

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 9 No. 4 13

A New Architecture Based on Artificial Neural

Network and PSO Algorithm for Estimating

Software Development Effort

Amin Moradbeiky, Amid Khatibi Bardsiri

Islamic Azad University, Kerman Branch, Kerman, Iran

moradbeigi@itrc.ac.ir

Abstract— Software project management has always faced

challenges that have often had a great impact on the outcome

of projects in future. For this, Managers of software projects

always seek solutions against challenges. The implementation

of unguaranteed approaches or mere personal experiences by

managers does not necessarily suffice for solving the problems.

Therefore, the management area of software projects requires

tools and means helping software project managers confront

with challenges. The estimation of effort required for software

development is among such important challenges. In this study,

a neural-network-based architecture has been proposed that

makes use of PSO algorithm to increase its accuracy in

estimating software development effort. The architecture

suggested here has been tested by several datasets.

Furthermore, similar experiments were done on the datasets

using various widely used methods in estimating software

development. The results showed the accuracy of the proposed

model. The results of this research have applications for

researchers of software engineering and data mining.

Index Terms— Development Effort Estimation; Neural

Networks; Particle Swarm Optimization; Software Project.

I. INTRODUCTION

Due to the intangible nature of software, software

companies often have difficulty estimating the effort

required to complete software projects [1]. Software project

managers have always tried, in one way or another, to direct

and respond to challenges facing software projects. In this

regard, utilizing devices that would enable the managers of

these projects to predict the forthcoming situations of

projects or to assess the impact of decisions on the future of

a project has been of special interest to researchers. Such

instruments can play an important role in better

understanding the future conditions of projects, and they

usually operate in algorithmic or non-algorithmic ways.

Algorithmic methods are neatly formulated and work with

in specific framework. Regression-based approaches and

COCOMO method are among methods included in this

group. Non-algorithmic methods belong to another group

and they work in a more flexible way. In this way, we try to

predict future conditions with respect to the present

situation. Expert judgment method (EJM) is the first method

introduced in 1960 for estimating software development

effort [2]. Other methods such as COCOMO [3], Coco 2

[4], SLIM [5], and function points analysis [6] have been

formulated since then. These methods follow an algorithmic

manner. A number of studies have used linear regression [8]

[7], non-linear regression [7], and regression tree [9] [10]

methods. Including among algorithmic methods are

attribute-based estimation (ABE) [11] and its associated

compound methods [12] [13] [14] [15] [16].

Using artificial neural network is one of the simplest and

most applicable methods of data modeling. In this paper, we

have employed artificial neural network for modeling and

estimating software projects. In the next section, neural

network and its mathematical concept have been explained.

Afterwards, the criteria for evaluating the precision of the

estimation have been presented. Then, the proposed

architecture estimator, which is based on neural network,

has been described, and, eventually, tested.

II. NEURAL NETWORK

Neural networks are simplified modeling of real neural

systems that are widely used in solving various scientific

problems. The scope of these networks is quite vast, ranging

from classificatory applications to applications such as

interpolation, estimation, detection, etc. Perhaps the most

important advantage of these networks is their multiple

capabilities, along with their ease of use.

A. The Concept of Network

One of the most efficient methods to solve complex

problems is breaking them down into simpler sub-problems,

such that each of these sub-sectors could be easier to

understand and describe. In fact, a network is a collection of

simple structures that together describe the final complex

system. There are different types of networks, but they all

have two components in common:

1) A set of nodes, with each node being the computing

unit of the network which receives the inputs and processes

them so as to obtain the required outputs. The processes

performed by the nodes vary from simple ones - such as

input collection - to the most complex computations. In

special cases, a node may itself include a network.

2) Connections between nodes; these connections

determine how information will pass between the nodes.

The interaction between the nodes, resulted from these

connections, can lead to a general behavior displayed by the

network; this behavior is such that it cannot be observed in

any of the individual elements per se. The comprehensive

character of this general behavior, compared with the

performance of each single node, turns the network into a

powerful instrument. In short, when a simple set of elements

are combined in a network, they are able to exhibit a

behavior which none of the elements is able to produce

alone.

Journal of Telecommunication, Electronic and Computer Engineering

14 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 9 No. 4

B. Artificial Neural Network

As mentioned earlier, there are various types of networks.

Out of these variations, there is one which considers a node

as an artificial neuron. Technically, artificial neural network

(ANN) is the name applied to this computational approach.

An artificial neuron is actually a computational model that is

based on the nerve neurons of human being. Natural neurons

receive their input through the synapse. These synapses are

located on the dendrites or the neuronal membrane. In a real

nerve, dendrites change the amplitude of the received

pulses. This alteration is not of the same type across time.

Indeed, it is learned by the nerve. In case the signal is

sufficiently strong (i.e. if it surpasses the threshold value),

the nerve is activated and sends a signal across the axon.

This signal, in turn, could enter a synapse and stimulate

other nerves. Figure 1 illustrates a real nerve.

Figure. 1: A real nerve.

C. Mathematical Model of Artificial Neural Network

When modeling the nerves, one avoids their complexities

and pays attention only to their basic concepts; otherwise,

the modeling procedure will be very difficult. Apart from

the applied simplifications, the main difference between this

model and reality is that in the real network, inputs are

temporal signals while they are real numbers in this model.

There are many variations in the model presented in

Figure 2. For instance, the weights of a neural network,

which transmit the output, can be positive or negative. On

the other hand, there are diverse functions that can be used

for thresholding. Among the most famous of these

functions are arcsin, arctan, and sigmoid. These functions

must be continuous, smooth, and differentiable. Also, the

number of input nodes can be variable. Obviously, as the

number of nodes augments, it becomes difficult to determine

the weights. Therefore, one has to look at new ways of

solving this problem. The process of determining optimal

weights and setting their values is mainly recursive. For this

purpose, the network is trained by rules and data; and using

network learning capability, a variety of algorithms are

recommended, all of which aim to approximate the

produced output to the ideal and expected one.

Figure. 2: Mathematical Model of Artificial Neural Network

Equation 1 is the total equation that the neural network

follows. In this equation, X is the input vector, W is the

weight vector, and m is the input data dimension. The value

obtained from this equation was inserted into the activation

function, through which the output value was determined.

1

()
m

i i

i

bias W X


 (1)

III. EQUATIONS FOR ESTIMATION ERROR CALCULATION

In this study, to determine the estimation error, we have

employed certain equations that can be used by many

researchers in the field. Using these equations enables one to

compare the results of this study with other similar works.

The equations used in this article include relative error (RE),

magnitude of relative error (MRE), median magnitude of

relative error (MdMRE), and prediction percentage (PRED),

as shown in equations 2 to 5.

Estimate Actual
RE

Actual




(2)

Estimate Actual
MRE

Actual




(3)

()MdMRE median MRE
 (4)

()
A

PRED X
N



(5)

IV. THE PROPOSED MODEL

The purpose of this research is to use neural network for

data modeling and then to use the model for prediction.

Given that setting properly the parameters of an artificial

neural network helps the developed network to have a more

accurate model of its source data, we have suggested a

method for making such a model using neural network. This

new method makes use of the artificial intelligence

algorithm of PSO to accurately model data using artificial

neural network. The type of the neural network studied in

the present article wasfeedforward. PSO algorithm

configuration affects the accuracy of the results of the

A New Architecture Based on Artificial Neural Network and PSO Algorithm for Estimating Software Development Effort

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 9 No. 4 15

model. Different researchers have proposed different

configurations for PSO algorithm. In the present study, the

proposal of Russell et al was used to configure the PSO

algorithm [17]. According to this proposal, the best values

for parameters of C1, C2, and W are respectively 2, 2, and 1.

The model proposed in the present study consisted of two

sections: training and testing. The training section of the

proposed method tried to propose an accurate model of the

data. In order to evaluate the accuracy of the model obtained

from the training section, a separate architecture was used in

the testing section. The architecture of the testing section

estimated the amount of software development effort by

employing a model obtained from the training section. The

architecture of the training and testing sections is explained

in the following sections. The accuracy of the proposed

model was determined based on the accuracy of the model

in the testing section. To determine the accuracy of the

model, the formulas introduced in Section III were used. In

order to increase the reliability of the results obtained from

the proposed model, different datasets were utilized.

In the proposed model, the data have initially been

divided into the training and testing sections; in the training

section, as shown in Figure 3, PSO algorithm attempts to

search the best settings for building the network. Whenever

a specific setting is offered by the PSO algorithm, it is used

for prediction, and its associated error is calculated; then, it

is returned to the PSO algorithm as the setting feedback.

Searching continues until the predetermined termination

condition is fulfilled. The aim of this stage is to discover the

best settings of the neural network to generate a prediction

model with minimum error. The settings provided by PSO

algorithm for the neural network configuration include

determining the vector of bias values, weight, and the best

number of the hidden layers.

Figure. 3. Architecture of the train stage

In the training stage, a model was developed for

prediction; now, we need to test this model in order to assess

its accuracy. To test the model by the neural network, we

make use of the data considered for this stage. Figure 4

displays the architecture for the testing stage. The data of the

testing stage are estimated by the network one by one, and

the estimation error is calculated for each datum. The total

error of estimation process is also measured based on the

error of each datum, and it is introduced as the test result. In

the end, the total error of the estimation process was

calculated based on the estimation error of each datum.

Calculation of the error of each datum and the total error of

the model was conducted based on formulas introduced in

Section III. The distribution of the data in the training and

testing sections is a very important issue. The method of

data distribution indicates the reliability of the data obtained

from the model [18]. The method used in the present study

is explained in Section VI.

Figure. 4. Architecture of the testing stage

V. ASSESSMENT METHOD

In the estimation method via neural network, the

arrangement of samples in the testing or training groups has

a considerable impact on the obtained error as well as the

quality of network training [18]. Therefore, to demonstrate

the sustainability of the results of the proposed architecture,

we need a method to indicate the independence of results

from the location of samples. To achieve this end, there are

various assessment methods such as 3 fold, 10 fold, etc. In

this regard, the present study has used LOO method. In this

method, each time a project is considered as a test, and it is

estimated using the best parameters resulted from the testing

stage. In this method, the number of projects corresponds

to the number of running the testing stage. The value of

MdMRE is equal to the median error derived from

estimating each project.

VI. INTRODUCING DATASETS

Three datasets, including COCOMO, Desharnais, and

Maxwell have been employed to test the proposed model.

These datasets have been variously used by researchers. In

the following sections, they have been statistically analyzed

and tested.

A. Data analysis of COCOMO dataset

COCOMO dataset consists of 63 projects, each having 17

features. Table 1 analyzes the data existing in this dataset.

In this dataset, the last feature (‘actual’) is considered as the

aim of estimation.

Journal of Telecommunication, Electronic and Computer Engineering

16 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 9 No. 4

Table 1

COCOMO data analysis

Median Mean Minimum Maximum Feature

1 1.036349 0.75 1.4 'rely'

1 1.004444 0.94 1.16 'data'

1.07 1.092063 0.7 1.65 'cplx'

1.06 1.11381 1 1.66 'time'

1.06 1.14381 1 1.56 'stor'

1 1.008413 0.87 1.3 'virt'

1 0.971746 0.87 1.15 'turn'

0.86 0.905238 0.71 1.46 'acap'

1 0.948571 0.82 1.29 'aexp'

0.86 0.93746 0.7 1.42 'pcap'

1 1.005238 0.9 1.21 'vexp'

1 1.001429 0.95 1.14 'lexp'

1 1.004127 0.82 1.24 'modp'

1 1.016984 0.83 1.24 'tool'

1 1.048889 1 1.23 'sced'

25 77.20984 1.98 1150 'loc'

98 683.527 5.9 11400 'actual'

B. Data analysis of Desharnais dataset

This dataset includes 77 projects, and 10 features have

been evaluated numerically for each project. Table 2

presents the statistical characteristics of this dataset.

Table 2

Desharnaisdata analysis

Median Mean Minimum Maximum Feature

2 2.298 0 4 F1

3 2.649 0 7 F2

10 11.246 1 36 F3

134 179.805 9 886 F4

96 120.545 7 387 F5

259 285.35 92 793 F6

28 29.528 5 52 F7

247 272.509 83 698 F8

1 1.377 1 3 F9

3542 4795 651 14987 effort

C. Data analysis of Maxwell dataset

Another dataset examined here is Maxwell, which is

composed of 62 projects. This dataset has numerically

defined 26 features for each project and has so far been

investigated by many studies. Table 3 analyzes the data of

this dataset.
Table 3

Data analysis of Maxwell dataset

Median Mean Minimum Maximum Feature

2 2.354839 1 5 F1

2 2.612903 1 5 F2

1 1.032258 0 4 F3

2 1.935484 1 2 F4

2 1.870968 1 2 F5

0 0.241935 0 1 F6

3 2.548387 1 4 F7

3 3.048387 1 5 F8

3 3.048387 1 5 F9

3 3.032258 2 5 F10

3 3.193548 2 5 F11

3 3.048387 1 5 F12

3 2.903226 1 4 F13

3 3.241935 1 5 F14

4 3.806452 2 5 F15

4 4.064516 2 5 F16

4 3.612903 2 5 F17

3 3.419355 2 5 F18

4 3.822581 2 5 F19

3 3.064516 1 5 F20

3 3.258065 1 5 F21

3 3.33871 1 5 F22

13.5 17.20968 4 54 F23

385 673.3065 48 3643 F24

6 5.580645 1 9 F25

5189.5 8223.21 583 63694 effort

VII. TESTING THE DATASETS

In this section, the proposed architecture has been tested.

The purpose of testing this architecture has been to evaluate

its accuracy. The tests have been conducted on the datasets

discussed above. The results of the tests have been analyzed

and presented based on the type of each dataset. Using the

criteria and equations introduced in section III, we

calculated the architecture accuracy in the tests.

A. Testing Desharnais dataset

In the first test, we dealt with Desharnais dataset. The

characteristics of this dataset have been given in section

VI.B. The MdMRE value obtained by running the proposed

architecture through LOO evaluation method has been given

in Table 4. In this test, MdMRE and PRED were 0.3252 and

0.3636, respectively.
Table 4

The effectiveness of different estimation methods in Desharnais dataset

Pred MdMRE Approach
0.2987 0.4295 ABE K=2

0.3117 0.3921 ABE K=3
0.3247 0.3333 ABE K=4

0.3636 0.3642 ABE K=5

0.2857 0.4280 CART
0.2727 0.4140 MLR

0.1169 0.6557 SWR

0.3636 0.3252 Proposed Model

B. Testing COCOMO dataset

A second test has been carried out on COCOMO dataset.

The characteristics of this dataset were presented in section

VI.A. The related MdMRE value resulted from employing

the proposed architecture through LOO evaluation has been

provided in Table 5. For this test, MdMRE and PRED

amounted, respectively, to 0.7496 and 0.1905.

Table 5

Comparing the effectiveness of different estimation methods in
COCOMO dataset

Pred MdMRE Approach
0.1270 0.8056 ABE K=2
0.1111 0.8013 ABE K=3

0.0952 0.7959 ABE K=4
0.1429 0.7679 ABE K=5

0.1587 0.8597 CART

0.1746 1.0064 MLR
0.0476 10.6590 SWR

0.1905 0.7496 Proposed Model

A New Architecture Based on Artificial Neural Network and PSO Algorithm for Estimating Software Development Effort

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 9 No. 4 17

C. Testing Maxwell dataset

The next test was performed on Maxwell dataset. The

characteristics of this dataset were explained in section

VI.C. The associated MdMRE value derived from

employing the proposed architecture via LOO evaluation is

presented in Table 6. MdMRE and PRED values in this test

were 0.42 and 0.27, respectively.

Table 6

Comparing the effectiveness of different estimation methods in Maxwell
dataset

Pred MdMRE Approach
0.2258 0.5659 ABE K=2
0.2097 0.4777 ABE K=3

0.1774 0.5069 ABE K=4

0.2097 0.5536 ABE K=5
0.2581 0.5652 CART

0.0484 1.7900 MLR

0.1129 1.3495 SWR

0.27 0.42 Proposed Model

VIII. CONCLUSION

Artificial neural network has a simple operation, and one

can use it for data modeling. The present study proposed an

architecture based on artificial neural network for modeling

and estimating software projects. The results of testing this

architecture demonstrated the efficacy of this model. In this

paper, PSO algorithm was used to configure the network. It

is recommended that future studies also take advantage of

artificial-intelligence-based methods to configure artificial

neural networks.

REFERENCES
[1] The Standish Group, “Chaos Report,” Technical report,

http://www.standishgroup.com, 2009.

[2] E.A. Nelson, "Management Handbook for the Estimation of

Computer Programming Costs," System Developer Corp., 1966.
[3] B. Boehm, "Software Engineering Economics," Prentice Hall, 1981.

[4] B. Boehm, R. Madachy, and B. Steece, "Software Cost Estimation

with Cocomo II," Prentice Hall, 2000.

[5] L.H. Putnam, “A General Empirical Solution to the Macro Software

Sizing and Estimation Problem,” IEEE Trans. Software Eng., vol. 4,

no. 4, pp. 345-361, July 1978.

[6] A.J. Albrecht, and J.E. Gaffney, “Software Function, Source Lines of
Code, and Development Effort Prediction: A Software Science

Validation,” IEEE Trans. Software Eng., vol. 9, no. 6, pp. 639-648,

Nov. 1983.
[7] G. Finnie, G. Wittig, and J.-M. Desharnais, “A Comparison of

Software Effort Estimation Techniques: Using Function Points with

Neural Networks, Case-Based Reasoning and Regression Models,” J.
Systems and Software, vol. 39, pp. 281-289, 1997.

[8] P. Sentas, L. Angelis, I. Stamelos, and G. Bleris, “Software

Productivity and Effort Prediction with Ordinal Regression,”
Information and Software Technology, vol. 47, pp. 17-29, 2005.

[9] L. Briand, K.E. Emam, D. Surmann, and I. Wieczorek, “An

Assessment and Comparison of Common Software Cost Estimation
Modeling Techniques,” Proc. 21st Int’l Conf. Software Eng., pp.

313-323, May 1999.

[10] L. Briand, T. Langley, and I. Wieczorek, “A Replicated Assessment
and Comparison of Common Software Cost Modeling Techniques,”

Proc. 22nd Int’l Conf. Software Eng., pp. 377-386, June 2000.

[11] M. Shepperd and, C. Schofield, "Estimating software project effort
using analogies," IEEE Trans Softw Eng 23 (11):736–743, 1997.

[12] L. Angelis and, I. Stamelos, "A simulation tool for efficient analogy

based cost estimation," Empir Softw Eng 5(1):35–68, 2000.
[13] N. H. Chiu and, S. J. Huang, "The adjusted analogy-based software

effort estimation based on similarity distances," J. Syst Softw

80(4):628–640, 2007.
[14] S. Gupta, G. Sikka, H. Verma, "Recent methods for software effort

estimation by analogy," SIGSOFT Softw Eng Notes 36(4):1–5,

2011.
[15] E. Kocaguneli, T. Menzies, A. Bener and, J. W. Keung, "Exploiting

the essential assumptions of analogy-based effort estimation," IEEE

Trans Softw Eng 38(2):425–438, 2012.
[16] D. Milios, I. Stamelos and, C. Chatzibagias, "Global optimization of

analogy-based software cost estimation with genetic algorithms,"

artificial intelligence applications and innovations. L. Iliadis, I.
Maglogiannis and H. Papadopoulos, Springer Boston, 350–359,

2011.
[17] C. Eberhart-Russell, Y. Shi, and J. Kennedy. "Swarm intelligence,"

Elsevier, 2001.

[18] E. Kocaguneli and T. Menzies, "Software effort models should be
assessed via leave-one-out validation," Journal of Systems and

Software, 86(7), 1879-1890, 2013.

