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Abstract—Cloud computing has emerged as one of the 

paradigm in supplying compute resources to the users. It is 

capable to support heterogeneous applications demands and 

requirements for its job processing. Hence, agility of demands 

for job processing from the clients often affects the resource 

states, resulting to over or under provision resources state. 

This will impact the cloud provider’s performance in executing 

the required jobs within the shortest amount of time. In this 

paper, we address the over and under provision of resources to 

execute the heterogeneous jobs within shortest time possible. 

We proposed a multi-level scheduling for provisioning 

mechanism by incorporating job ranking mechanism and best 

match resource allocation. Our simulation results show that 

our mechanism achieves better execution time compared to 

other scheduling mechanisms 

 

Index Terms—Provisioning Mechanism; Scheduling; 

Allocation; Multi-Level Scheduling. 

 

I. INTRODUCTION 

 

Cloud offerings such as compute elements, platform or 

software as a service had diverted the norms of application 

processing environment. The cloud deployment services will 

provision servers, storage and its associated components to 

fulfill clients’ demand. However, heterogeneity of 

applications complicates the resource provisioning process 

in fulfilling their demand. For instance, complex scientific 

applications which handle large scale data require a huge 

sum of compute resources. In addition, complex scientific 

jobs are often represented by a workflow consisting of a 

series of interdependent services [1]. However, difficulties 

may be faced by the execution process due to remaining 

jobs being processed at the providers. Moreover, unavailable 

resources during resource request will influence the 

execution time for the jobs [2-3]. Therefore, these situations 

require dynamic provisioning mechanisms to cater 

heterogeneity of jobs to be processed in the cloud. 

Hence, in detail, our proposed mechanism introduced a 

multi-level scheduling scheme which combines scheduling 

at job and resource levels. Our mechanism is realized using 

two different procedures. The first procedure is at the job 

level, by determining the highest rank of jobs. The second 

procedure is at the resource level, where we adopted work 

by Li et al. [3], in finding the best fit resources based on 

feedback information generated by different resources in the 

cloud. Our work is evaluated by using discrete event 

simulations by varying the number of tasks and comparing it 

with other scheduling mechanisms. Our results show that the 

proposed approach minimizes job execution time compared 

to other scheduling mechanisms. 

The remainder of this paper is organized as follows. A 

review of related works is presented in Section 2. In Section 

3, we described the problem formulation and our system 

model used in the paper. Our proposed mechanism is 

presented in Section 4. Section 5 details our simulation 

settings and presented the results obtained. Finally, 

conclusions are made in Section 6. 

 

II. RESOURCE PROVISIONING 

 

Resource provisioning is a broad area. According to 

Manvi & Shyam [4], resource provisioning can be defined 

as the allocation of a service provider's resources to a client. 

It involves releasing the requested compute resources in the 

midst of other resources that are simultaneously running. 

Hence, due to uncertainty of resources [2,5], heterogeneities 

and criticalities of jobs, might result to resources become 

fierce if the available compute resources are not enough to 

process the jobs. In resource provisioning, several 

mechanisms for heterogeneous jobs have been proposed in 

multi-environment cloud computing [2,5-8] to provide a 

better job execution time in uncertainty status of resources 

(i.e. over or underutilized resources). Work by Babu & 

Krishna [6] resolved a problem of over and under loaded 

resources for processing tasks by proposing an algorithm 

called honey bee behavior inspired load balancing. The 

proposed mechanism improved the average execution time 

and showed reduction in waiting time for tasks on queue. 

Another work by Ryan & Lee [7] also improved job 

execution time significantly via their proposed approach; 

Multi-Tier Resource Allocation scheme in the data intensive 

applications environment. In mobile cloud, for task 

allocation, Hung & Huh [8], used a genetic mechanism to 

improve task scheduling and allocation, achieving better 

performance in task processing time. Other mechanisms 

being attempted on job level, such as job preemption 

mechanism proposed by Li et al. [3] and the two multi-

criteria meta-heuristic algorithms proposed by Moschakis & 

Karatza [9] had also improved performance and job 

execution time. While these works treated resource 

allocations mechanisms between job and resources 

separately, our mechanism deals with both job and resources 

simultaneously. 

 

III. PROBLEM FORMULATION AND SYSTEM MODEL 

 

In this section we will elaborate on the problem 

formulation by defining our application model which 

comprises of application and computation resources 

representations. We also define our system model to 

introduce our proposed mechanism. 
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A. Problem Formulation 

In this section, we will define the terms used in this paper. 

Then, we will formulate our problems based on several 

preconditions. 

Definition 1: Our applications denoted as Ai consists of 

numbers of jobs Ji and each job consists of number of tasks    

ti; 

 

𝑡𝑖 ∈ 𝑗𝑖  ∈ 𝐴𝑖 (1) 

 

Our target applications are complex applications, which 

can be decomposed into jobs and tasks as lowest levels, such 

that, each task is interdependent of each other [10]. 

Therefore, our strategy in the proposed mechanism is to 

execute a given a set of jobs to set of machines with their 

uncertainty availability. We also imposed job allocation 

mechanism without any job preemption in a minimum 

execution time. We modeled our application based on 

Definition 2; 

Definition 2: The pool of tasks decomposed from the jobs 

will be represented as directed acyclic graph (DAG), 

G=(V,E,w,c) model with its precedence relations, where 

V={V1,V2,…,Vn}. V is tally with their tasks and the directed 

edge eij; (i,j)  ∈ E presents the communication between 

subtasks Vi and Vj, w(vi) associated with task vi ∈ V 

represents its computation time and c(eij) represents its 

communication time between task Vi and task Vj with a 

corresponding transferred data, d(eij), if and only if  Vi is 

completed before Vj. Every job has its different tasks with 

different task weights. A task with no predecessor is called 

an entry task, Ventry, whereas an exit task, Vexit, is one that 

does not have any successor [11]. In our implementation 

that will be discussed in the next section, categorize the jobs 

into two different modes; Advanced Reservation (AR) mode 

and Best Effort (BE) mode. The AR mode is where 

resources for the jobs are reserved in advanced. While for 

the BE mode, resources will be provisioned the soonest 

based on resources availability. 

Definition 3: Let R={R1,R2,R3,…,Rn} is set of pool 

resources from multi-cloud providers. These resources 

which are virtual machines in the private cloud will be 

represented as a resource pool graph. The topology of the 

resources is denoted as R=(C,D). C is set of vertices which 

represents the resource nodes where dij ∈ D is directed link 

between resources node [8]. Each resource has its own 

processing rate and bandwidth.  

The generated DAG model will display the dependency 

between each task in a job. In our proposed mechanism 

there is no job-preemption when the job is scheduled to be 

executed even though we have an AR mode type of jobs. 

Our proposed job prioritized mechanism will assist in 

making decision for the best jobs to be processed without 

decrementing the criticality of job under the AR mode. 

 

B. System Model 

Our focus for this work is on Infrastructure-as-a-service 

(IaaS) clouds. We can say that our system model setup in 

Figure 1 is similar to the interconnecting grid platform setup 

[11,12]. 

We introduced two service provisioning managers; 

Distributed Virtual Environment (DVi) manager and 

Resource Infrastructure Manager (RiM). The DVi manager 

is responsible for the allocation of designated resources 

requested, while RiM manages local and outsource 

 
 

Figure 1: System model 

 

resources. The information sent and received between DVi 

and RiM is crucial in order to avoid scenarios such as over-

provisioning or under-provisioning of resources. 

Each cloud managed by RiM and DVi are interconnected 

via a high speed link. The bandwidth and 

intercommunication are assumed to vary. We also assumed 

that message between both managers can be transmitted, 

meaning that there is a communication route between them 

via the high speed link. Each cloud contains set of machines, 

m with identical resources (virtual machines), r and each 

resource has their own associated processing capacity. We 

adopt the processing capacity model Pr by Hussin & Latip 

[14]. We will use the calculated values from the adopted 

model in our allocation mechanism. 

 

IV. RESOURCE ALLOCATION FOR PROVISIONING 

 

One of the major challenges for job allocation is on how 

to schedule complex and computing intensive applications 

faster and more efficiently. Furthermore, with the ever 

growing demands for these applications, it is crucial to 

provide fit resources from wide variety of processing power 

provided by the cloud providers. In this section, we begin 

with the description on how we model the application, and 

followed by the proposed mechanism for job allocation. 

 

A. Application Model 

As mention in 3.1, complex and computation intensive 

applications come from formation of different jobs. Each job 

has pool of tasks. First, our application model will be based 

on job processing requirement, job ranking and scheduling. 

The jobs model is part of an allocation process which is 

solely managed by RiM and DVi. The processing 

requirement of a task in a job, as defined in Equation (2), 

will depict the task sizes. 

 

On = ∑
𝑆𝑖

𝑝

𝑛

𝑖=1

 (2) 

 

where  Si:  Size Task of Job Vi  

 p: Processing capacity of a referred processor node  

 

Our assumption for this model is that the processing 

requirement must be less then available resource capacity. 

 

B. Proposed Mechanism 

Basically, our mechanism is based on job prioritization 

and cloud resource allocation scheme. The job prioritizing 



A Multi-Level Scheduling for Resource Provisioning Mechanism in Cloud Systems 

 e-ISSN: 2289-8131   Vol. 9  No. 1-3 55 

stage is the stage where we identify and rank the jobs based 

on our multi-condition priority mechanism. We had adopted 

work by Li et al. [3] for the cloud resource allocation 

scheme, where the cloud selection is based on cloud 

resource information status. We then execute the job by 

applying both mechanisms. 

 

i. Job Prioritizing Stage 

During the request stage, the cloud subscribers will 

submit their requests for computation resources as a service 

request. Then, these jobs will be transformed into job 

requests. This approach will then be formulated into a DAG 

model. This is where our proposed DVi and RiM managers 

function. This subsection will explain our two-level 

prioritization stage for the proposed mechanism. 

 

Stage 1: Identifying the priority list  

This stage comprises of the generation of priority task list 

from the jobs and identification of the group of critical path 

tasks from the defined priority lists. To generate the job 

priority task, we first utilized the same technique described 

by Islam et al. [15] (which will provide a feasible schedule 

for the jobs). This technique will come out with the job 

deadlines. The generated deadlines will be treated as job 

priority criteria. To generate job priority, we will first 

perform experiments without the cloud resources by using 

easy backfilling algorithm. Then, the job priority, Dd, is 

calculated based on the Equation (3): 

 
𝐷𝑑

=  {
sti + (𝑠𝑓 . tai)               if [sti + (𝑠𝑓. tai)] < 𝑒𝑥𝑒

exe                                             otherwise  
 

(3) 

 

where sti is the request of job submission time, exe is its 

completion time, tai is the job’s turnaround time (i.e., the 

difference between the tasks completion and submission 

times), and sf is a stringency factor that indicates the 

urgency of the applications. If sf = 1, then the job deadline is 

completion under the easy backfilling scenario. We evaluate 

the strategies based on different stringency factors (i.e., from 

0–1); the factors indicate different scenarios, such as tight, 

normal, and relaxed deadline scenarios [12]. This 

assumption will generate a realistic job priority for each job 

request setup. The derived values will be the first condition. 

The next step is to define the job criticality, which will be 

derived from the critical paths of tasks from the DAG model 

generated. As mentioned, the jobs are heterogeneous. This 

value is calculated based on a set of vertices in the DAG, of 

which the values of EST (5) and LST (6) are equal [3]. The 

earliest start time EST(vi) of node Vi can be computed 

recursively by traversing the DAG downward starting from 

the entry node Ventry [8]. We will evaluate the values 

derived using the earliest start time and latest finish time of 

a task as defined in Equation (4) and (5): 

 
EST(𝑣𝑖)  = max

  v𝑖 ∈pred(v𝑗)
{EST(v𝑗)  +  AT(v𝑗) } (4) 

LST(𝑣𝑖) = min
vj  ∈succ(vi) 

{LST (v𝑗)}  −  AT(vi)} (5) 

 
The second condition is the critical path tasks of the jobs 

that will be computed from Equations (5) and (6). Then, 

from the identified tasks, we will calculate the 

communication/computation ratio, CCr, by using the 

equation below: 

∑ 𝑊𝑣𝑖

∑ 𝐶𝑒𝑖𝑗

 (6) 

 

where ∑ 𝑊𝑣𝑖
is the total computation cost of the tasks of job 

i, and ∑ 𝐶𝑒𝑖𝑗
  is the total startup communication cost of edge 

i and j. The calculation will determine the job granularity 

and classification, that is, whether the job is computationally 

intensive or not. A higher value indicates that the job is 

computationally intensive and will be assigned the highest 

priority; this will be our next condition for job prioritization. 

On the basis of the previous equations, the relationship 

between critical paths of tasks i, CPti in a job with the ratio 

can be defined as follows: 

 
𝐶𝑃𝑡𝑖  =  max

0≤𝑖≤1
𝐶𝐶𝑟 (7) 

 

Therefore, the maximum value for each job indicates that 

the job is critical and will have the highest priority for 

resource allocation.  

 

Stage 2: Determining the job rank 

During this stage, each job is assigned a preliminary job 

rank, Jru. The rank results will assist in determining the 

highest-priority job to be scheduled. Here, the ranks are 

calculated by adopting a job ranking phase mechanism 

applied by Yousaf & Welzl [16]. The work uses HEFT 

algorithm to define the job rank. In HEFT, an upward rank 

is generated and recursively calculated starting from the exit 

tasks of a job. The job rank, Jru calculation is as follows: 

 

𝐽𝑟𝑢 = {
𝑤𝑖̅̅ ̅ + max

𝑣𝑖 ∈𝑠𝑢𝑐𝑐 (𝑣𝑗)
{𝑤𝑖̅̅ ̅ +  𝑟𝑎𝑛𝑘𝑢(𝑣𝑗)}

𝑤𝑖̅̅ ̅       𝑣𝑖  = 𝑒𝑛𝑑𝑡𝑎𝑠𝑘

 (8) 

 

where   𝑤𝑖̅̅ ̅ is the average computation cost for all tasks in 

the job. Note that succ (vj) is a set of immediate successors 

of vi. The termination point of this rank is where 𝑣𝑖  ≠𝑒𝑛𝑑𝑡𝑎𝑠𝑘 , 

and its value is equal to 𝑤𝑖̅̅ ̅. 

Our proposed mechanism will use the calculated values 

from (3–8) to form a job ranking. Jobs identified with the 

highest ranks in the list based on the four conditions stated 

above will be given utmost priority to be processed in the 

cloud, whereas jobs with the lowest rank will be prioritized 

 

ii. Cloud Resources Allocation Scheme 

We had adopted online adaptive scheduling introduced by 

Li et al. [3] for scheduling tasks to the available resources 

by selecting the best fit resources for the pool of tasks. The 

adopted mechanism is using the latest resource information 

state updated by the resource manager. In the resource 

information, the estimated job finish time, Tjft   for a job is 

stored in its resource information and defined as below: 

 
𝑇𝑗𝑓𝑡  = 𝐸𝑅𝐴𝑇𝑖 +  𝐸𝑇𝑀𝑖𝑚 + 𝑆𝑖/𝑏 (9) 

 

where ERATm is estimated resources available time of cloud 

m and ETMim is the execution time matrix of job i running 

on cloud m, and Si/b is the data transfer time assuming the 

size of the job, i is Si and b is the network bandwidth. 

However, the estimated job finish time may not be 

accurate. Therefore, the mechanism we adopted from Li et 

al. [3] will be adjusted to hinder any delay for resource 

allocation and job processing. This mechanism will then re-

examine the static resource allocation with the actual 
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execution time of a finished job and a predefined feedback 

factor for each cloud resource, m. Therefore, the actual 

execution time of job i in cloud m is: 

 
∆𝑇𝑗𝑓𝑡 =  𝑇𝑗𝑓𝑡 −  𝐸𝑅𝐴𝑇𝑖 (10) 

 

With the feedback factor, fdm:  

 

𝑓𝑑𝑖𝑚 =  𝛼 ×
∆𝑇𝑗𝑓𝑡  −  𝑆𝑖/𝑏 − 𝐸𝑇𝑀𝑖𝑚

𝑆𝑖/𝑏 + 𝐸𝑇𝑀𝑖𝑚
 (11) 

 

where α is the constant value from 0 to 1. For every job 

completed, RiM will update the feedback factor value, and 

this feedback factor is copied to other cloud providers. 

Therefore, when the next job arrives for processing, the 

feedback estimated earliest finish time is calculated as: 

 
𝑇𝑓𝑑𝑖𝑚 =  𝐸𝑅𝐴𝑇𝑖𝑚 

 + (1 +  𝑓𝑑𝑖𝑚 )  × (𝑆𝑖/𝑏 + 𝐸𝑇𝑀𝑖𝑚) (12) 

 

From the calculated value, the resources to process the 

jobs will be discovered based on the best fit cloud resources 

available time. 

 

V. RESULTS ANALYSIS AND DISCUSSION 

 

A. Simulation Setup 

We developed a discrete event simulations based on Java 

Programming. Our system setup in the simulation is based 

on system model in Figure 1. In each simulation run, we 

simulate a set of 64 different jobs. Among these sets of Jobs, 

we differentiate the jobs with two types of job mode; 

Advanced Reservation (AR) mode and Best Effort (BE) 

mode as mentioned in section 2; with 52 jobs running in BE 

Mode and 12 jobs in AR mode. Each job composed of up to 

16 tasks. There are 4 clouds in the simulation. All 64 jobs 

will be submitted to random clouds at a random arrival time. 

In the simulation, we set the parameters randomly according 

to the maximum and minimum values shown in Table 1. We 

executed 10 simulation runs with different sets of jobs. 

 
Table 1 

Range of Set Parameters 

 

Parameters Minimum Maximum 

ETMij 25 100 

Number of VMs in a Cloud 20 100 
Number of CPU in a VM 1 8 

Network bandwidth in a VM 2 100 

Memory in a VM 32 2048 
Disk space in a VM 5,000 100,000 

Speed of Copy in a disk 100 1000 

Number of CPU in a lease 50 100 
Network bandwidth in a lease 10 800 

Memory in a lease 100 10000 

Disk space in a lease 500,000 20,000,000 

 

The performance metrics chosen for our simulations is the 

average job execution time. It is computed by subtracting 

the job finish time from the job submission time [3]. We 

then implemented our proposed mechanism in two different 

scenarios: tight scenario and loose scenario. For the first 

scenario, we set the inter-arrival time of the AR tasks 

randomly; they should start not later than 30 seconds after a 

task arrives. For the second scenario inter-arrival times of 

the tasks are set close to each other. We implemented the 

generated DAG task graph using our proposed mechanism. 

In the implementation, the constant α is being used to 

compare between different mechanisms affecting the 

average job execution in a unit of time. 

 

B. Results 

Experimental results are presented in two different 

scenarios explained in the previous section. As a baseline 

for comparison, we compared our mechanism with two 

dynamic scheduling mechanisms, dynamic min-min 

scheduling (DMMS) and dynamic list scheduling (DCLS) 

[17]. We name our mechanism as Multi-Level Scheduling 

(MLS). Figure 2 shows the average execution time in the 

loose scenario. As shown in the figure, our mechanism has a 

better execution time compared to the other two dynamic 

scheduling mechanisms. The average execution time in 

MLS is, on average, about 46% faster. This performance can 

be explained by the two levels of scheduling mechanism 

applied that are able to reduce the waiting time, hence 

improve the execution time. Our mechanism is able to rank 

the jobs efficiently even though there are two different 

modes of jobs. It shows that no preemption needed, although 

the BE job mode is higher ranked compared to AR mode. 

Furthermore, the dynamic updating resource information in 

the combined mechanism helps to discover the best 

available resources. We believed that in loose situation, the 

underutilized resources are being managed efficiently, 

therefore improving all incoming jobs processing. 

 

 

Figure 2: Average execution time with different allocation 
mechanisms in Loose Scenario 

 

Meanwhile, Figure 3 shows the average execution time in 

the tight scenario. In this scenario, our mechanism work 

comparatively similar to other mechanisms. However, the 

execution time by using MLS slightly outperforms other 

mechanisms. This may due to, in tight situations, the arrival 

gaps are tight between jobs, and we believed that our job 

ranks mechanism needs a longer execution time to rank the 

jobs thus execute the jobs to the matched resources. The 

same also happens for the resources best match mechanism. 

The dynamic updating resource information is based on 

estimated finish time of previous job. Thus, in this scenario, 

the actual finish time is later than estimated, resulting to 

delay in the jobs execution time. However, our proposed 

mechanism has successfully tackled this issue. It showed a 

better execution time compared to other mechanisms 

because it ranks the most important jobs to be processed 

first. 
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Figure 3: Average execution time with different allocation 
mechanism in Tight Scenario 

 

VI. CONCLUSION 

 

Cloud users’ demands are becoming more agile and 

heterogeneous. This will affect the resources capability in 

the cloud. It will result to uncertainty of resources, either 

over or under provision. In this paper, we present a resource 

provisioning mechanism for heterogeneous applications in 

cloud systems. We proposed one scheduling algorithms, 

Multi-Level Scheduling (MLS) algorithm purposely for 

resource provisioning mechanism. Our mechanism 

combined scheduling mechanisms from two levels, jobs and 

resource levels. The jobs level forms job ranks and 

determines jobs ranking in a cloud system. Resource level 

determines the best matched resources based on the dynamic 

updated resource information. Simulations results show that 

the MLS outperforms DCLS and DMMS in both scenarios, 

tight and loose scenario. The proposed provisioning 

mechanism demonstrates a robust job execution regardless 

of different scenarios.  
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