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Abstract—This study describes a proposed method to 

determine the most optimal level of process parameters, 

considering multiple electrical properties of titanium 

dioxide/tungsten silicide (TiO2/WSix)-based vertical double-gate 

MOSFET. The proposed method utilizes a combination of  the 

L9 orthogonal array (OA) of Taguchi-based grey relational 

analysis (GRA) and the artificial neural network (ANN). The 

VTH implant energy, halo implant dose, source/drain (S/D) 

implant dose and S/D implant tilt angle are the selected processs 

parameters to be optimized for the optimal value of on-current 

(ION), off-current (IOFF) and subthreshold slope (SS). The design 

of experiment (DoE) is based on the L9 OA of Taguchi method 

and the experimental value for multiple electrical properties are 

converted into a grey relational grade (GRG). The well-trained 

ANN based on the Levenberg-Marquardt algorithm is 

developed to predict the best optimization results. The most 

optimal level of four process parameters towards ION, IOFF and 

SS are selected based on the highest GRG predicted by well-

trained ANN. The most optimal value for ION, IOFF and SS after 

the optimization are observed to be 1612.1 µA/µm, 8.801E-10 

A/µm and 67.74 mV/dec respectively with 0.7417 of predicted 

GRG. 

 

Index Terms—ANN, GRG, off-current, on-current 

 

I. INTRODUCTION 

 

Ion implantation has been the dominating doping technique 

for silicon-based Metal-oxide-semiconductor Field Effect 

Transistor (MOSFET). It is still expected that ion 

implantation will remain as the main doping technique for 

future MOSFET technology. Ion implantation is a process 

where dopant is introduced to the silicon substrate using 

chemical materials such as boron, arsenic, indium and etc [1]. 

These materials are ionized and accelerated to a large amount 

of energy to form a perfect silicon surface. The implantation 

energies vary between 1.0kev to 1.0Mev, depending on the 

device’s dimension [2]. For threshold voltage adjustment, the 

implant concentration vary from 1012 atom/cm-3 to 1018 

atom/cm-3 [3].  Other types of ion implantation are known as 

halo implantation and source/drain (S/D) implantation. 

Ion implantation consists of parameters such as the amount 

of dopant dosage, energy level and also the implant tilt angle 

which are required to be considered in MOSFET fabrication. 

The variations of these parameters are very crucial in order to 

control the the doping profile of MOSFETs [4]. There may 

be a reason to use a high or a low angle implant to introduce 

dopant underneath the gate of the MOSFET. For the purpose 

of the short channel effect (SCE) mitigation, doping so called 

‘halo’ is developed by high tilt angle under the edge of the 

gate [5]. In most cases, the variations due to ion implantation 

process may influence the electrical properties of the 

MOSFETs [6], [7]. Therefore, special techniques involving 

planned and analytical experiments are required to identify 

the parameters that contribute the most of these variations.  

Ramakrishnan in his technical report proposed a statistical 

method based on response surface methodology (RSM) to 

study the impact of process parameter fluctuations on 

electrical properties of 65nm MOSFET technology [8]. The 

results showed that ion implantation process are ranked 

among the top contributors of varying the electrical properties 

of MOSFETs. However, the implementation of RSM requires 

a lot of experiment runs and data in order to get the best 

results. An alternative solution besides RSM is known as 

Taguchi method which requires less experiment runs due to 

its special orthogonal array (OA) [9]. Salehuddin et al. in their 

reports employed Taguchi method to optimize multiple 

process parameters of 45nm MOSFETs to obtain the best 

electrical properties in accordance with the prediction of 

International Technology Roadmap (ITRS) [10], [11]. On top 

of that, Afifah Maheran et al. also utilized Taguchi method to 

tune threshold voltage (VTH) and off-current (IOFF) in 22nm 

gate length high-k/metal-gate MOSFETs [12], [13].  

Although, Taguchi method offers less experiment runs and 

more simple approach, it is however restricted to a single 

electrical property where it is only capable of optimizing one 

electrical property at a time.  Hence, the grey relational 

analysis (GRA) is combined with Taguchi method to solve 

multiple objective problems where multiple electrical 

properties can be optimized simultaneously [14]. A lot of 

previous reports have employed the Taguchi-based GRA 

approach to solve multiple objective problems in many 

engineering fields [15]–[17].  Another limitation of Taguchi 

method is that it can only find optimal solutions within the 

specified level of process parameters. Once the optimal level 

of process parameters are identified, the feasible solution 

space is constrained. Taguchi method is only capable of 

addressing discrete process parameters, not continuous 

process parameters [18]. Therefore artificial neural network 

(ANN) is introduced to Taguchi-based GRA, becoming a 

robust optimizer in finding the best solutions.  

ANN is a non linear function, accurately representing a 

complex relationship between inputs and outputs [19], [20]. 

A trained ANN model has also been utilized to predict the 

output for specified input. Lin (2012) [18] described an 

application of ANN to optimize the weld bead geometry in a 

novel gas metal arc welding process. The results showed that 
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the well-trained ANN did enhance the efficiency of 

optimization approach in determining the best welding 

process parameter with consideration of multiple 

performance characteristics.  Kenghe & Patare (2015) [21] 

utilized a combination of GRA and ANN  to predict and 

analyze the effectiveness of parameters of specific wear rate 

of bearing materials. The results proved that the back 

propagation ANN do enhance the GRA performance to 

simultaneously optimize the wear and friction characteristics 

of bearing material. Yadav et al. (2015) [22] provided the 

details implementation of ANN fitting tool for prediction of 

solar radiations data from 14 cities of Himachal Pradesh 

India. The latitude, longitude, atmospheric preassure were 

selected as inputs while the wind speed and solar radiations 

were selected as outputs. The results showed that the 

correlation value (R) is 95.80%, implying good agreement 

between measured values and predicted ANN values.  

This paper presents a method that combines L9 OA of 

Taguchi method, GRA and ANN to model and optimize the 

on-current (ION), off-current (IOFF) and subthreshold slope 

(SS) simultaneously in the TiO2/WSix-based vertical double-

gate (DG) MOSFET. The proposed method consists of two 

stages. First stage is the initial optimization using L9 OA of 

Taguchi-based GRA. The second stage is the utilization of an 

ANN with Levenberg-Marquardt back-propagation (LMBP) 

algorithm to develop a well-trained ANN model, thus 

predicting the most optimal process parameters. The work-

flow of the proposed method, combining L9 OA of Taguchi 

method, GRA and ANN is depicted Figure 1. The ANN 

application of MATLAB toolbox was used to develop the 

well-trained ANN model for robust optimization. 

 

II. DEVICE SIMULATION 

 

A. TiO2/WSix-based Vertical Double-gate MOSFET 

Design 

 

A 2-D simulation for 10nm gate length (Lg) TiO2/WSix-

based vertical double-gate n-channel MOSFET was 

performed using ATHENA module of Silvaco TCAD tools. 

The geometric design was contructed based on the previous 

report in [23], [24]. Table 1 shows the physical parameters 

used in the simulated device. The 2-D cross-section of the 

device which define the physical parameters like gate length 

(Lg), channel length (Lc), silicon pillar’s height (Hsp) and etc. 

are illustrated in Figure 2. 

 
 

Figure 1: Work-flow of the Experimental Procedure 

 

Table 1 
 Physical Parameters used in  the Simulated TiO2/WSix-based Vertical  

Double-gate MOSFET 

 

Parameters Value  

Gate Length (Lg) 10 nm 

Gate Thickness (Tg) 9 nm 

Silicon Pillar Height (Hsp) 14 nm 
Silicon Pillar Thickness (Tsp) 15 nm 

TiO2 Thickness 3 nm 

Spacer Nitride Thickness (TSi3Ni4) 15 nm 
Channel Length (Lc) 20 nm 

Metal-gate Workfunction (WF) 4.5 eV 

 

 


 

Figure  2: Cross section of 10nm Lg of WSix/TiO2-based Vertical Double-

gate NMOS 

 
B. Device Simulation 

 

The device simulation of the 10nm gate length TiO2/WSix-

based vertical double-gate MOSFET was executed using an 

ATLAS module of Silvaco TCAD tools.  Figure 3 depicts the 

contour mode of the device, visualizing the tabulation of 

silicon, WSix, TiO2, silicon nitride (Si3Ni4) and aluminum. 

Figure 4 shows the subthreshold ID vs. VG curve at VD = 0.05 

V and VD = 1.0 V for the device. The initial value of ION, IOFF 

and SS were observed to be 1588.3 µA/µm, 8.477E-10 A/µm 

and 68.24 mV/dec respectively. The switching speed of the 

device is determined by the subthreshold slope (SS) which 

indicates how much gate voltage required to increase one 

decade of drain current (ID). The steeper the slope is, the faster 

the device will be. The SS characteristic was  extracted from 

the inverse slope of log10 ID  vs VGS characteristic shown in (1) 

[25]: 
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Figure 3:  Contour Mode of 10nm Lg of WSix/TiO2-based Vertical Double-

gate NMOS 

 

 

III. SIMULTANEOUS OPTIMIZATION OF ION, IOFF AND SS 

 

In this study, the L9 OA of Taguchi method was combined 

with a grey relational analysis (GRA) in order to optimize 

multiple electrical characteristics of the device. The L9 OA 

was selected for this study because it only deals with only 

four input process parameters. Furthermore, the L9 OA offers 

a simplified design of experiment (DoE), involving a 

minimum number of nine experiments, which significantly 

reduces time and cost. The steps for conducting a 

simultaneous optimization by using L9 OA of Taguchi-based 

GRA approach is shown in Figure 4. 
 

 
 

Figure 4:  Graph of subthreshold drain current (ID)-gate voltage (VG) 

 

A. L9 Orthogonal Array (OA) of Taguchi Method 

There are four process parameters selected in this study, 

which are VTH implant energy, halo implant dose, S/D 

implant dose and S/D implant tilt angle. These process 

parameters are the significant factors that contributes to the 

variation of ION, IOFF and SS [26], [27]. Since this study 

involved four process parameters, the L9 OA of Taguchi 

method was utilized to construct a design of experiment 

(DoE). Table 2 shows the detailed process parameters and 

their levels. Table 3 shows the multiple levels of process 

parameters with their corresponding electrical properties. The 

information in Table 3 was utilized to investigate the effects 

of process parameters on ION, IOFF and SS values.  

Table 2 
Process Parameters of TiO2/WSix-based Vertical Double-gate NMOS 

 

Sym. Process 
Parameter 

Units Level 1 Level 2 Level 3 

A VTH Implant 

Energy 

kev 20 22 24 

B Halo 
Implant 

Dose 

atom/c
m-3 

2.87E1
3 

2.89E1
3 

2.91E1
3 

C S/D 
Implant 

Dose 

atom/c
m-3 

2.21E1
8 

2.23E1
8 

2.25E1
8 

D S/D 
Implant Tilt 

Angle 

degree 76 77 78 

 
Table 3 

L9 Orthogonal Array Table for Responses 

 

Exp 
no. 

Parameter Level ION 
(V) 

IOFF (10-10) 

(A/µm) 

SS 

(mV/dec) A B C D 

1 1 1 1 1 1588.3 8.477 68.24 
2 1 2 2 2 1577.4 8.354 68.45 

3 1 3 3 3 1567.5 8.203 68.67 

4 2 1 2 3 1581.6 8.446 68.37 
5 2 2 3 1 1589.3 8.483 68.21 

6 2 3 1 2 1576.9 8.351 68.46 

7 3 1 3 2 1592.8 8.610 68.14 
8 3 2 1 3 1581.3 8.447 68.37 

9 3 3 2 1 1589 8.484 68.23 

  

B. Data Normalization 

Multiple electrical properties of the device were 

investigated using GRA. GRA approach allows multiple 

electrical properties like ION, IOFF and SS, being converted into 

a single grey relational grade (GRG). Initially, all the 

electrical properties retrieved from L9 OA of Taguchi method 

were normalized in the range of 0 to 1. These electrical 

characteristics are categorized into different performance 

characteristics where ION was classified into higher-the-better 

performance characteristics, while IOFF and SS were classified 

into lower-the-better performance characteristics. The 

following equations were used to normalize the electrical 

characteristics, respectively [28]: 
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where xi
*(k) and xi(k) are the sequence after data pre-

processing and comparability sequence. Table 4 shows the 

normalized sequence of all the responses based on their 

corresponding performance characteristics. 
 

Table 4 

Normalized Response Values for Conducted Experiments 
 

Exp. no ION IOFF SS 

Reference Sequence 1 1 1 

1 0.8221 0.3268 0.8113 
2 0.3913 0.6290 0.4151 

3 0 1 0 

4 0.5573 0.4029 0.5660 
5 0.8617 0.3120 0.8679 

6 0.3715 0.6364 0.3962 

7 1 0 1 
8 0.5455 0.4005 0.5660 

9 0.8498 0.3096 0.8302 
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C. Derivation Sequences 

∆oi (k) is the deviation sequence of the reference sequence 

xo
* (k) and the comparability sequence xi

*(k) as shown in (4) 

[28]: 



|)()(|)( ** kxkxk iooi 





The deviation sequences were calculated and summarized in 

Table 5. 
Table 5 

Deviation Sequences 

 

Deviation sequences ∆0i (1) ∆0i (2) ∆0i (3) 

Exp no. 1 0.1779 0.6732 0.1887 

Exp no. 2 0.6087 0.3710 0.5849 

Exp no. 3 1 0 1 
Exp no. 4 0.4427 0.5971 0.4340 

Exp no. 5 0.1383 0.6880 0.1321 

Exp no. 6 0.6285 0.3636 0.6038 
Exp no. 7 0 1 0 

Exp no. 8 0.4545 0.5995 0.4340 

Exp no. 9 0.1502 0.6904 0.1698 

 

D. Grey Relational Coefficient and Grade 

After data normalization is done, a grey relational 

coefficient (GRC) is computed with the pre-processed 

sequence. The GRC is defined as follows [28]: 
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where ξ is a n identification coefficient. Since all the process 

parameters are given and equal preference, ξ is taken as 0.5, 

while ∆max and ∆min are the maximum and minimum absolute 

difference. The GRG for each experiments was calculated by 

averaging the GRCs for ION, IOFF and SS. The rank of each 

experiment was tabulated based on the highest GRG as listed 

in Table 6. The higher level of GRG implies the quality of 

multi-response characteristics.  

 
Table 6 

GRC with GRG and Their Rank 

 

Exp. 
no. 

GRC GRG 
 

Rank 

ION ξi (1) IOFF  ξi (2) SS  ξi (3) 

1 0.7376 0.4262 0.7260 0.6299 4 

2 0.4510 0.5741 0.4609 0.4953 8 

3 0.3333 1 0.3333 0.5555 5 
4 0.5304 0.4557 0.5353 0.5071 6 

5 0.7833 0.4209 0.7910 0.6651 2 

6 0.4431 0.5790 0.4530 0.4917 9 
7 1 0.3333 1 0.7778 1 

8 0.5238 0.4548 0.5353 0.5046 7 

9 0.7690 0.4200 0.7465 0.6452 3 

 

E. GRG for Process Parameter Levels. 

Based on Table 6, experiment row no. 7 has the best 

multiple performance properties due to its highest GRG. Since 

the design of experiments is orthogonal, the GRG at different 

levels can be separate out. For example, the mean of the GRG 

for factor A (VTH implant energy) at level 1 can be computed 

by averaging the GRG at the experiment row 1 to 3 as level 1 

was allocated for column factor A as shown in Table 3. All the 

computed GRG for all the process parameters are listed  in 

Table 7. 

 

 

 

 

Table 7 
Average GRG by Process Parameter Levels 

 

Sym. Process Parameters Grey Relational Grade 

Level 1 Level 2 Level 3 

A VTH Implant Energy 0.5602 0.5546 0.6425 

B Halo Implant Dose 0.6383 0.5550 0.5641 

C S/D Implant Dose 0.5421 0.5492 0.6661 
D S/D Implant Tilt Angle 0.6467 0.5883 0.5224 

 

The GRGs for each process parameters were then converted 

into factor effect graph to clearly distinguish the optimal value 

for each of the process parameters as shown in Figure 4. 

Basically, the higher GRG indicates the better the overall 

quality of the electrical properties.  Figure 5 shows the most 

optimal value of process parameters based on the highest GRG 

which are  A3B1C3D1. The predicted GRG of the optimal level 

of process parameters for the device can be computed by using 

(7):  
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where is the total means of GRG , 


   is the mean of GRG at 

optimal level and q is the number of process parameters. The 

predicted GRG is calculated as follows: 
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Figure 5:  Factor effect plot of GRGs for Multiple Responses 
 

IV. OPTIMIZATION USING ARTIFICIAL NEURAL NETWORK 

 

Artificial neural network (ANN) is utilized to model 

complex manufacturing processes, typically process and 

quality control. The Levenberg-Marquardt back propagation 

(LMBP) algorithm is selected to model a well-trained ANN 

due to its faster training time. An ANN with the LMBP 

algorithm is used to provide the non-linear relationship 

between process parameters and GRG. The LMBP algorithm 

is the fastest algorithm for training multi-layer networks, 

despite of having a matrix inversion at each iteration. The 

development of a well-trained ANN was conducted using 

MATLAB application tools. Figure. 6 shows the interface 

between device simulator, Taguchi-based GRA and ANN. 

The device are simulated based on four variables. Then, the 

multiple characteristics, ION, IOFF, SS are converted into nine  

GRGs. The combination of the process parameters based on 

nine experiments and the nine GRGs are fed into neural 

network to be trained. Based on the training, nine predicted 
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GRGs are produced. The well trained network will be the 

medium to tune the best process parameter that will result in 

the most optimum value for ION, IOFF and SS. 

 

   

 

 

Device Simulator

(Silvaco Athena 

and Atlas)

L9 OA of 

Taguchi-based 

GRA

Training with 

ANN (nftool) 

using Neural 

Network 

Toolbox 10.00 

VTH Implant 

Energy

Halo Implant 

Dose

S/D Implant 

Dose

S/D Implant 

Tilt Angle

ION

IOFF

SS

Nine GRG 

values based 

on L9 OA

Nine Predicted 

GRG values 

 
Figure 6:  The interface between device simulator, Taguchi-based GRA and ANN 

 

A. Training of Back Propagation Network 

A feed forward back propagation network is typically 

consists of  an input layer, one or more hidden layers and one 

output layer. For this study, it takes set of four input values 

which are VTH implant energy, halo implant dose, S/D 

implant dose and S/D implant tilt angle and predicts one 

output value which is GRG. The transfer functions for all 

hidden neurons are set to be tangent sigmoid functions while 

the output neurons are set as a linear function. Figure 7 shows 

the topology of the network. Prediction outputs for ANN 

based on LMBP algorithm are shown in Table 8. The linear 

regression between network output and corresponding target 

is depicted in Figure 8. 

 

 

 

 
 

Figure 7:  The LMBP Network Topology 

 
Table 8 

Predicted GRGs via well-trained ANN 

 
Exp. 
no. 

Actual 
GRG 

 

Predicted GRG via 
Trained Network 

Net Error Rank 

1 0.6299 0.6219 0.0008 4 

2 0.4953 0.5081 0.0128 7 
3 0.5555 0.5048 0.0507 9 

4 0.5071 0.5263 0.0192 5 

5 0.6651 0.6598 0.0053 2 

6 0.4917 0.5070 0.0153 8 

7 0.7778 0.7267 0.0511 1 

8 0.5046 0.5185 0.0139 6 
9 0.6452 0.6283 0.0169 3 

 

 
 

Figure 8:  Regression Plot for LMBP Algorithm 
 

Based on the training results from Table 8, the predicted 

GRGs are very close and follow almost the similar trend as the 

actual GRGs with minimum percentage error. Figure 7 

indicates the dashed in each plot, representing the perfect 

results – outputs = targets while the solid line represents the 

best fit linear regression line between outputs and targets. The 

R value is an indication of the relationship between the outputs 

and targets. If R = 1, this indicates that there is an exact linear 

relationship between outputs and targets. If R is close to zero, 

then there is no linear relationship between outputs and 

targets. In this case, the training data indicate a good fit where 

R value is greater than 0.9. 

 

B. Simulation via a well-trained ANN 

The best level of  process parameters predicted via L9 OA 

of Taguchi-based GRA (A3B1C3D1) were simulated using a 

well-trained ANN. The predicted output (GRG) after the 
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simulation was observed to be 0.7393. There was a  slight net 

error for approximately 11.6% compared to the actual GRG 

(0.8362). In order to enhance the performance of the 

optimization process, the simulation via well-trained ANN 

was employed where one process parameter was varied into 

multiple level whereas the others remained constant at the 

predicted optimal level. 

The factor A (VTH implant energy) level was varied from 

24kev to 28kev, while the others were kept constant at the 

predicted optimal level (B1C3D1). For factor B (Halo implant 

dose), the level was varied from  2.83E13 atom/cm-3 to 

2.87E13 atom/cm-3, while the others were kept constant at the 

predicted optimal level (A3C3D1). Next, factor C (S/D 

implant dose) level was varied from 2.25E18 atom/cm-3 to 

2.29E18 atom/cm-3, while the others were kept constant at the 

predicted optimal level (A3B1D1). Lastly, factor D (S/D 

implant tilt angle) level was varied from 72o to 76o, while the 

others were fixed at the predicted optimal level (A3B1C3). The 

simulation results for factor A, B, C and D upon GRG are 

depicted in Figure 9, 10, 11 and 12 respectively. 

Based on the results, the optimal value of VTH implant 

energy, halo implant dose, S/D implant dose and S/D implant 

tilt angle for the highest predicted GRG were observed at 

28kev, 2.83E13 atom/cm-3, 2.29E18 atom/cm-3 and 74o 

respectively. Therefore, these parameter values predicted by 

a well-trained ANN were re-simulated using Silvaco TCAD 

tools in order to verify the optimization results. 

 


 

Figure 9:  Simulation Results for Multiple Levels of VTH Implant Energy 

 

 

 
 

Figure 10:  Simulation Results for Multiple Levels of Halo Implant Dose 

 

 

 
 

Figure 11:  Simulation Results for Multiple Levels of S/D Implant Dose 

 

 
 

Figure 12:  Simulation Results for Multiple Levels of S/D Implant Tilt 

Angle 

 

V.      VERIFICATION TEST 

 

The verification test was performed to verify the optimal 

combination level of process parameters  predicted by L9 OA 

of Taguchi-based GRA with ANN with the actual results. The 

simulation based on the predicted process parameters via 

Taguchi-based GRA with ANN was conducted using Silvaco 

TCAD tools. The results showed that the predicted GRA was  

0.7417. Table 9 shows the experimental results using the 

optimum process parameters predicted via by L9 OA of 

Taguchi-based GRA and L9 OA of Taguchi-based GRA with 

ANN.  
Table 9 

Results of Electrical Properties using L9 OA of Taguchi-based GRA only 

and with ANN 
 

Parameters& 

Electrical 
Properties 

Optimization 

via L9 OA of 
Taguchi-based 

GRA  

Optimization via 

using L9 OA of 
Taguchi-based 

GRA with ANN 

ITRS  2013 

Prediction 
[29] 

VTH Implant 

Energy (kev) 

24 28 N/A 

Halo Implant 

Dose (atom/cm-3) 

2.87E13 2.83E13 N/A 

S/D Implant 
Dose (atom/cm-3) 

2.25E18 2.29E18 N/A 

S/D Implant Tilt 

Angle (degree) 

76 74 N/A 

ION (µA/µm) 1599.3 1630.7 ≥ 1480 

IOFF (A/µm) 8.655E-10 9.031E-10 ≤ 100n 

SS (mV/dec) 68.02 67.44 N/A 
Predicted GRG 

via a well-trained 

ANN 

0.7393 0.7417 N/A 

Improvement in predicted GRG = 0.32 % 
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The predicted GRG of process parameters via L9 OA of 

Taguchi-based GRA with ANN owas slightly improved by 

0.32%. The highest predicted GRG indicates the closeness of 

the ION, IOFF and SS to their desired value. The ION value was 

improved by 1.92% after the optimization with a well-trained 

ANN. In fact, the ION was significantly increased by 9.24% 

compared to ITRS 2013 prediction. The IOFF value was 

observed to be increased by 4.16% after the optimization with 

a well-trained ANN. However, the IOFF value was still under 

100 A/µm as predicted by ITRS 2013 [29]. The SS value after 

the optimization via L9 OA of Taguchi-based GRA with ANN 

was slightly decreased by 0.85%. 

Hence,  it is concluded that the ION, IOFF and SS of the device 

can be simultaneously optimized using a L9 OA of Taguchi-

based GRA with ANN. Moreover, the robust optimization can 

be executed through the assistance of a well-trained ANN, 

predicting the values outside the specified level of process 

parameters. 

 

VI.  CONCLUSION 

 

In summary, multiple electrical properties of the 

TiO2/WSix-based vertical double-gate MOSFET have been 

simultaneously optimized via L9 OA of Taguchi-based GRA 

with a well-trained ANN. The multiple electrical properties 

such as ION, IOFF and SS were converted into a single multi-

performance characteristic, known as GRG. Four process 

parameters which were VTH implant energy, halo implant 

dose, S/D implant dose and S/D implant tilt angle were 

selected as the inputs of a network, while the GRG was 

selected as an output of a network. Based on LMBP 

algorithm, a well trained ANN for GRG prediction was 

successfully developed with a R-value = 0.98087. The 

simulation via a well-trained ANN predicted that the 28kev 

of VTH implant energy, 2.83E13 atom/cm-3 of halo implant 

dose, 2.29E18 atom/cm-3 of S/D implant dose and 74o of S/D 

implant tilt angle produced the highest GRG. The most 

optimal value for ION, IOFF and SS after the optimization were 

1612.1 µA/µm, 8.801E-10 A/µm and 67.74 mV/dec 

respectively with 0.7417 of predicted GRG. It can be 

concluded that the implementation of a well-trained ANN has 

successfully assisted the L9 OA of Taguchi-based GRA on 

finding the robust solution outside the specified level of 

process parameters. For future work, other device 

characteristics such as drain induced barrier lowering (DIBL), 

ION/OFF ratio and current density could be included in the 

optimization process which requires bigger sample size of 

DoE such as L27 and L36 orthogonal array. 
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