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Abstract—Our dependence on software applications has 

become dramatic in many activities of our daily life as they 

help to increase the efficiency of our tasks. These software 

applications have many sets of input values, parameters, 

software/hardware environments and system conditions, which 

need to be tested to ensure software reliability and quality. 

However, the whole comprehensive software testing is virtually 

not possible due to marketing pressure and resource 

constraints. In an attempt to solve this problem, there has been 

a development of a number of sampling and pairwise strategies 

in the literature. In this paper, we evaluated and proposed a 

pairwise strategy named Pairwise Artificial Bee Colony 

algorithm (PABC). According to the benchmarking results, the 

PABC strategies outdo some existing strategies to generate a 

test case in many of the system configurations taken into 

consideration. In a case where PABC is not at its optimal stage 

or its best performance, the experiments of a test case are 

effectively competitive. PABC progresses as a means to achieve 

the effective use of the artificial bee colony algorithm for 

pairwise testing reduction. 

 

Index Terms—Interaction Testing; Test Data Generation; T-

way Testing; Software Testing; Natural Based Search 

Algorithms; Optimizations Problems. 

 

I. INTRODUCTION 

 

Similar to any other engineering processes, software 

development is subjected to cost. Nowadays, software 

testing (as a process of the SDLC) consumes most of the 

time and cost spent on software development. This cost may 

decrease rapidly as testing time decreases. Most of the time, 

the software may be released without being tested 

sufficiently because of marketing pressure as well as the 

intention to save time and cut cost. However, releasing low-

quality software products to the market is no longer 

acceptable because it may cause a loss of revenue or even a 

loss of life. Therefore, software tester should build high-

quality test cases, which can detect the defects in the 

software without exceeding the required testing time. In this 

case, the test case minimization techniques take a great part 

in reducing the number of test case size without affecting 

their quality. Hence, the reduction of test cases, particularly 

in the configurable software systems is a primary issue.  

Recently, configurable software systems have gained 

paramount usefulness in the market due to their capability to 

change the way a software behaves via configuration. The 

Traditional test techniques are essential for detecting and 

preventing defects, but it is not meant for eliminating 

defects due to the combinations of configuration and 

components input [1]. We consider that all the combinations 

configuration result in comprehensive testing, which is not 

possible due to resource constraints and time factor. Some 

test cases can be minimized if efficient test cases are 

designed to have the same effect as comprehensive testing 

[2]. 

In the past 20 years, the existing strategies of software 

testing to solve the problem have been developed [3]. 

Among these techniques, the combinatorial testing 

techniques are the most useful for designing test cases to 

solve this problem. These strategies help find and produce 

sets of tests to form a final test suite that helps in covering 

the needed combinations in compliance with the 

combination degree or strength. The degree begins from 2 (t 

= 2, where t represents the degree or strength of 

combinations). 

We consider that all the sets that reduce to the minimum 

test suite are a difficult computational optimization issue [4] 

because finding the optimum set is an NP-hard issue 

(nondeterministic polynomial time) hard problem [5]. 

Therefore, looking for an optimal combination of test cases 

can be a challenging mission, and getting a unified strategy 

in order to produce an optimal outcome is challenging. 

There are two ways that can be taken to solve this issue 

effectively and to get a close-optimal result. The first 

direction utilizes computational algorithms using a 

mathematical arrangement, while the other uses nature-

inspired algorithms [6]. 

Utilizing algorithms inspired by nature can produce extra 

effective outcome than the computational algorithms with a 

mathematical arrangement [6], [7]. Further, this method is 

more flexible than the other methods because it can create 

many combinatorial sets with various input levels and 

factors. Therefore, its result is more useful because most 

actual-world systems [8] have various input levels and 

factors. 

One of the major problems in pairwise is in the generation 

of the best test case set (which is every pairwise interaction 

is covered by only one test case whenever possible) from a 

big probable test parameter numbers. Therefore, finding the 

ideal test cases is a complicated issue of NP. It means that 

any rise in the magnitude of the parameter causes the 

exponential rises in the estimated computational time and in 

the extent of the intricacy of the problem [9], [10]. Due to 

this, a lot of strategies (and their tool execution) have been 

structured in literature. 

To address the problems above and as a completion of the 

existing work, we have proposed the use of artificial bee 

colony algorithm for pairwise strategy called pairwise 

artificial bee colony algorithm (PABC) strategy. 

This paper is organized as follows. Section I presents the 

background for software testing and pairwise technique. 
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Section II covers an array of definition, while in Section III, 

a model is illustrated using a display tab. Section IV reviews 

the existing combinatorial test data generation strategies. 

Section V illustrates the design and implementation of a 

PABC, including the algorithms. Section VI discusses the 

comparison results of the different experiments to evaluate 

the performance of PABC. Finally, in section VII we present 

our conclusions and the suggestions for future works. 

 

II. COVERING ARRAY DEFINITION 

 

T-way testing interaction test suite can be abstracted via 

the covering array (CA) notations. Typically, the CA has 4 

factors; t, N, v, and p, (CA (t, N, vp).  The symbols t, p, and 

v depict the number of interaction strength, parameters, and 

values for the CA, correspondingly. For instance, CA (9, 2, 

34) denotes a test suite entailing of 9x4 ranges (the rows 

denote the test case size (N), and the column denotes the 

parameter (p)). The sizes of the test suite encompass 2-way 

interaction for a system with 4 three-value parameters. 

Additionally, to CA there is MCA (mixed covering array) 

with 3 parameters; t, C (Configuration) and N (i.e., MCA 

(N, t, C)). In addition to t, and N that conveys a similar 

meaning as in CA, the MCA employs a new symbol, C 

which is consistent with the previously given 

representations. C denotes the values and parameters of 

every of the configurations in the given formats: v1p1, 

v2p2… vnpn depicting that there are p1 parameters with v1 

values, p2 parameters with v2 values till Vnpn. For example, 

MCA (1265, 4, 102 41 32 27) shows the 1265 test size that 

covers 4-way interaction. The MCA configuration requires 

12 parameters, which are 2 ten-value parameters, 1 four-

value parameter, 2 three-value parameters, and 7 two-value 

parameters. 

 

III. PROBLEM STATEMENT 
 

In this section, we present a short definition to explain the 

connotation of t-way interaction testing. Consider a t-way 

testing as a more effective technique to create the most 

minimum test suite used to detect the mistakes of 

interaction. The main concept of using t-way testing is to 

show that not all parameters result in every parameter's 

error. 

Overall, every system consists of a number of factors, 

which are called parameters with their value (that interact 

together). To clarify the conception of t-way interaction 

testing, we consider the display tab of a file as a simple 

example for the basis of our problem as shown in Figure 1. 

 

 
 

Figure 1: View of the folder 

 

Figure 1 shows a screenshot of a display’s tab for the file. 

The display's tab consists of five groups of features that 

have one or more variable or parameters: the Navigation 

pane group, preview pane and details pane group, layout 

group and sorted by group. The display's tab of file provides 

simple wide levels and factors (i.e., called parameters and 

values). 

The display’s tab consists of four parameters: one 4-value 

parameters (i.e. Navigation pane), two 2-value parameters 

(i.e. preview pane), one 8-value parameters (i.e. layout 

group) and one 9-value parameters (i.e. sort by).   ِ At all, it 

has four system configuration. These system configurations 

(SC) include variable values except the preview pane 

parameter and detail's pane parameter, which include 

"select" or "unselect." In cases of other parameters, they 

include "select" or skipped "unselect." In case of “select" or 

"unselect", we represent the value of the parameters as (on) 

and (off) respectively. 

The system configurations (SC) for the display tab are 

explained in Figure 1. Based on Figure 1, we assume t = 211. 

The covering array is represented as MCA (N, 2, 41 22 81 

91). The total exhaustive combinations are (41 ×22 ×81 ×91 = 

1152) test cases. These are virtually ineffective, if they were 

done manually. If we assume to analyze a test case that 

requires five minutes, it takes 96 hours to examine only the 

display tab completely, which is probably not practical, 

according to the testing standards. 

Pairwise testing is a simple technique space by generating 

a minimum test case, where the need for interaction strength 

of degree t is covered at least only once (where t indicates   

to   the   strength   of   degree). The use of pairwise testing 

(t-way testing) in our example is as shown in Table 1.  Only 

72 test cases can cover every pairs of parameters value input 

as minimum one time. Here, it lowers the number of test 

cases from 1152 to 72. Table 1 shows the results of our 

example with 10 times running, which includes minimum 

test case, average size, time, average time and best time size. 
 

Table 1  

Result of Display Tab (MCA (N, 2, 41 22 81 91)). 

 

t 
Best 

size 

Avg. 

size 
Best time 

Avg. 

time 

Best 

Size times 

2 72 72.4 20.536999940 21.09489994 6 

 

IV. RELATED WORK 

 

Overall the existing strategies for pairwise  technique can 

be classified into three groups, depending on the prevailing 

approaches [12]: 

 

A. Algebraic construction category 

Here, the strategy for the construction of test sets is by 

using the mathematical function or pre-defined rules [12]. 

Therefore, the computations  involved  in algebraic 

approaches are typically lightweight, and in some cases, 

algebraic approaches can generate the most  optimal test 

sets. However, the applicability of algebraic approaches is 

often restricted to small configurations [12], [13]. OA 

(Orthogonal arrays) [14], MOA (Mathematics of Arrays) 

[15] TConfig [16] are great examples of the strategies that 

depend on the algebraic approach. 
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B. Greedy algorithm category 

The strategies in this category are mostly depending on 

the creation of every of the pair combinations. Unlike the 

algebraic approaches that depend on every pair of 

combinations, the computational approaches explore 

combinations space to produce the test cases needed until all 

of the pairs have been covered. In this manner, this category 

based strategies may typically be appropriate in  large 

system configurations. However, in the case where the 

number of pairs to be considered is significantly large, then 

implementing greedy algorithm based approach can become 

very costly as a result of the necessity enumeration from all 

the combination space. An example of the strategies that 

employs this approach includes an AETG [17], [18], its 

variation mAETG [19], IPO [20], PICT [21], Jenny [22], 

TVG [23], IPOG [12], all pairs [24], CTE_XL [25], IRPS 

[26], and G2Way [27]. 

AETG [17], [18] and its variant mAETG [11] use a 

greedy random search algorithm depending on a 2-way 

interaction pairing to get the final test suite. Therefore, the 

created test case is not naturally deterministic. Regarding the 

PICT (Doug, & Keith 2006), it generates all the determined 

interaction first, and then randomly selects their 

corresponding interaction combinations to form the test 

cases as part of the complete test suite. 

The IPO strategy [20] constructs an all-pairs test set for 

the initial 2 parameters. The IPO strategy that encompasses 

the test set covering the initial 3 parameters, is then in 

continual: It encompasses the test set until it creates all pair 

test set for the whole parameters. Apart from being 

deterministic, encompassing a parameter at a time lets the 

IPO strategy to attain a lesser rate of intricacy than the 

AETG. Lately, this strategy has been protracted to handle 

the advanced interaction strength in the improvement of the 

IPOG [12].  

Test data were generated in some phases by Jenny [22]. 

Initially, Jenny produces test data to cover the whole one-

way interaction. The initial phase test data will then be 

extended by Jenny so as to greedily encompass that of two-

way interactions. Optionally, this method can be a continual 

process till the nth number of way interactions as stated by 

the user. 

All pairs strategy ([24], CTE_XL [25] and TVG [23] 

share the same property as much as generating deterministic 

test cases is concerned though very few things are known 

about the real algorithms used due to limited availability of 

references.  

The more contemporary strategies centered on the 

computational approaches are G2Way [27], IRPS [26]. IRPS 

focuses on effectual data structure for searching and storing 

pairs, and it is deterministic in nature. In this way, IRPS 

provides a comparatively fast effecting time when 

comparison with other strategies is made. G2Way adopts a 

backtracking algorithm to combine pairs to produce a 

pairwise test suite. G2Way also backs automated 

implementation of the produced test suite unlike other 

strategies that does not.  

 

C. Natural Search based category 

Regarding the implementation of NS based algorithm, 

much current work has started coming up to include particle 

swarm optimization for pairwise test generation (PSO) [28], 

pairwise harmony search strategy (PHSS) [29]-[32], genetic 

algorithm (GA) [33], ant colony algorithm (ACA) [33], and 

simulated annealing (SA ) [34]. In GA, the test case creation 

process always begins with random test data (referred to as 

chromosomes later). The chromosomes will undergo 

through a sequence of mutation progressions till certain 

stopping criteria are met. The better chromosomes will be 

chosen as an ultimate test suite. Regarding ACA, test case 

creation process is simulating the colonies of ants that move 

from one spot to the other (representing the parameter) to 

get food (which represent the end of test case) through 

several paths (correspond to values for every parameter). 

The best route (gotten depending on the amount of the 

pheromone left by the colonies of ants) depicts the greatest 

value for a test case. 

In a nut shell, SA adopts a probability based 

transformation equation alongside with a greedy binary 

exploration algorithm to get the best test case iteratively to 

encompass all the needed (pairwise) interfaces from a 

random selection space. Similarly, PSO, a PSO based 

strategy, iteratively executes global and local searches to get 

the candidate result to be added to a definitive suite till the 

whole pairwise interactions are covered. HSS, adopts the 

harmonic selection between the instruments.   

 
V. ABC ALGORITHM 

 

The ABC algorithm is designed to emulate the foraging 

behavior of a honey bee colony. A typical honey bee swarm 

consists of 3 essential segments: unemployed foragers 

/employed foragers (bees) /food source. Employed foragers 

are the bees that are employed at, and presently exploiting, a 

particular source of food. These bees convey data relating to 

the profitability direction and distance of the food source 

and also connect the data with every single honeybee in the 

hive. The unemployed honey bees are categorized as either a 

scout honeybee or an onlooker bee. The later strives to get a 

source for food with the use of the data given by the 

employed honey bee, while the latter randomly searches the 

surroundings to locate a new source of food (better) [35]. 

Presumably, an employed bee whose source food is depleted 

becomes a scout bee and begins to look out for another new 

source of food. Moreover, it assumes the aggregate number 

of the employed honey bees has to be the same as the 

number of sources of food. Imaginable, the position of a 

source for food depicts a probable test cases out to the 

optimization issue, though the quantity of a source of food 

relates to the fitness (quality) of the associated test cases. 

Primarily, the ABC produces a randomly distributed 

population of SN test cases (positions of food source) in the 

exploration space, where SN represents the onlooker bees 

size or employed bees. Supposing the number of 

optimization parameters is D, then each of the test cases xi (i 

= 1, 2... SN) i basically will be a D-dimensional vector. 

Every result produced here can be attained from the 

Equation 1 [35]; 

 

𝑥𝑖𝑗 = 𝑥𝑚𝑖𝑛,𝑗 + 𝑟𝑎𝑛𝑑(0,1)(𝑥𝑚𝑎𝑥,𝑗 − 𝑥𝑚𝑖𝑛,𝑗) (1) 

 
Here, 𝑥𝑚𝑖𝑛 and  𝑥𝑚𝑎𝑥 depict both the upper and lower 

boundary parameters for the test cases 𝑥𝑖, while in 

dimension j (j=1, 2… D), and Rand [0, 1] is a scaling factor 

representing a random integer between [0,1]. The positions 

of the food source (D-dimensional results) produced in the 

initial step (C=0) are liable to repeating cycles C= (1, 2…, 
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MCN), until a termination criterion is satisfied. Both the 

local and the global probable selection/search are 

implemented in a single cycle ABC. Each cycle comprises a 

number of responsibilities executed by various types of 

honey bee. These processes are principally independent, 

which can be elucidated in a distinct way as shown below, 

for more clarification of the ABC methodology: 

 

A. Employed Bee phase 

After the employed bee has been allocated to their sources 

of food, these honey bees assess the capability of their test 

cases s (sources) and converse the data with  the  onlooker 

honey bees. In  addition, every of the employed honey bee 

produces a candidate food position (test cases) by  

perturbing the  old source of food (test cases) if (𝑥𝑖𝑗) in  its  

memory, using  Equation 2 [35]: 

 

𝑣𝑖𝑗 = 𝑥𝑖𝑗 + 𝑟𝑎𝑛𝑑[−1,1](𝑥𝑖𝑗 − 𝑥𝑘𝑗) (2) 

 

Here, j∈{1,2,...,D} and k ∈{1,2,..., SN} ( k ≠ i ) are 

randomly selected indexes, and Rand [-1,+1] is a random 

number between [-1,1], which works as a scaling factor. It is 

obvious that as the optimal result in the search space is 

approached, this perturbation on result gets decreased. The 

capability of the perturbed (new) result will also be assessed 

by the employed bee, and in case when better fitness values 

are found, the new test cases replaces the old one in the 

memory of that  employed  bee (a greedy-selection scheme). 

 

B. Onlooker Bee phase 

The main duty of an  onlooker  bee is to choose a test 

cases (source of food), based on the possibility quantity  

associated with the source of food, Pi, which is evaluated by 

Equation 3 [36]: 

 

𝑃𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑛
𝑠𝑛
𝑛=1

 (3) 

 

where, fit denotes the fitness value of a given test cases, and 

the subscript index depicts the test cases number. This 

probable choice is affected by relating Pi against a randomly 

chosen number between [0, 1]. The selection is approved if 

the generated random number is lesser or equivalent to Pi , if 

otherwise it will be rejected. The duty of the onlooker honey 

bee to a specified test cases will be approved if the 

equivalent probable selection is sanctioned. Normally, in the 

minimization problems, the fitness value of test cases s is 

calculated by Equation 4: 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = {

1

1 + 𝑓𝑖
 ,        𝑖𝑓 𝑓𝑖 ≥0 

1 + |𝑓𝑖|,     𝑖𝑓𝑓𝑖 <0 

 (4) 

 

where, 𝑓𝑖  is the value of the objective function for test 

cases. After the selection of a food source (test cases) with a 

Pi possibility, the onlooker honey bee will select a new test 

cases (source of food) in the area of the preceding one in her 

memory, using Equation 2. In case the new test cases (food 

source) has a better fitness value, then an onlooker honey 

bee will update the new test cases (food source) in her mind, 

and forgets the old one, similar to the case with the 

employed bees. 

 

C. Scout Bee phase 

The duty of scout bees is to randomly explore the entire 

search space to get an improved (new) result to the overall 

optimization problem. Unlike the situation with onlooker 

/employed honey bees (where they are bound to create trial 

result round an old result), the scout honey bees are not 

bounded in this sense. The scout bees draw their samples 

from a wide set of D-dimensional vectors, so far it is inside 

the boundaries of the search space. In ABC, if a (non-

global) test case cannot be developed further after a pre-

determined number of cycles, then the test cases will be 

neglected, and the employed Bee allocated to that exact 

position will transform to a scout bee with essentially scout-

type functionality. The value of this pre-determined number 

of cycles, which is termed the limit, will therefore be an 

important control parameter in the algorithm. In practice, the 

limit is estimated via Equation 5: 

 

limit = c * ne * D (5) 

 

where, ne is the number of unemployed bees, and where c is 

a coefficient constant with an acclaimed value of 1 or 0.5 

[17], [18]. However, one scout bee must exist during the 

implementation of ABC. The scout type processes give an 

excellent ability to the ABC process in getting the 

paramount global result, by creating stochastic inquiry in the 

whole D-dimensional area. This is to say that scout bees will 

independently search for a global optimal result, while all 

other types of bee (onlooker /employed) are concurrently 

scrutinizing their confined candidate test cases s for the 

overall best. For this reason, the probability of being 

ensnared in local optimum will never be appropriate to 

ABC. 

 

VI. BENCHMARKING RESULTS 

 

This section employed prevailing relative 

experimentations, which are stated in [26], [27], [29], [33]. 

So as to standardize the PABC strategy alongside the 

existing approach, we split our comparison into 2 parts. In 

the initial fragment, a system configuration with ten V-

valued parameters were selected, where V varies (from three 

to ten) also a system configuration with P 2-valued 

parameters were selected, where P varies (from three to 

fifteen). The goal is to explore how PABC acts as regards 

changing P and V. For the second fragment, a number of 

system configurations into 11 groups to compare the 

performance of PABC alongside other strategies. The 

configurations are shown below: 

 

S1 = CA (N, 2, 33) 

S2 = CA (N, 2, 34) 

S3 = CA (N, 2, 313) 

S4 = CA (N, 2, 1010) 

S5 = CA (N, 2, 1510) 

S6 = CA (N, 2, 1020) 

S7 = CA (N, 2, 510) 

S8 = MCA (N, 2, 51 38 22) 

S9 = MCA (N, 2, 61 51 46 38 23) 

S10 = MCA (N, 2, 71 61 51 46 38 23) 

S11 = MCA (N, 2, 101 91 81 71 61 51 41 31 21) 

 

The shaded cells with asterisk (*) in Table 2 to 4 show the 

minimum generated size (test suite) for every strategy, and 
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the shaded cells without an asterisk generated competitive 

sizes with other strategies. The marked cells by not available 

(NA) indicate that the results for these strategies are not 

reported in their publications. According to Table 2, it is 

obvious that PABC generates the most optimal test case in 

only one when V = 3, unlike to the PHSS is not affected by 

the number of value or parameters, where PHSS 

outperforms with all other strategies except in case when v = 

8.  

Regarding to Table 3, PABC, PHSS and PSO produce the 

smallest solutions in most of the cases. In Table 4, PHSS, 

IRPS, Jenny, PABC, and PPST produce the optimal test 

suite for S1. PABC, PHSS, ACA, GA, SA, PSO and IRPS 

produce the least limit for S2. The AETG outpaces all 

strategies in S3. PHSS outdo all strategies in S4 excluding 

IRPS. While in S5, PHSS produces an acceptable result with 

regard to TVG, AllPairs, TConfig, G2Way, IPO, and IPOG 

while IRPS creates the optimal result. The SA produces the 

optimal result in S6 case.  PHSS produces the optimal test 

suite in magnitude than all approaches in S7. In S7, PHSS 

produces an acceptable result with regard to TVG, PICT, 

CTX-XL, TConfig, AllPairs, IPO, IPOG and G2Way. 

Taking into consideration the size of the test suite for S8, 

GA&SA outpaces other strategies. In the case of the S9, 

Jenny generates the greatest size. As for S10, ACA and GA 

outpace all other strategies. Lastly, in the case of S10, IPOG 

outpace other strategies. 

After considering all of the outcomes, two understated 

conclusions may be deduced. Primarily, no solitary strategy 

can assert control. Additionally, Natural search-based 

strategies tend to outpace other strategies. PABC, PPSTG, 

ACA, SA, PHSS and GA mostly provide competitive 

outcomes about other computational centered approaches. 

This outcome is anticipated as the aforementioned existing 

strategies that have their base from optimization processes. 

 
Table 2 

CA (N; 2, V10), V is variable from 3 to 10 
 

V PHSS jenny IPOG TConfig CTE_XL PICT TVG PABC 

 b b b B b b b B 

3 17 19 20 17 18 18 18 *16 

4 28*  30 31 31 33 31 33 30 

5 43*  45 50 48 50 47 50 46 

6 60*  62 68 64 71 66 72 66 

7 79* 83 90 85 97 88 98 90 

8 105 104* 117 114 125 112 124 118 

9 127* 129 142 139 161 139 152 149 

10 155* 157 176 170 192 170 189 184 

 

Table 3 

 CA (N; 2, 2P), P is variable from 3 to 15 
 

P PHSS jenny IPOG TConfig CTE_XL PICT TVG PABC 

 b b b b b b b B 

3 4 5 4 4 6 4 4 4 

4 6 6 6 6 6 5 6 5 

5 6 7 6 6 6 7 6 6 

6 7 8 8 7 8 6 6 7 

7 7 8 8 9 8 7 8 7 

8 8 8 8 9 8 *7 8 8 

9 8 8 8 9 9 9 8 8 

10 8 10 10 9 9 9 9 8 

11 8 9 10 9 10 9 9 9 

12 9 10 10 9 10 9 10 9 

13 9 10 10 9 10 9 10 9 

14 10 10 10 9 10 10 10 9 

15 10 10 10 9 10 10 10 9 

 
 

 

 

Table 4 

Comparison with other existing strategies in terms of generated test suite for 11 system configurations 

 
S ACA CTE-XL TConfig AllPairs Jenny TVG PICT AETG mATEG SA GA IPO IPOG IRPS G2Way PSO PHSS PABC 

S1 NA 10 10 10 9 11 10 NA NA NA NA NA 11 9 10 9 9 9 

S2 9 10 10 10 13 12 13 9 11 9* 9 9 12 9 10 9 9 9 

S3 17 21 20 22 20 20 20 15* 17 16 17 17 20 17 19 18 18 20 

S4 159 192 170 177 157 189 170 NA NA NA 157 169 176 149* 160 156 155 184 

S5 NA NA NA 390 336 473 NA NA NA NA NA 361 373 321* 343 NA 341 427 

S6 225 NA NA 230 NA NA NA 180 198 183* 227 212 NA 210 200 213 224 283 

S7 NA 50 48 49 45 50 47 NA NA NA NA 47 50 45 46 45 43* 46 

S8 16 21 22 21 41 23 21 19 20 15 15 NA 19 17 23 17 20 20 

S9 32 39 33 NA 31* 41 38 34 35 NA 33 NA 36 NA NA 35 39 39 

S10 42 53 79 NA 51 52 46 45 44 NA 42 NA 44 NA NA 43 48 47 

S11 NA 102 92 NA 98 100 101 NA NA NA NA NA 91* NA NA 97 95 97 

 

VII. CONCLUSION 

 

In this paper, we have set a new strategy termed PABC 

centered on ABC algorithm for pairwise test case 

generation. The investigation results show that our PABC’s 

works well and overcomes other existing strategies in some 

cases measured. As part of the forthcoming work, we look 

further to develop the execution of PABC. Presently, we 

work to enhance great interaction strength and tackle the 

problem of constraints and seeding. 
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