Local Resources in the

Presence of Failures,” 2012 IEEE 14th Int. Conf. High Perform.
Comput. Commun. 2012 IEEE 9th Int. Conf. Embed. Softw. Syst., pp.

311–319, 2012.

[14] Hussin, M. and Latip, R. “Adaptive Resource Control Mechanism
Through Reputation-Based Scheduling in Heterogeneous Distributed

Systems,” J. Comput. Sci., vol. 9, no. 12, pp. 1661–1668, 2013.

[15] Islam, M. , Balaji, P., Sadayappan, P. , and Panda, D. “QoPS: A QoS
based scheme for parallel job scheduling,” Job Sched. Strateg.

Parallel Process., pp. 252–268, 2003.

[16] Yousaf, M. M. and Welzl, M. “Network-aware HEFT scheduling for
grid.,” ScientificWorldJournal., pp. 317284, 2014.

[17] Li, J. , Qiu, M. , and Niu, J. “Adaptive resource allocation for

preemptable jobs in cloud systems,” Intell. Syst. Des., pp. 31–36,
2010.

