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Abstract— An existing optimal strategy to solve the 100 

prisoners problem is to assume that its success probability is 

independent of the number of prisoners. However, the 

execution time depends on the size of the problem. For this 

strategy, both sequential and parallel implementations are 

applicable. In this paper, we compared the execution times of 

the sequential and parallel algorithms to see how they vary 

when the problem size increases. 

This paper posits that in spite of the parallel nature of this 

strategy, it will not fully benefit from the GPU implementation.  

The results show that in spite of the GPU's high memory 

latency overhead, the parallel implementation will outperform 

the sequential of larger problem sizes. For the problem size of 

100, the GPU implementation using global memory yields a 

speedup of 0.012. The achieved speedup reaches 1.652, as the 

problem size increases to 100,000. For the problem size of 100, 

the implementation using GPU's shared memory runs 8 times 

faster than the one using global memory. 

 

Index Terms—100 prisoners problem; Graphics Processing 

Unit ; Pointer-following strategy. 

 

I. INTRODUCTION 

 

The 100 prisoners problem is a mathematical problem in 

probability theory and combinatorics. Its original version 

was first posed by Peter Bro Miltersen [1].  The pointer-

following strategy is an optimal solution, which provides a 

30% success probability [2]. It is proved that the success 

probability of this strategy is independent of the number of 

prisoners [3]. Indeed, this independence does not apply to 

the execution time with O (n2) time complexity. 

The structure of the pointer-following strategy suggests 

possible improvements through parallelization. In this paper, 

we present a parallel execution on GPU. First, the 100 

prisoners problem and its optimal strategy are explained. 

Next, the sequential and parallel implementations (on CPU 

and GPU respectively) are explained. Finally, the achieved 

speedups are compared and analyzed. 

 

II. THE 100 PRISONERS PROBLEM  

 

In the 100 prisoners problem, the prisoners are given a 

chance to survive. The prisoners enter a room containing 

100 boxes, one by one. Each box holds a name. As each of 

prisoners enter the room, they are allowed to open half of 

the boxes, one after another. If all the prisoners find their 

own names, all of them will be spared. Before the game 

starts, the prisoners can discuss and agree on a strategy. 

Once the first prisoner enters the room, no communication is 

allowed [3]. 

If every prisoner selects 50 boxes at random, the 

probability that a single prisoner finds his name is 50%. 

Therefore, the probability that all prisoners find their names 

is the product of the single probabilities, which is (1/2)100, a 

vanishingly small number. The situation appears hopeless.  

Surprisingly, pointer-following is a strategy that provides 

a survival probability greater than 30%. The key to success 

is that the prisoners do not have to decide beforehand which 

boxes to open. Each prisoner can use the information gained 

from the contents of the previously opened boxes to decide 

the next drawer to be opened. Another important 

observation is that the success probability of one prisoner is 

not independent of the success of the other prisoners. In fact, 

this is the optimal strategy [2]: 

To describe the strategy, not only the prisoners, but also 

the boxes are numbered from 1 to 100, for example row by 

row, starting from the top left drawer. The strategy is as 

follows [3]: 

 

1. Each prisoner first opens the box with his own 

number. 

2. If this box contains his number, he is done and is 

considered successful. 

3. Otherwise, the box contains the number of another 

prisoner, and he opens the box with this number. 

4. The prisoner repeats steps 2 and 3 until he finds his 

own number or has opened 50 boxes. 

 

This approach ensures that every time a prisoner opens a 

box, he either finds his own number or the number of 

another prisoner he has not yet encountered. 

 

III. IMPLEMENTATION OF THE STRATEGY 

 

Unlike the success probability, the execution time is not 

independent of the number of prisoners. We are going to 

study how the execution time varies if the problem size is 

increased. 

We could deploy either a sequential or a parallel view for 

implementation and still adhere to the conditions of the 

problem. We choose GPU as our parallel platform. In order 

to utilize GPU’s high processing power, recognizing the 

properties and features of successful applications on GPU is 

required. 

 

A. The Properties of Successful Applications on GPU 

GPUs were first designed as configurable graphics 

processors meant to deal with the real-time processing 



Journal of Telecommunication, Electronic and Computer Engineering 

212 ISSN: 2180 – 1843   e-ISSN: 2289-8131   Vol. 9 No. 3  

requirements of computer games. With an increasing 

number of tools and libraries, which are introduced into the 

market, GPUs are now widely used for general purpose 

applications [4]. A comparison of the features of the two 

processors is presented in Table 1. 

 
Table 1 

 CPU vs. GPU [5] 

CPU GPU 

Multiple full cores Hundreds of cores 

Different kinds of memory to 

reduce latency 

Fast access to limited  

on-die memory 

Reduces latency via powerful 

caches 

Hides latency via 

calculations 

Optimized for high performance 
sequential codes (provides cache 

or branching prediction) 

 

Optimized for a high volume 

of arithmetic computation 

with inherent parallelism 
(floating-point operations) 

 

Provides per thread performance Focuses on throughput 

Great for task parallelism 

 

Great for data parallelism 

 

Has proper branching ability 
Faces performance reduction 

when encounters divergence 

 
 With these features in mind, we cannot expect the pointer-

following algorithm to benefit optimally from GPU 

architecture. It has a low arithmetic intensity, in spite of 

being highly parallel in nature. In addition, it also has many 

irregular memory accesses. As a result, its implementation 

on a GPU will suffer from a significant overhead. 

 

B. Parallel implementation on GPU 

Both the sequential and parallel implementations are 

based on vectors. Each cell of the vector represents a box. 

The indices indicate the box numbers and the values indicate 

the box contents. At the beginning, the vector is filled with 

sequential integers from 0 to (n-1) where n is the number of 

prisoners. Then, using the Fisher-Yates shuffle algorithm 

[6], a random permutation is generated. This vector models 

the boxes and it is all done by CPU on the host memory. For 

the parallel implementation, the vectors are then moved to 

the device memory of GPU. 

In the sequential version, the prisoners will enter the room 

one after another. This algorithm contains two nested for 

loops leading to an O(n2) time complexity. 

The pseudocode for the CPU sequential version is: 

 

 

 

 

 

 

 

 

In the parallel version, we can suppose 100 identical 

rooms. Since each prisoner's attempt to find its own name is 

independent of other prisoners, they can follow the strategy 

concurrently. In the context of CUDA1, this means n CUDA 

threads. In the simplest form, a CUDA kernel is executed n 

times by n different CUDA threads. 

Thrust library [7] is used to implement the parallel 

version of the strategy. High-level libraries such as Thrust, 

can avoid programmers from the low-level complexities, 

like memory management. However, the results may not be 

as efficient as a fully optimized application written in 

CUDA. To test this, we compared the results of a Thrust-

based implementation to a not fully optimized CUDA 

kernel. We did this comparison for small problem sizes, 

where using shared memory is possible. Shared memory is 

similar to a user-managed cache: fast but limited. Therefore, 

we can benefit from it for smaller problem sizes by doing a 

user-defined kernel. For bigger problem sizes where shared 

memory's capacity does not suffice, we have to use the slow 

global memory. 

The pseudocode for user-defined parallel version is: 

 

 

 

 

 

 

 

 

 

 

 

The Pseudocode for the Thrust-based parallel version is: 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
1Compute Unified Device Architecture: NVIDIA's parallel processing 

platform. 

Timer starts 

for (inti=0; i<n/2; i++) 

{ 

 thrust::copy( 

                    thrust::make_permutation_iterator ( 

BoxContent.begin(),  

risonerNum.begin()),  

                   thrust::make_permutation_iterator ( 

PrisonerNum.begin(),  

PrisonerNum.end()), 

PrisonerNum.begin()); 

thrust::transform_if( 

      thrust::make_zip_iterator( 

                 thrust::make_tuple( 

sequence.begin(), 

PrisonerNum.begin())), 

     thrust::make_zip_iterator( 

                thrust::make_tuple( 

sequence.end(), 

PrisonerNum.end())), 

BoxContent.begin(), 

change_my_nodes,if_condition()); 

}  

Timer Stops 

Elapsed time is calculated and printed 

StartTimer(&t1 ); 

for (inti=0; i<n; i++) 

 for (int j=1; j<n/2; j++) 

  if (Results[i] !=i) 

Results[i]=Boxes[Results[i]]; 

printf( "Time = %.3f\n", StopTimer( t1 )); 

Timer Starts 

__global__ void OpenBoxes(int* A) 

 { 

 __shared__ int Result[n], Initial0[n]; 

 inti = threadIdx.x; 

 for (int j=0; j< ((n/2)-1); j++) 

  if(Result[i]!=i) 

             Result[i] = Initial[Result[i]]; 

 } 

Timer Stops 

Elapsed time is calculated and printed 
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Thrust has proven its ability to be efficient for data 

intensive applications. Kaczmarski and Rzążewski have 

used permutation generation as their test application. This is 

because they believed it has four considerable features, 

including a high number of read/write operations. This is the 

most important feature that needs to be considered, when 

implementing 100 prisoners problem. The permutation 

generation also uses constant iterator, counting iterator and 

transformation iterator.  We used transformation iterator for 

the implementation of 100 prisoners. Their evaluations 

showed that when implemented on Fermi architecture, 

Thrust can produce efficient results as good as a low level 

CUDA code [8]. 

 

C. Analysis of the execution times 

The implementations are performed on a personal 

computer with these specifications: GeForce GT 425M 

(Fermi Architecture, Compute Capability 2.1), Intel Core i7 

(1.73 GHz), Windows7, CUDA5, Visual Studio 2012. 

The average execution time of the strategy is measured for 

different problem sizes. The codes are executed 5 times and 

the average of these 5 execution times is reported. The 

results are presented in Table 2 and Table 3. 

In order to get realistic results for the GPU speedup, 

memory transfer times need to be either included or proven 

to be of no concern. Gregg and Hazelwood stated that “the 

location of the data that is being processed before, during, 

and after kernel execution” is an underestimated factor [9]. 

So, the GPU processing time without memory transfers 

before and after, may not be a proper measurement of actual 

GPU performance. As described in section B, we have an 

initial data transfer. We studied the implementation of the 

strategy only, not inclusive the whole modeling procedure of 

the 100 prisoners problem. Therefore, the vector generation 

and data preparation is beyond the scope of our study. 

However, our experiment on sample problem sizes showed 

that the calculated speedups with and without the initial 

memory transfer remains almost similar. 

The speedup presented in Table 2 is the ratio of the 

sequential implementation to the Thrust-based parallel. The 

speedup presented in Table 3 is the ratio of the sequential 

implementation to the user-defined parallel for small 

problem sizes. The growth of the speedup with increasing 

problem sizes is shown in Figure 1 and Figure 2. 

 
Table 2  

CPU vs. GPU average execution times (ms) using global memory 

Problem 

size 

Sequential 

execution on CPU 

Parallel execution on 

GPU- Thrust library 
Speedup 

100 0.008 0.62 0.012 

500 0.204 3.791 0.053 

1,000 0.99 8.91 0.111 

5,000 18.979 38.976 0.486 

10,000 99 144 0.687 

50,000 4,009 4,804 0.834 

100,000 37,632 22,773 1.652 

Table 3 

 Average execution times for small problem sizes (ms) using shared 
memory 

Problem 

size 
Sequential 

Parallel 

Thrust 

Parallel 

user-defined  

Speedup  

64 0.005 0.354 0.078 0.064 

128 0.015 0.844 0.111 0.135 

256 0.062 1.652 0.094 0.659 

512 0.255 4.082 0.110 2.318 

1024 1.027 7.147 0.211 4.867 

 

 

 
Figure 1- The GPU speedup using global memory. 

 

 

 
Figure 2- The GPU speedup using shared memory. 

 

The guided analysis of NVIDIA Visual does not support 

unified memory profiling for devices that have computation 

capability less than 3.0; hence, it does not support ours, 

which is 2.1. Based on the examination of GPU Usage, the 

profiler suggestions are shown in Figure 3 and Figure 4. 
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Figure 3- Analysis Results for the Thrust-based parallel implementation, 

Problem size=1024 

 

Figure 4- Analysis Results for the Thrust-based parallel implementation, 

Problem size=100000 

 The GPU's high throughput is achieved by hiding 

memory access latency with computation rather than high-

speed caches. GPU has a high floating-point capacity and is 

suitable for data-parallel computations. Data-parallelism is 

the execution of a single program, with a high arithmetic 

intensity, on numerous data elements in parallel. Arithmetic 

intensity is defined as the ratio of arithmetic operations to 

memory operations [10]. GPU is limited in cache memory. 

Further, although the global memory2 is big, it is slow. 

Therefore, it has a very high peak bandwidth on its on-

board memory, which is of limited size. However, in more 

recent architectures, the burden of this limitation is eased to 

some extent [11]. 

 The main general rules [12] for creating high performance 

GPGPU programs are: (1) keep the data on the GPGPU, (2) 

give GPGPU enough work to do, and (3) consider data 

reuse within the GPGPU in order to avoid memory 

bandwidth limitations. 

 Based on these specific features of the GPU, 

performance-friendly factors include maximization of 

arithmetic operations, maximization of the number of 

simultaneously running threads, high ratio of computation 

                                                           
2Global memory has a high latency of up to 800 clock cycles 

to memory access, regular memory accesses, getting and 

keeping data on GPU and focusing on data reuse. 

However, the usual optimization techniques used to ease 

the burden of memory latency such as asynchronous 

transfer, overlapping computation with communication, 

minimization ofhost/device data transfer, could not be used. 

This is because, the implemented strategy is a pointer-

following algorithm with an irregular data access pattern 

and a very low arithmetic intensity. For a small problem 

size, using shared memory is a beneficial optimization 

technique, as shown in Table 3. However, optimal 

utilization of shared memory requires the minimization of 

bank conflicts since shared memory is composed of memory 

banks that can be accessed simultaneously. However, this 

condition is not possible with the algorithm's irregular data 

access pattern, this is not possible. Further, a bigger problem 

size yields better resource utilization. With reference to the 

comparison between Figure 3 and Figure 4, the increased 

problem size results in improved GPU usage for specific 

factors. These factors include Memcpy size and compute 

utilization.   

As presented in Table 2, speed up increases by increasing 

the problem size. This relationship is not the results of the 

process of a larger data to be processed and we are using the 

GPU efficiently. Rather, this is because the O(n2) sequential 

algorithm's execution time grows faster than the parallel 

algorithm’s. As we can see in Figure 5, the growth of CPU’s 

execution time is faster that GPU’s. The horizontal axis 

shows the problem size growth. The vertical axis shows the 

execution time growth caused by the problem of size 

growth. 

 

 

Figure 5 - Execution Time Growth: CPU vs. GPU 

 

IV. CONCLUSION 

 

Although the independent nature of each prisoner's search 

procedure indicates a high potential for parallelism, it is not 

straightforward in practice. A high volume of read/writes 

from/to the slow global memory is GPU's bottleneck. GPU 

is designed to hide latency through intensive computations, 

a property, which is entirely absent in this algorithm. In 

spite of the memory overhead, GPU outperforms CPU for 

larger problem sizes.  
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The results are highly dependent on the usage of graphics 

card since the crucial factors like global memory latency, 

shared memory size, or the number of shared memory banks 

are dictated by the hardware. 
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