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Abstract—This paper describes the development of a 

controller system for a developed double-propeller boat model 

using the unsupervised learning neural networks, namely the 

Self-Organizing Maps (SOM). The performance characteristics 

of the proposed SOM-based controller are then compared with 

that of the well-known Back-propagation Neural Networks 

(BPNN)-based controller through a direct inverse control 

scheme. Experimental results showed that the SOM-based 

controller can produce a low error, even lower than that of the 

widely used BPNN-based controller. Furthermore, the 

computational cost of the SOM-based controller is found to be 

more than 700 times faster than that of the BPNN-based 

controller. These findings suggest that the utilization of the 

proposed SOM-based controller for the control of a boat is 

highly effective. 

 

Index Terms—Artificial Neural Network; Direct Inverse 

Control; Double-Propeller; USV. 

 

I. INTRODUCTION 

 

The control of autonomous Unmanned Surface Vehicles 

(USV) is a very challenging topic since its working 

environment is usually dynamic, complex, and unstructured. 

As its actual dynamics is highly non-linear, time-varying, 

and coupled [1], it may be too complex to design the USV 

controller using a mathematical approach. The Internal 

Model Control [2] [3], for example, was obviously derived 

from a mathematical simplification approach, and may not 

perform well when it is used as a USV controller in a highly 

nonlinear environment.  

To minimize the use of mathematical assumptions in the 

USV modeling, and at the same time, to reduce the efforts 

required to derive an accurate mathematical model, artificial 

neural networks (ANN) based controllers for USV have 

been widely proposed. The methods are generally designed 

for solving the unstable ship dynamics problems, and are 

mainly developed based on the supervised learning 

algorithms, such as Back-propagation [4], Neural Network 

Model Reference Adaptive Controller (NN-MRAC) [5], 

ANN which is combined with back-stepping technique [6], 

and a Radial-Basis Function neural networks [7]. 

Back-propagation Neural Networks (BPNN)-based 

controller is the most widely used ANN-based controller 

due to its simple but powerful structure. This method is 

proven to be able to produce a very low error [8]. However, 

the iterative procedure during its learning is quite time 

consuming, especially when the data and the chosen number 

of neurons in its network is large. 

Self-Organizing Maps (SOM) is introduced by Kohonen 

[9] and categorized as an unsupervised learning mechanism. 

Its main functions are reducing the dimensions of data and 

display data similarities. Some advantages of SOM are its 

simplicity, fast computation, and easy evaluation. However, 

it is commonly used for clustering and classification. The 

utilization of SOM to approximate the dynamical input–

output mappings was first introduced as Vector-Quantized 

Temporal Associative Memory (VQTAM) model [10], and it 

was further developed as autoregressive SOM (ARSOM) 

model [11]. However, the discussion on VQTAM and 

ARSOM was only focusing on the possibilities to use the 

methods through some mathematical models and 

simulations, and therefore, lack of empirical analysis on any 

real experimental system.  

Using the background knowledge of VQTAM, in this 

paper, SOM is developed as a neural controller system for a 

USV. As to design a controller using a neural network 

requires sufficient information of the input and output data, 

empirical data obtained from a boat model as a simulation of 

a real double-propeller USV system is utilized. We then 

derived a Multiple-Input and Multiple-Output (MIMO) 

system controller using the unsupervised learning SOM 

neural networks using direct inverse control scheme. The 

performance characteristics of the developed SOM-based 

controller is then analyzed and compared with that of the 

commonly used BPNN-based controller, especially in terms 

of error and computational cost.  

The organization of this paper is as follows. First, the 

developed boat model and the data acquisition system are 

described in section 2. Section 3 presents the concept of the 

direct inverse control used in our system together with the 

SOM-based controller for a MIMO boat model. The 

experiment and the characteristic comparison of the SOM-

based controller with that of the BPNN-based controller is 

written in section 4, and finally, the paper is concluded in 

section 5. 

II. THE BOAT MODEL 

 

The developed boat model is an unmanned vessel model 

that can be operated on the ground to mimic an unmanned 

double-propeller boat system. The purpose of using this boat 

model is to obtain the most ideal environment but not 

considering the effect of the ocean waves and currents. The 

realization of the boat model and the block diagram of the 
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components are shown in Figure 1 and Figure 2, 

respectively. The main components of the boat model are: 

two T18A T-ESC, two MT-4006 T-BLDC motors, two 

Graupner E-propellers 25-12.5 cm / 10-5", a 

microcontroller, a compass sensor, an Inertial Measurement 

Unit (IMU) sensor that consist of gyroscope, accelerometer 

and barometer, a radio control, a voltage regulator, and a Li-

Po battery, respectively. 

 

 
 

Figure 1: The boat model 

 

 
 

Figure 2: Block diagram of boat model’s components 

 

The developed double-propeller boat model is a MIMO 

system with two inputs and three outputs. The inputs consist 

of two control signals for the left motor (PWM1) and the 

right motor (PWM2). The outputs of the boat model consist 

of the boat’s direction (yaw), the front/surge velocity (vx), 

and the side/sway velocity (vy). The data concerning with 

the boat model is acquired through a radio control system as 

the manual controller, which can be shown in Figure 3. The 

output data of the system that consists of the yaw data is 

obtained from the compass sensor, while the front and side 

velocities are derived from the accelerometer and the 

controller’s timer. 

For the preliminary experiment, the boat model is 

manually controlled for forward motion (straight trajectory) 

for four times, consecutively, and circular motion (circular 

trajectory). As a greater thrust for the boat model is 

necessary in the beginning of the movement, the data for 

simulation of the continuous movement of the boat model is 

taken after the boat model has started to move. The example 

of data used for the neural network training is shown in 

Figure 4. The upper graph plots the two control signals for 

left and right motors/propellers that are controlled by a 

human through a remote control in order to keep the course 

straight. The middle graph shows the direction of the boat in 

the inertial frame, obtained from the compass sensor. As can 

be seen from Figure 4(a), the direction of the boat is 

relatively constant, which reflects that the boat model is 

moving straight. Whereas in Figure 4(b), the direction of the 

boat is changing within 360o, which reflects that the boat 

model is constantly turning. The lower graph depicts the 

values of surge and sway velocities, vx and vy. The value of 

sway velocity is nearly zero, which means that the boat is 

not moving to the either side, whereas the value of surge 

velocity is constantly increasing due to the accelerations 

from the two rotating propellers. 

 

 
 

Figure 3: Data acquisition with manual control 

 

 
 

Figure 4: Boat model data for neural networks learning 

 

III. THE PROPOSED NEURAL NETWORKS BASED 

CONTROLLER DESIGN 

 

A. Direct Inverse Control 

The neural networks based controller design utilizes the 

open-loop direct inverse control as depicted in Figure 5 [8]. 

In this scheme, the inverse neural controller is directly 

cascaded with the controlled plant to provide an identity 

mapping between the desired system’s output (signal 

reference) and the actual plant output or the plant response. 

Since the neural controller that is applied directly on the 

system during its learning stage may disturb the plant, the 

use of a model to represent the plant is recommended. In 

this work, the plant is identified by using a neural network 

with back-propagation learning mechanism. 

 

B. Neural Networks Based System Identification 

The approximation of plant identification is done by 

adopting the Nonlinear Auto Regressive with eXogenous 

input (NARX) [12] model structure for MIMO system, as 

expressed in the Equation (1). 
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Figure 5: Open-loop Direct Inverse Control scheme 

 

𝒚[𝑘] = 𝑓(𝒚[𝑘 − 1], … , 𝒚[𝑘 − 𝑛𝑦], 𝒖[𝑘 − 1], …, 
𝒖[𝑘 − 𝑛𝑢]) 

(1) 

 

where y is the plant outputs, uis the plant inputs, ny and nu 

are the number of memory operators for each plant output 

and input, respectively. In this case, fis the transfer function 

of the plant that will be replaced by the neural networks. 

This equation explicitly stated that the plant outputs y[k] is a 

function of its previous outputs, y[k-1], …, y[k-ny] and the 

previous inputs, u[k-1], …, u[k-nu]. 

The ANN-based system identification consists of one 

input layer, one hidden layer, and one output layer with 15, 

30, and 3 neurons, respectively, as depicted in Figure 6. As 

the neurons used a bipolar Sigmoid activation function, the 

data should be normalized into the range of -1 and +1 prior 

to the training stage. Back-propagation learning mechanism 

is adopted for training the neural networks, with the learning 

rate of 0.2. For straight trajectory, the training requires 

701,595 iterations to converge with the training mean-sum-

square error (MSSE) of 2.2383 x 10-4, while for the testing 

phase, the MSSE is 3.679 x 10-4. For the circular trajectory, 

identification training requires 1,000,000 iterations to obtain 

a training MSSE of 2.1301 x 10-5, whereas for the testing 

phase, the resulted MSSE is 9.88 x 10-6 as shown in Figure 

7.These low errors show that the BPNN-based system 

identification successfully mimics the transfer function of 

the real plant. 

 

 
Figure 6: Boat model identification using ANN 

 

C. SOM-Based Control System 

The utilization of ANN for controller was adopted as an 

inverse control system scheme [13], where the controller 

acts as the inverse of the plant through: 

 
𝒖[𝑘] = 𝑓−1(𝒖[𝑘 − 1], … , 𝒖[𝑘 − 𝑛𝑢 + 1], 

𝒚[𝑘 + 1], … , 𝒚[𝑘 − 𝑛𝑦 + 1]) 
(2) 

 

where the nomenclature of Equation (2) is the same with 

that of Equation (1), but f-1 is the inverse transfer function of 

the plant. 

 

 
 

Figure 7: ANN-based identification for circular trajectory  
(MSSE = 9.88 x 10-6) 

 

SOM was initially used for static input-output mappings, 

which means that the current output depends solely on the 

current input. For the inverse control scheme in Equation 

(2), however, the plant inputs u[k] is a function of its 

previous inputs u[k-1], …, u[k-nu+1], expected outputs 

y[k+1] and previous outputs y[k], …, y[k-ny+1], which will 

be replaced by the reference signal in the direct inverse 

control scheme.  

For this purpose, some modifications to the original 

Kohonen SOM algorithmare required [10]. To be used as a 

neural networkscontrol system, the input vector of SOM is 

augmented into: 

 

𝒙[𝑘] =  (
𝒙𝑖𝑛[𝑘]

𝒙𝑜𝑢𝑡[𝑘]
) (3) 

where: 

 

𝒙𝑖𝑛[𝑘] = 𝒚[𝑘 + 1], 𝒚[𝑘], … , 𝒚[𝑘 − 𝑛𝑦 + 1], 
𝒖[𝑘 − 1], … , 𝒖[𝑘 − 𝑛𝑢 + 1] 

(4) 

𝒙𝑜𝑢𝑡[𝑘] =  𝒖[𝑘] (5) 

 

The vector xin[k] in Equation (4) contains the input data of 

the dynamic mapping being learned. Meanwhile, vector 

xout[k] is the desired output of this mapping, which is 

actually the plant input, u[k]. The reference vectors or 

weights of neurons, v[k], are also augmented accordingly as 

shown in Figure 8. 

During training, the winning neuron l* at time k is 

decided solely from the smallest Euclidean distance between 

𝒙𝑖𝑛[𝑘] and 𝒗𝑙
𝑖𝑛[𝑘]. Then, both winning reference vectors, 

which are the reference vectors with the same index as the 

winning neuron l*, 𝒗𝑙∗
𝑖𝑛[𝑘] and 𝒗𝑙∗

𝑜𝑢𝑡[𝑘], are updated. 

Similarly, on the testing stage, the winning neuron l* is 

obtained from 𝒙𝑖𝑛[𝑘] and  𝒗𝑙
𝑖𝑛[𝑘], whereas the resulted 

control signal is similar to the output reference vector:  
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𝒖[𝑘] ≅ 𝒗𝑙∗
𝑜𝑢𝑡[𝑘] (6) 

 

 
 

Figure 8: The architectural structure of SOM-DIC system 

 

IV. EXPERIMENTAL ANALYSIS 

 

Offline experimental analysis on the developed double-

propeller boat model was conducted to compare the 

performance characteristics of the proposed Self-Organizing 

Maps (SOM)-DIC system and the well-known back-

propagation neural network (BPNN)-DIC system.  

The chosen numbers of memory operators of input and 

output data for both controllers are nu = 4 and ny = 3. 

Therefore, there are 7 elements in xin[k] to represents each 

output data (e.g. direction, surge velocity and sway 

velocity), resulting 21 elements in total. This number 

represents the number of input neurons in both ANN-based 

controllers. Meanwhile, the number of elements in xout[k] for 

the SOM-based controller or the number of output neurons 

in BPNN-based controllers depends solely on the number of 

plant input data. For the double-propeller USV, which is the 

case of interest, there are two inputs that drive the motor to 

propel (e.g. PWM1 and PWM2).  

 

A. SOM-Based Controller 

The SOM-DIC systems are developed by utilizing21 input 

neurons with 10, 30, and 66 output neurons for straight 

trajectory, and 79, 158, and 316 output neurons for circular 

trajectory, respectively. Different numbers of output neurons 

are empirically used to analyze their effects on the proposed 

controller. The initial learning rate is set to be0.9 and the 

learning rate reduction factor is set to be 0.9. The number of 

training iteration is limited to 131, which requires very low 

computational costs, i.e., less than 1 second for the straight 

trajectory, and less than 4 seconds for the circular trajectory.  

The SOM-DIC system is then tested on direct inverse 

control scheme (see Figure 5) and the experimental results 

for the straight trajectory are shown in Figure 9 to 11, for 

10, 30, and 66 output neurons, respectively. The obtained 

MSSE for SOM based controller with 10 output neurons is 

0.0048, with MSEs 0.0006 for yaw, 0.0013 for vx, and 

0.0125 for vy, respectively. The MSSE for 30 output neurons 

is 0.0040, with MSEs 0.0005 for yaw, 0.0006 for vx, and 

0.0110 for vy, respectively. Meanwhile, the MSSE for 66 

output neurons is 0.0042, with MSEs 0.0005 for yaw, 

0.0003 for vx, and 0.0117 for vy, respectively.As can be seen 

in the bottom graph of each figures, compare with that of the 

surge velocity (vx), the error of the sway velocities (vy) for 

all of the three SOM-DIC system configurations are 

higher.However, by observing the upper most graph of these 

figures, the boat model is moving straight with a very small 

MSE for yaw direction with relatively lower settling time, 

showing that the SOM-DIC systems are in good agreement 

with the reference signals. 

The three figures also reflect that the more number of 

output neurons is utilized, the better characteristics 

performance of the SOM-DIC is achieved, especially, in 

terms of keeping the boat model’s direction and surge 

velocity, which are the main focus of this particular case. 

The experimental results for the circular trajectory are 

shown in Figure 12 to 14, for 79, 158, and 316 output 

neurons, respectively. The obtained MSSE for SOM based 

controller with 79 output neurons is 1.0835 x 10-4, with 

MSEs 1.176 x 10-4 for yaw, 0.561 x 10-4 for vx, and 1.513 x 

10-4 for vy, respectively. The MSSE for 158 output neurons 

is 4.8784 x 10-5, with MSEs 1.397 x 10-5 for yaw, 4.240 x 

10-5 for vx, and 2.020 x 10-5 for vy, respectively. Meanwhile, 

the MSSE for 316 output neurons is 9.8792 x 10-6, with 

MSEs 1.115 x 10-5 for yaw, 1.208 x 10-5 for vx, and 6.41 x 

10-6 for vy, respectively. These results further justify that the 

proposed controller can control the boat model’s direction 

and surge velocity according to the given reference signal, 

and that larger number of output neurons will result in better 

characteristics performance of the SOM-DIC. 

 

B. BPNN-Based Controller 

As a comparison, the same data from this double-

propeller boat model is also used to train the back-

propagation neural network (BPNN)-DIC system with a 21-

15-2 network configuration [8]. The number of the input 

neuron is set to 21, for a comparability of the characteritics 

performance analysis with that of the SOM-DIC system.  

Backpropagation learning algorithm is used with 0.01 

learning rate and without momentum. For the straight 

trajectory, the training requires 99,899 iterations in 672.06 

seconds to converge with a MSSE of 4.45 x 10-4. The 

converged connection weights from the training stage are 

then applied to the neural network direct inverse control 

scheme and the result of the control performance experiment 

is depicted in Figure 15.  As shown in the figure, the MSSE 

of the boat model by using the BPNN-DIC system is9.8 x 

10-3with MSE for each parameter is8 x 10-4 for yaw, 1 x 10-3 

for vx, and 2.77 x 10-2 for vy, respectively. 

Meanwhile, for the circular trajectory, the training 

requires 100,000 iterations in 1482.03 seconds to converge 

with a MSSE of 5.31 x 10-4. Utilizing the obtained weights 

to the neural network direct inverse control scheme, the 

control performance experiment is shown in Figure 16.  As 

can be seen from the figure, the MSSE is6.1316 x 10-4with 

MSE for each parameter is15 x 10-4for yaw, 1 x 10-4 for vx, 

and 2 x 10-4 for vy, respectively. 

Table 1 and Table 2 shows the overall comparison of 

BPNN-based controller and SOM-based controller on the 

boat model direct inverse control scheme, for the straight 

and circular trajectories, respectively. It can be seen that the 

SOM-based controller requires a much lower computation 

time, e.g. less than 1 second for the straight trajectory and 

less than 4 seconds for the circular trajectory, compared to 

the BPNN-based controller which requires more than 11 

minutes for its straight trajectory training and more than 24 

minutes for circular trajectory training. Furthermore, the 
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testing error of SOM-based controller is generally lower 

than that of the BPNN-based controller. 

 

 
 

Figure 9: SOM-DIC system with 21-10-10-2 network configuration, 

straight traj. (MSSE = 0.0048) 

 

 
 

Figure 10: SOM-DIC system with 21-30-30-2 network configuration, 
straight traj. (MSSE = 0.0040) 

 

 
 

Figure 11: SOM-DIC system with 21-66-66-2 network configuration, 

straight traj. (MSSE = 0.0042) 

 

 
 

Figure 12: SOM-DIC system with 21-79-79-2 network configuration, 

circular traj. (MSSE = 1.08 x 10-4) 

 

 
 

Figure 13: SOM-DIC system with 21-158-158-2 network configuration, 
circular traj. (MSSE = 4.9 x 10-5) 

 

 
 

Figure 14: SOM-DIC system with 21-316-316-2 network configuration, 

circular traj. (MSSE = 9.9 x 10-6) 
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Figure 15: BPNN-DIC system with 21-15-2 network configuration, straight  

trajectory (MSSE = 0.0098) 

 

 

 
 

Figure 16: BPNN-DIC system with 21-15-2 network configuration, circular 
trajectory (MSSE = 6.13 x 10-4) 

 

Table 1 

Performance Comparison of the Boat Model Controllers on the Direct 

Inverse Control Scheme, for Straight Trajectory 

 

 
SOM 21-10-

10-2 

SOM 

21-30-30-2 

SOM 21-66-

66-2 

BPNN 21-

15-2 

Comp. 

time 
(seconds) 

0.57 0.66 0.87 672.06 

Testing 

MSSE 
0.0048 0.0040 0.0042 0.0098 

MSE yaw 0.0006 0.0005 0.0005 0.0008 

MSE vx 0.0013 0.0006 0.0003 0.0010 

MSE vy 0.0125 0.0110 0.0117 0.0277 

 
Table 2 

Performance Comparison of the Boat Model Controllers on the Direct 
Inverse Control Scheme, for Straight Trajectory 

 

 
SOM 21-

79-79-2 

SOM 21-

158-158-2 

SOM 21-

316-316-2 

BPNN 

21-15-2 

Comp. time 

(seconds) 
1.734 2.46 3.46 1482.03 

Testing MSSE 
(x 10-4) 

1.08 0.488 0.099 6.13 

MSE yaw 1.18 0.14 0.112 15 

MSE vx 0.56 0.424 0.121 1 
MSE vy 1.51 0.202 0.064 2 

V. CONCLUSION 

 

A neural controller system based on the unsupervised 

learning mechanism Self-Organizing Maps (SOM) neural 

networks has been successfully used as the controller of a 

double-propeller boat model using direct inverse control 

scheme. Experimental analysis has proven that the SOM-

based controller can produce a low error, even lower than 

that of the widely used back-propagation-based controller. 

From our research results, it is clearly seen that the higher 

number of the SOM output neurons will produce lower 

error. The significant advantage of SOM-based controller 

lies on the much lower computational time during training 

due to the fewer numbers of iterations required for 

convergence. 
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