
 e-ISSN: 2289-8131 Vol. 9 No. 1-2 103

Artificial Bee Colony Algorithm for Pairwise Test

Generation

Ammar K. Alazzawi1, Ameen A. Ba Homaid1, Alaa A. Alomoush1, AbdulRahman A. Alsewari1,2
1Faculty of Computer Systems & Software Engineering, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia.

2IBM Centre of Excellence.

ammarkareem91@gmail.com

Abstract—Our dependence on software applications has

become dramatic in many activities of our daily life as they

help to increase the efficiency of our tasks. These software

applications have many sets of input values, parameters,

software/hardware environments and system conditions, which

need to be tested to ensure software reliability and quality.

However, the whole comprehensive software testing is virtually

not possible due to marketing pressure and resource

constraints. In an attempt to solve this problem, there has been

a development of a number of sampling and pairwise strategies

in the literature. In this paper, we evaluated and proposed a

pairwise strategy named Pairwise Artificial Bee Colony

algorithm (PABC). According to the benchmarking results, the

PABC strategies outdo some existing strategies to generate a

test case in many of the system configurations taken into

consideration. In a case where PABC is not at its optimal stage

or its best performance, the experiments of a test case are

effectively competitive. PABC progresses as a means to achieve

the effective use of the artificial bee colony algorithm for

pairwise testing reduction.

Index Terms—Interaction Testing; Test Data Generation; T-

way Testing; Software Testing; Natural Based Search

Algorithms; Optimizations Problems.

I. INTRODUCTION

Similar to any other engineering processes, software

development is subjected to cost. Nowadays, software

testing (as a process of the SDLC) consumes most of the

time and cost spent on software development. This cost may

decrease rapidly as testing time decreases. Most of the time,

the software may be released without being tested

sufficiently because of marketing pressure as well as the

intention to save time and cut cost. However, releasing low-

quality software products to the market is no longer

acceptable because it may cause a loss of revenue or even a

loss of life. Therefore, software tester should build high-

quality test cases, which can detect the defects in the

software without exceeding the required testing time. In this

case, the test case minimization techniques take a great part

in reducing the number of test case size without affecting

their quality. Hence, the reduction of test cases, particularly

in the configurable software systems is a primary issue.

Recently, configurable software systems have gained

paramount usefulness in the market due to their capability to

change the way a software behaves via configuration. The

Traditional test techniques are essential for detecting and

preventing defects, but it is not meant for eliminating

defects due to the combinations of configuration and

components input [1]. We consider that all the combinations

configuration result in comprehensive testing, which is not

possible due to resource constraints and time factor. Some

test cases can be minimized if efficient test cases are

designed to have the same effect as comprehensive testing

[2].

In the past 20 years, the existing strategies of software

testing to solve the problem have been developed [3].

Among these techniques, the combinatorial testing

techniques are the most useful for designing test cases to

solve this problem. These strategies help find and produce

sets of tests to form a final test suite that helps in covering

the needed combinations in compliance with the

combination degree or strength. The degree begins from 2 (t

= 2, where t represents the degree or strength of

combinations).

We consider that all the sets that reduce to the minimum

test suite are a difficult computational optimization issue [4]

because finding the optimum set is an NP-hard issue

(nondeterministic polynomial time) hard problem [5].

Therefore, looking for an optimal combination of test cases

can be a challenging mission, and getting a unified strategy

in order to produce an optimal outcome is challenging.

There are two ways that can be taken to solve this issue

effectively and to get a close-optimal result. The first

direction utilizes computational algorithms using a

mathematical arrangement, while the other uses nature-

inspired algorithms [6].

Utilizing algorithms inspired by nature can produce extra

effective outcome than the computational algorithms with a

mathematical arrangement [6], [7]. Further, this method is

more flexible than the other methods because it can create

many combinatorial sets with various input levels and

factors. Therefore, its result is more useful because most

actual-world systems [8] have various input levels and

factors.

One of the major problems in pairwise is in the generation

of the best test case set (which is every pairwise interaction

is covered by only one test case whenever possible) from a

big probable test parameter numbers. Therefore, finding the

ideal test cases is a complicated issue of NP. It means that

any rise in the magnitude of the parameter causes the

exponential rises in the estimated computational time and in

the extent of the intricacy of the problem [9], [10]. Due to

this, a lot of strategies (and their tool execution) have been

structured in literature.

To address the problems above and as a completion of the

existing work, we have proposed the use of artificial bee

colony algorithm for pairwise strategy called pairwise

artificial bee colony algorithm (PABC) strategy.

This paper is organized as follows. Section I presents the

background for software testing and pairwise technique.

mailto:ammarkareem91@gmail.com

Journal of Telecommunication, Electronic and Computer Engineering

104 e-ISSN: 2289-8131 Vol. 9 No. 1-2

Section II covers an array of definition, while in Section III,

a model is illustrated using a display tab. Section IV reviews

the existing combinatorial test data generation strategies.

Section V illustrates the design and implementation of a

PABC, including the algorithms. Section VI discusses the

comparison results of the different experiments to evaluate

the performance of PABC. Finally, in section VII we present

our conclusions and the suggestions for future works.

II. COVERING ARRAY DEFINITION

T-way testing interaction test suite can be abstracted via

the covering array (CA) notations. Typically, the CA has 4

factors; t, N, v, and p, (CA (t, N, vp). The symbols t, p, and

v depict the number of interaction strength, parameters, and

values for the CA, correspondingly. For instance, CA (9, 2,

34) denotes a test suite entailing of 9x4 ranges (the rows

denote the test case size (N), and the column denotes the

parameter (p)). The sizes of the test suite encompass 2-way

interaction for a system with 4 three-value parameters.

Additionally, to CA there is MCA (mixed covering array)

with 3 parameters; t, C (Configuration) and N (i.e., MCA

(N, t, C)). In addition to t, and N that conveys a similar

meaning as in CA, the MCA employs a new symbol, C

which is consistent with the previously given

representations. C denotes the values and parameters of

every of the configurations in the given formats: v1p1,

v2p2… vnpn depicting that there are p1 parameters with v1

values, p2 parameters with v2 values till Vnpn. For example,

MCA (1265, 4, 102 41 32 27) shows the 1265 test size that

covers 4-way interaction. The MCA configuration requires

12 parameters, which are 2 ten-value parameters, 1 four-

value parameter, 2 three-value parameters, and 7 two-value

parameters.

III. PROBLEM STATEMENT

In this section, we present a short definition to explain the

connotation of t-way interaction testing. Consider a t-way

testing as a more effective technique to create the most

minimum test suite used to detect the mistakes of

interaction. The main concept of using t-way testing is to

show that not all parameters result in every parameter's

error.

Overall, every system consists of a number of factors,

which are called parameters with their value (that interact

together). To clarify the conception of t-way interaction

testing, we consider the display tab of a file as a simple

example for the basis of our problem as shown in Figure 1.

Figure 1: View of the folder

Figure 1 shows a screenshot of a display’s tab for the file.

The display's tab consists of five groups of features that

have one or more variable or parameters: the Navigation

pane group, preview pane and details pane group, layout

group and sorted by group. The display's tab of file provides

simple wide levels and factors (i.e., called parameters and

values).

The display’s tab consists of four parameters: one 4-value

parameters (i.e. Navigation pane), two 2-value parameters

(i.e. preview pane), one 8-value parameters (i.e. layout

group) and one 9-value parameters (i.e. sort by). ِ At all, it

has four system configuration. These system configurations

(SC) include variable values except the preview pane

parameter and detail's pane parameter, which include

"select" or "unselect." In cases of other parameters, they

include "select" or skipped "unselect." In case of “select" or

"unselect", we represent the value of the parameters as (on)

and (off) respectively.

The system configurations (SC) for the display tab are

explained in Figure 1. Based on Figure 1, we assume t = 211.

The covering array is represented as MCA (N, 2, 41 22 81

91). The total exhaustive combinations are (41 ×22 ×81 ×91 =

1152) test cases. These are virtually ineffective, if they were

done manually. If we assume to analyze a test case that

requires five minutes, it takes 96 hours to examine only the

display tab completely, which is probably not practical,

according to the testing standards.

Pairwise testing is a simple technique space by generating

a minimum test case, where the need for interaction strength

of degree t is covered at least only once (where t indicates

to the strength of degree). The use of pairwise testing

(t-way testing) in our example is as shown in Table 1. Only

72 test cases can cover every pairs of parameters value input

as minimum one time. Here, it lowers the number of test

cases from 1152 to 72. Table 1 shows the results of our

example with 10 times running, which includes minimum

test case, average size, time, average time and best time size.

Table 1

Result of Display Tab (MCA (N, 2, 41 22 81 91)).

t
Best

size

Avg.

size
Best time

Avg.

time

Best

Size times

2 72 72.4 20.536999940 21.09489994 6

IV. RELATED WORK

Overall the existing strategies for pairwise technique can

be classified into three groups, depending on the prevailing

approaches [12]:

A. Algebraic construction category

Here, the strategy for the construction of test sets is by

using the mathematical function or pre-defined rules [12].

Therefore, the computations involved in algebraic

approaches are typically lightweight, and in some cases,

algebraic approaches can generate the most optimal test

sets. However, the applicability of algebraic approaches is

often restricted to small configurations [12], [13]. OA

(Orthogonal arrays) [14], MOA (Mathematics of Arrays)

[15] TConfig [16] are great examples of the strategies that

depend on the algebraic approach.

Artificial Bee Colony Algorithm for Pairwise Test Generation

 e-ISSN: 2289-8131 Vol. 9 No. 1-2 105

B. Greedy algorithm category

The strategies in this category are mostly depending on

the creation of every of the pair combinations. Unlike the

algebraic approaches that depend on every pair of

combinations, the computational approaches explore

combinations space to produce the test cases needed until all

of the pairs have been covered. In this manner, this category

based strategies may typically be appropriate in large

system configurations. However, in the case where the

number of pairs to be considered is significantly large, then

implementing greedy algorithm based approach can become

very costly as a result of the necessity enumeration from all

the combination space. An example of the strategies that

employs this approach includes an AETG [17], [18], its

variation mAETG [19], IPO [20], PICT [21], Jenny [22],

TVG [23], IPOG [12], all pairs [24], CTE_XL [25], IRPS

[26], and G2Way [27].

AETG [17], [18] and its variant mAETG [11] use a

greedy random search algorithm depending on a 2-way

interaction pairing to get the final test suite. Therefore, the

created test case is not naturally deterministic. Regarding the

PICT (Doug, & Keith 2006), it generates all the determined

interaction first, and then randomly selects their

corresponding interaction combinations to form the test

cases as part of the complete test suite.

The IPO strategy [20] constructs an all-pairs test set for

the initial 2 parameters. The IPO strategy that encompasses

the test set covering the initial 3 parameters, is then in

continual: It encompasses the test set until it creates all pair

test set for the whole parameters. Apart from being

deterministic, encompassing a parameter at a time lets the

IPO strategy to attain a lesser rate of intricacy than the

AETG. Lately, this strategy has been protracted to handle

the advanced interaction strength in the improvement of the

IPOG [12].

Test data were generated in some phases by Jenny [22].

Initially, Jenny produces test data to cover the whole one-

way interaction. The initial phase test data will then be

extended by Jenny so as to greedily encompass that of two-

way interactions. Optionally, this method can be a continual

process till the nth number of way interactions as stated by

the user.

All pairs strategy ([24], CTE_XL [25] and TVG [23]

share the same property as much as generating deterministic

test cases is concerned though very few things are known

about the real algorithms used due to limited availability of

references.

The more contemporary strategies centered on the

computational approaches are G2Way [27], IRPS [26]. IRPS

focuses on effectual data structure for searching and storing

pairs, and it is deterministic in nature. In this way, IRPS

provides a comparatively fast effecting time when

comparison with other strategies is made. G2Way adopts a

backtracking algorithm to combine pairs to produce a

pairwise test suite. G2Way also backs automated

implementation of the produced test suite unlike other

strategies that does not.

C. Natural Search based category

Regarding the implementation of NS based algorithm,

much current work has started coming up to include particle

swarm optimization for pairwise test generation (PSO) [28],

pairwise harmony search strategy (PHSS) [29]-[32], genetic

algorithm (GA) [33], ant colony algorithm (ACA) [33], and

simulated annealing (SA) [34]. In GA, the test case creation

process always begins with random test data (referred to as

chromosomes later). The chromosomes will undergo

through a sequence of mutation progressions till certain

stopping criteria are met. The better chromosomes will be

chosen as an ultimate test suite. Regarding ACA, test case

creation process is simulating the colonies of ants that move

from one spot to the other (representing the parameter) to

get food (which represent the end of test case) through

several paths (correspond to values for every parameter).

The best route (gotten depending on the amount of the

pheromone left by the colonies of ants) depicts the greatest

value for a test case.

In a nut shell, SA adopts a probability based

transformation equation alongside with a greedy binary

exploration algorithm to get the best test case iteratively to

encompass all the needed (pairwise) interfaces from a

random selection space. Similarly, PSO, a PSO based

strategy, iteratively executes global and local searches to get

the candidate result to be added to a definitive suite till the

whole pairwise interactions are covered. HSS, adopts the

harmonic selection between the instruments.

V. ABC ALGORITHM

The ABC algorithm is designed to emulate the foraging

behavior of a honey bee colony. A typical honey bee swarm

consists of 3 essential segments: unemployed foragers

/employed foragers (bees) /food source. Employed foragers

are the bees that are employed at, and presently exploiting, a

particular source of food. These bees convey data relating to

the profitability direction and distance of the food source

and also connect the data with every single honeybee in the

hive. The unemployed honey bees are categorized as either a

scout honeybee or an onlooker bee. The later strives to get a

source for food with the use of the data given by the

employed honey bee, while the latter randomly searches the

surroundings to locate a new source of food (better) [35].

Presumably, an employed bee whose source food is depleted

becomes a scout bee and begins to look out for another new

source of food. Moreover, it assumes the aggregate number

of the employed honey bees has to be the same as the

number of sources of food. Imaginable, the position of a

source for food depicts a probable test cases out to the

optimization issue, though the quantity of a source of food

relates to the fitness (quality) of the associated test cases.

Primarily, the ABC produces a randomly distributed

population of SN test cases (positions of food source) in the

exploration space, where SN represents the onlooker bees

size or employed bees. Supposing the number of

optimization parameters is D, then each of the test cases xi (i

= 1, 2... SN) i basically will be a D-dimensional vector.

Every result produced here can be attained from the

Equation 1 [35];

𝑥𝑖𝑗 = 𝑥𝑚𝑖𝑛,𝑗 + 𝑟𝑎𝑛𝑑(0,1)(𝑥𝑚𝑎𝑥,𝑗 − 𝑥𝑚𝑖𝑛,𝑗) (1)

Here, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 depict both the upper and lower

boundary parameters for the test cases 𝑥𝑖, while in

dimension j (j=1, 2… D), and Rand [0, 1] is a scaling factor

representing a random integer between [0,1]. The positions

of the food source (D-dimensional results) produced in the

initial step (C=0) are liable to repeating cycles C= (1, 2…,

Journal of Telecommunication, Electronic and Computer Engineering

106 e-ISSN: 2289-8131 Vol. 9 No. 1-2

MCN), until a termination criterion is satisfied. Both the

local and the global probable selection/search are

implemented in a single cycle ABC. Each cycle comprises a

number of responsibilities executed by various types of

honey bee. These processes are principally independent,

which can be elucidated in a distinct way as shown below,

for more clarification of the ABC methodology:

A. Employed Bee phase

After the employed bee has been allocated to their sources

of food, these honey bees assess the capability of their test

cases s (sources) and converse the data with the onlooker

honey bees. In addition, every of the employed honey bee

produces a candidate food position (test cases) by

perturbing the old source of food (test cases) if (𝑥𝑖𝑗) in its

memory, using Equation 2 [35]:

𝑣𝑖𝑗 = 𝑥𝑖𝑗 + 𝑟𝑎𝑛𝑑[−1,1](𝑥𝑖𝑗 − 𝑥𝑘𝑗) (2)

Here, j∈{1,2,...,D} and k ∈{1,2,..., SN} (k ≠ i) are

randomly selected indexes, and Rand [-1,+1] is a random

number between [-1,1], which works as a scaling factor. It is

obvious that as the optimal result in the search space is

approached, this perturbation on result gets decreased. The

capability of the perturbed (new) result will also be assessed

by the employed bee, and in case when better fitness values

are found, the new test cases replaces the old one in the

memory of that employed bee (a greedy-selection scheme).

B. Onlooker Bee phase

The main duty of an onlooker bee is to choose a test

cases (source of food), based on the possibility quantity

associated with the source of food, Pi, which is evaluated by

Equation 3 [36]:

𝑃𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑛
𝑠𝑛
𝑛=1

 (3)

where, fit denotes the fitness value of a given test cases, and

the subscript index depicts the test cases number. This

probable choice is affected by relating Pi against a randomly

chosen number between [0, 1]. The selection is approved if

the generated random number is lesser or equivalent to Pi , if

otherwise it will be rejected. The duty of the onlooker honey

bee to a specified test cases will be approved if the

equivalent probable selection is sanctioned. Normally, in the

minimization problems, the fitness value of test cases s is

calculated by Equation 4:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = {

1

1 + 𝑓𝑖
 , 𝑖𝑓 𝑓𝑖 ≥0

1 + |𝑓𝑖|, 𝑖𝑓𝑓𝑖 <0

 (4)

where, 𝑓𝑖 is the value of the objective function for test

cases. After the selection of a food source (test cases) with a

Pi possibility, the onlooker honey bee will select a new test

cases (source of food) in the area of the preceding one in her

memory, using Equation 2. In case the new test cases (food

source) has a better fitness value, then an onlooker honey

bee will update the new test cases (food source) in her mind,

and forgets the old one, similar to the case with the

employed bees.

C. Scout Bee phase

The duty of scout bees is to randomly explore the entire

search space to get an improved (new) result to the overall

optimization problem. Unlike the situation with onlooker

/employed honey bees (where they are bound to create trial

result round an old result), the scout honey bees are not

bounded in this sense. The scout bees draw their samples

from a wide set of D-dimensional vectors, so far it is inside

the boundaries of the search space. In ABC, if a (non-

global) test case cannot be developed further after a pre-

determined number of cycles, then the test cases will be

neglected, and the employed Bee allocated to that exact

position will transform to a scout bee with essentially scout-

type functionality. The value of this pre-determined number

of cycles, which is termed the limit, will therefore be an

important control parameter in the algorithm. In practice, the

limit is estimated via Equation 5:

limit = c * ne * D (5)

where, ne is the number of unemployed bees, and where c is

a coefficient constant with an acclaimed value of 1 or 0.5

[17], [18]. However, one scout bee must exist during the

implementation of ABC. The scout type processes give an

excellent ability to the ABC process in getting the

paramount global result, by creating stochastic inquiry in the

whole D-dimensional area. This is to say that scout bees will

independently search for a global optimal result, while all

other types of bee (onlooker /employed) are concurrently

scrutinizing their confined candidate test cases s for the

overall best. For this reason, the probability of being

ensnared in local optimum will never be appropriate to

ABC.

VI. BENCHMARKING RESULTS

This section employed prevailing relative

experimentations, which are stated in [26], [27], [29], [33].

So as to standardize the PABC strategy alongside the

existing approach, we split our comparison into 2 parts. In

the initial fragment, a system configuration with ten V-

valued parameters were selected, where V varies (from three

to ten) also a system configuration with P 2-valued

parameters were selected, where P varies (from three to

fifteen). The goal is to explore how PABC acts as regards

changing P and V. For the second fragment, a number of

system configurations into 11 groups to compare the

performance of PABC alongside other strategies. The

configurations are shown below:

S1 = CA (N, 2, 33)

S2 = CA (N, 2, 34)

S3 = CA (N, 2, 313)

S4 = CA (N, 2, 1010)

S5 = CA (N, 2, 1510)

S6 = CA (N, 2, 1020)

S7 = CA (N, 2, 510)

S8 = MCA (N, 2, 51 38 22)

S9 = MCA (N, 2, 61 51 46 38 23)

S10 = MCA (N, 2, 71 61 51 46 38 23)

S11 = MCA (N, 2, 101 91 81 71 61 51 41 31 21)

The shaded cells with asterisk (*) in Table 2 to 4 show the

minimum generated size (test suite) for every strategy, and

Artificial Bee Colony Algorithm for Pairwise Test Generation

 e-ISSN: 2289-8131 Vol. 9 No. 1-2 107

the shaded cells without an asterisk generated competitive

sizes with other strategies. The marked cells by not available

(NA) indicate that the results for these strategies are not

reported in their publications. According to Table 2, it is

obvious that PABC generates the most optimal test case in

only one when V = 3, unlike to the PHSS is not affected by

the number of value or parameters, where PHSS

outperforms with all other strategies except in case when v =

8.

Regarding to Table 3, PABC, PHSS and PSO produce the

smallest solutions in most of the cases. In Table 4, PHSS,

IRPS, Jenny, PABC, and PPST produce the optimal test

suite for S1. PABC, PHSS, ACA, GA, SA, PSO and IRPS

produce the least limit for S2. The AETG outpaces all

strategies in S3. PHSS outdo all strategies in S4 excluding

IRPS. While in S5, PHSS produces an acceptable result with

regard to TVG, AllPairs, TConfig, G2Way, IPO, and IPOG

while IRPS creates the optimal result. The SA produces the

optimal result in S6 case. PHSS produces the optimal test

suite in magnitude than all approaches in S7. In S7, PHSS

produces an acceptable result with regard to TVG, PICT,

CTX-XL, TConfig, AllPairs, IPO, IPOG and G2Way.

Taking into consideration the size of the test suite for S8,

GA&SA outpaces other strategies. In the case of the S9,

Jenny generates the greatest size. As for S10, ACA and GA

outpace all other strategies. Lastly, in the case of S10, IPOG

outpace other strategies.

After considering all of the outcomes, two understated

conclusions may be deduced. Primarily, no solitary strategy

can assert control. Additionally, Natural search-based

strategies tend to outpace other strategies. PABC, PPSTG,

ACA, SA, PHSS and GA mostly provide competitive

outcomes about other computational centered approaches.

This outcome is anticipated as the aforementioned existing

strategies that have their base from optimization processes.

Table 2

CA (N; 2, V10), V is variable from 3 to 10

V PHSS jenny IPOG TConfig CTE_XL PICT TVG PABC

 b b b B b b b B

3 17 19 20 17 18 18 18 *16

4 28* 30 31 31 33 31 33 30

5 43* 45 50 48 50 47 50 46

6 60* 62 68 64 71 66 72 66

7 79* 83 90 85 97 88 98 90

8 105 104* 117 114 125 112 124 118

9 127* 129 142 139 161 139 152 149

10 155* 157 176 170 192 170 189 184

Table 3

 CA (N; 2, 2P), P is variable from 3 to 15

P PHSS jenny IPOG TConfig CTE_XL PICT TVG PABC

 b b b b b b b B

3 4 5 4 4 6 4 4 4

4 6 6 6 6 6 5 6 5

5 6 7 6 6 6 7 6 6

6 7 8 8 7 8 6 6 7

7 7 8 8 9 8 7 8 7

8 8 8 8 9 8 *7 8 8

9 8 8 8 9 9 9 8 8

10 8 10 10 9 9 9 9 8

11 8 9 10 9 10 9 9 9

12 9 10 10 9 10 9 10 9

13 9 10 10 9 10 9 10 9

14 10 10 10 9 10 10 10 9

15 10 10 10 9 10 10 10 9

Table 4

Comparison with other existing strategies in terms of generated test suite for 11 system configurations

S ACA CTE-XL TConfig AllPairs Jenny TVG PICT AETG mATEG SA GA IPO IPOG IRPS G2Way PSO PHSS PABC

S1 NA 10 10 10 9 11 10 NA NA NA NA NA 11 9 10 9 9 9

S2 9 10 10 10 13 12 13 9 11 9* 9 9 12 9 10 9 9 9

S3 17 21 20 22 20 20 20 15* 17 16 17 17 20 17 19 18 18 20

S4 159 192 170 177 157 189 170 NA NA NA 157 169 176 149* 160 156 155 184

S5 NA NA NA 390 336 473 NA NA NA NA NA 361 373 321* 343 NA 341 427

S6 225 NA NA 230 NA NA NA 180 198 183* 227 212 NA 210 200 213 224 283

S7 NA 50 48 49 45 50 47 NA NA NA NA 47 50 45 46 45 43* 46

S8 16 21 22 21 41 23 21 19 20 15 15 NA 19 17 23 17 20 20

S9 32 39 33 NA 31* 41 38 34 35 NA 33 NA 36 NA NA 35 39 39

S10 42 53 79 NA 51 52 46 45 44 NA 42 NA 44 NA NA 43 48 47

S11 NA 102 92 NA 98 100 101 NA NA NA NA NA 91* NA NA 97 95 97

VII. CONCLUSION

In this paper, we have set a new strategy termed PABC

centered on ABC algorithm for pairwise test case

generation. The investigation results show that our PABC’s

works well and overcomes other existing strategies in some

cases measured. As part of the forthcoming work, we look

further to develop the execution of PABC. Presently, we

work to enhance great interaction strength and tackle the

problem of constraints and seeding.

ACKNOWLEDGMENT

This research is partially funded by UMP RDU130366

Short Term Grant: Development of a Pairwise Testing Tool

with Constraint and Seeding Support Based on and

Optimization Algorithm, UMP RDU150369: A new Hybrid

Variable Interaction Strength Test Data Generation Strategy

Based on Harmony Search Algorithm and Cuckoo Search

Algorithm, UMP RDU Grant: Modified Greedy Algorithm

Strategy for Combinatorial Testing Problem with

Constraints Supports, and FRGS RDU130119 Grant: Input

Output Relations Harmony Search T-way Testing Strategy.

REFERENCES

[1] M. B. Cohen, M. B. Dwyer, and J. Shi, "Interaction testing of highly-

configurable systems in the presence of constraints," in Proceedings

of the 2007 international symposium on Software testing and analysis,

(2007) 129-139.
[2] Y. A. Alsariera, M. A. Majid, and K. Z. Zamli, "A Bat-inspired

Strategy for Pairwise Testing," ARPN Journal of Engineering and

Applied Sciences, vol. 10, (2015) 8500-8506.
[3] Y. A. Alsariera, A. M. Nasser, and K. Z. Zamli, "Benchmarking of

Bat-inspired interaction testing strategy," International Journal of

Computer Science and Information Engineering (IJCSIE), vol. 7,
(2016) 71-79.

[4] V. V. Kuliamin and A. Petukhov, "A survey of methods for

constructing covering arrays," Programming and Computer Software,
vol. 37, (2011) 121-146.

[5] A. Ouaarab, B. Ahiod, and X.-S. Yang, "Discrete cuckoo search

algorithm for the travelling salesman problem," Neural Computing
and Applications, vol. 24, (2014) 1659-1669.

[6] C. Nie and H. Leung, "A survey of combinatorial testing," ACM

Computing Surveys (CSUR), vol. 43, (2011) 11.
[7] P. McMinn, "Search-based software test data generation: A survey,"

Software Testing Verification and Reliability, vol. 14, (2014) 105-

156.

Journal of Telecommunication, Electronic and Computer Engineering

108 e-ISSN: 2289-8131 Vol. 9 No. 1-2

[8] Y. A. Alsariera and K. Z. Zamli, "A Bat-inspired strategy for t-way

interaction testing," Advanced Science Letters, vol. 21, (2015) 2281-
2284.

[9] P. Danziger, E. Mendelsohn, L. Moura, and B. Stevens, "Covering

arrays avoiding forbidden edges," Theoretical Computer Science, vol.
410, (2009) 5403-5414.

[10] X. Yuan, M. B. Cohen, and A. M. Memon, "GUI interaction testing:

Incorporating event context," Software Engineering, IEEE
Transactions on, vol. 37, (2011) 559-574.

[11] M. B. Cohen, "Designing test suites for software interaction testing,"

AUCKLAND UNIV(NEW ZEALAND), (2004).
[12] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, "IPOG: A

general strategy for t-way software testing," in Engineering of

Computer-Based Systems, ECBS'07. 14th Annual IEEE International
Conference and Workshops, (2007) 549-556.

[13] J. Yan and J. Zhang, "A backtracking search tool for constructing

combinatorial test suites," Journal of Systems and Software, vol. 81,
(2008) 1681-1693.

[14] A. S. Hedayat, N. J. A. Sloane, and J. Stufken, Orthogonal arrays:

theory and applications: Springer Science & Business Media, (1999).
[15] R. Mandl, "Orthogonal Latin squares: an application of experiment

design to compiler testing," Communications of the ACM, vol. 28,

(1985) 1054-1058.
[16] W. AW, (2002) "TConfig,".

[17] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, "The

AETG system: An approach to testing based on combinatorial
design," IEEE Transactions on Software Engineering, vol. 23, (1997)

437-444.
[18] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton, "The

combinatorial design approach to automatic test generation," IEEE

software, vol. 13, (1996) 83-88.
[19] C. J. Colbourn, M. B. Cohen, and R. Turban, "A deterministic density

algorithm for pairwise interaction coverage," in IASTED Conf. on

Software Engineering, (2004) 345-352.
[20] Y. Lei and K.-C. Tai, "In-parameter-order: A test generation strategy

for pairwise testing," in the Third IEEE International on High-

Assurance Systems Engineering Symposium, (1998) 254-261.
[21] D. H. Keith, (2006) "PICT.,".

[22] Jenkins, (2003) "Test Tool,".

[23] J. Arshem, (2010) "TVG ", ed.
[24] B. J, (2001) "Allpairs Test Case Generation Tool."

[25] E. Lehmann and J. Wegener, "Test case design by means of the CTE

XL," in Proceedings of the 8th European International Conference on
Software Testing, Analysis & Review (EuroSTAR2000), (2000);

Kopenhagen, Denmark.

[26] M. I. Younis, K. Z. Zamli, and N. A. M. Isa, "IRPS–an efficient test
data generation strategy for pairwise testing," in Knowledge-Based

Intelligent Information and Engineering Systems, (2008) 493-500.

[27] M. F. Klaib, K. Z. Zamli, N. A. M. Isa, M. I. Younis, and R.
Abdullah, "G2Way a backtracking strategy for pairwise test data

generation," in Software Engineering Conference, 2008. APSEC'08.

15th Asia-Pacific, (2008) 463-470.
[28] X. Chen, Q. Gu, J. Qi, and D. Chen, "Applying particle swarm

optimization to pairwise testing," in Computer Software and

Applications Conference (COMPSAC), 2010 IEEE 34th Annual,
(2010) 107-116.

[29] A. R. A. Alsewari and K. Z. Zamli, "A harmony search based

pairwise sampling strategy for combinatorial testing," International
Journal of the Physical Sciences, vol. 7, (2012) 1062-1072.

[30] A. R. A. Alsewari, M. I. Younis, and K. Z. Zamli, "Generation of

Pairwise Test Sets using a Harmony Search Algorithm,"
COMPUTER SCIENCE LETTERS, vol. 3, (2011).

[31] A. R. A. Alsewari and K. Z. Zamli, "Design and implementation of a

harmony-search-based variable-strength t-way testing strategy with
constraints support," Information and Software Technology, vol. 54,

(2012) 553-568.

[32] A. R. A. Alsewari, N. Khamis, and K. Z. Zamli, "Greedy interaction
elements coverage analysis for AI-based t-way strategies," Malaysian

Journal of Computer Science, vol. 26, (2013) 23-33.
[33] T. Shiba, T. Tsuchiya, and T. Kikuno, "Using artificial life techniques

to generate test cases for combinatorial testing," in the 28th Annual

International on Computer Software and Applications Conference,
COMPSAC2004, (2004) 72-77.

[34] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Colbourn,

"Constructing test suites for interaction testing," in Software
Engineering, 2003. Proceedings. 25th International Conference on,

(2003) 38-48.

[35] D. Karaboga and B. Akay, "A comparative study of artificial bee
colony algorithm," Applied mathematics and computation, vol. 214,

(2009) 108-132.

[36] D. Karaboga and C. Ozturk, "A novel clustering approach: Artificial
Bee Colony (ABC) algorithm," Applied soft computing, vol. 11,

(2011) 652-657.

