

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 9 No. 3 211

The 100 Prisoners Problem:

Parallel Execution Using Graphics Processing Unit

FatemehNazemi Jenabi1, Hamid-RezaHamidi2
1Incubator Center, Imam Khomeini International University, Qazvin, Iran

2Computer Engineering Department, Faculty of Engineering and Technology, Imam Khomeini International University,

Qazvin,Iran

nazemijenabi@org.ikiu.ac.ir

Abstract— An existing optimal strategy to solve the 100

prisoners problem is to assume that its success probability is

independent of the number of prisoners. However, the

execution time depends on the size of the problem. For this

strategy, both sequential and parallel implementations are

applicable. In this paper, we compared the execution times of

the sequential and parallel algorithms to see how they vary

when the problem size increases.

This paper posits that in spite of the parallel nature of this

strategy, it will not fully benefit from the GPU implementation.

The results show that in spite of the GPU's high memory

latency overhead, the parallel implementation will outperform

the sequential of larger problem sizes. For the problem size of

100, the GPU implementation using global memory yields a

speedup of 0.012. The achieved speedup reaches 1.652, as the

problem size increases to 100,000. For the problem size of 100,

the implementation using GPU's shared memory runs 8 times

faster than the one using global memory.

Index Terms—100 prisoners problem; Graphics Processing

Unit ; Pointer-following strategy.

I. INTRODUCTION

The 100 prisoners problem is a mathematical problem in

probability theory and combinatorics. Its original version

was first posed by Peter Bro Miltersen [1]. The pointer-

following strategy is an optimal solution, which provides a

30% success probability [2]. It is proved that the success

probability of this strategy is independent of the number of

prisoners [3]. Indeed, this independence does not apply to

the execution time with O (n2) time complexity.

The structure of the pointer-following strategy suggests

possible improvements through parallelization. In this paper,

we present a parallel execution on GPU. First, the 100

prisoners problem and its optimal strategy are explained.

Next, the sequential and parallel implementations (on CPU

and GPU respectively) are explained. Finally, the achieved

speedups are compared and analyzed.

II. THE 100 PRISONERS PROBLEM

In the 100 prisoners problem, the prisoners are given a

chance to survive. The prisoners enter a room containing

100 boxes, one by one. Each box holds a name. As each of

prisoners enter the room, they are allowed to open half of

the boxes, one after another. If all the prisoners find their

own names, all of them will be spared. Before the game

starts, the prisoners can discuss and agree on a strategy.

Once the first prisoner enters the room, no communication is

allowed [3].

If every prisoner selects 50 boxes at random, the

probability that a single prisoner finds his name is 50%.

Therefore, the probability that all prisoners find their names

is the product of the single probabilities, which is (1/2)100, a

vanishingly small number. The situation appears hopeless.

Surprisingly, pointer-following is a strategy that provides

a survival probability greater than 30%. The key to success

is that the prisoners do not have to decide beforehand which

boxes to open. Each prisoner can use the information gained

from the contents of the previously opened boxes to decide

the next drawer to be opened. Another important

observation is that the success probability of one prisoner is

not independent of the success of the other prisoners. In fact,

this is the optimal strategy [2]:

To describe the strategy, not only the prisoners, but also

the boxes are numbered from 1 to 100, for example row by

row, starting from the top left drawer. The strategy is as

follows [3]:

1. Each prisoner first opens the box with his own

number.

2. If this box contains his number, he is done and is

considered successful.

3. Otherwise, the box contains the number of another

prisoner, and he opens the box with this number.

4. The prisoner repeats steps 2 and 3 until he finds his

own number or has opened 50 boxes.

This approach ensures that every time a prisoner opens a

box, he either finds his own number or the number of

another prisoner he has not yet encountered.

III. IMPLEMENTATION OF THE STRATEGY

Unlike the success probability, the execution time is not

independent of the number of prisoners. We are going to

study how the execution time varies if the problem size is

increased.

We could deploy either a sequential or a parallel view for

implementation and still adhere to the conditions of the

problem. We choose GPU as our parallel platform. In order

to utilize GPU’s high processing power, recognizing the

properties and features of successful applications on GPU is

required.

A. The Properties of Successful Applications on GPU

GPUs were first designed as configurable graphics

processors meant to deal with the real-time processing

Journal of Telecommunication, Electronic and Computer Engineering

212 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 9 No. 3

requirements of computer games. With an increasing

number of tools and libraries, which are introduced into the

market, GPUs are now widely used for general purpose

applications [4]. A comparison of the features of the two

processors is presented in Table 1.

Table 1

 CPU vs. GPU [5]

CPU GPU

Multiple full cores Hundreds of cores

Different kinds of memory to

reduce latency

Fast access to limited

on-die memory

Reduces latency via powerful

caches

Hides latency via

calculations

Optimized for high performance
sequential codes (provides cache

or branching prediction)

Optimized for a high volume

of arithmetic computation

with inherent parallelism
(floating-point operations)

Provides per thread performance Focuses on throughput

Great for task parallelism

Great for data parallelism

Has proper branching ability
Faces performance reduction

when encounters divergence

 With these features in mind, we cannot expect the pointer-

following algorithm to benefit optimally from GPU

architecture. It has a low arithmetic intensity, in spite of

being highly parallel in nature. In addition, it also has many

irregular memory accesses. As a result, its implementation

on a GPU will suffer from a significant overhead.

B. Parallel implementation on GPU

Both the sequential and parallel implementations are

based on vectors. Each cell of the vector represents a box.

The indices indicate the box numbers and the values indicate

the box contents. At the beginning, the vector is filled with

sequential integers from 0 to (n-1) where n is the number of

prisoners. Then, using the Fisher-Yates shuffle algorithm

[6], a random permutation is generated. This vector models

the boxes and it is all done by CPU on the host memory. For

the parallel implementation, the vectors are then moved to

the device memory of GPU.

In the sequential version, the prisoners will enter the room

one after another. This algorithm contains two nested for

loops leading to an O(n2) time complexity.

The pseudocode for the CPU sequential version is:

In the parallel version, we can suppose 100 identical

rooms. Since each prisoner's attempt to find its own name is

independent of other prisoners, they can follow the strategy

concurrently. In the context of CUDA1, this means n CUDA

threads. In the simplest form, a CUDA kernel is executed n

times by n different CUDA threads.

Thrust library [7] is used to implement the parallel

version of the strategy. High-level libraries such as Thrust,

can avoid programmers from the low-level complexities,

like memory management. However, the results may not be

as efficient as a fully optimized application written in

CUDA. To test this, we compared the results of a Thrust-

based implementation to a not fully optimized CUDA

kernel. We did this comparison for small problem sizes,

where using shared memory is possible. Shared memory is

similar to a user-managed cache: fast but limited. Therefore,

we can benefit from it for smaller problem sizes by doing a

user-defined kernel. For bigger problem sizes where shared

memory's capacity does not suffice, we have to use the slow

global memory.

The pseudocode for user-defined parallel version is:

The Pseudocode for the Thrust-based parallel version is:

1Compute Unified Device Architecture: NVIDIA's parallel processing

platform.

Timer starts

for (inti=0; i<n/2; i++)

{

 thrust::copy(

 thrust::make_permutation_iterator (

BoxContent.begin(),

risonerNum.begin()),

 thrust::make_permutation_iterator (

PrisonerNum.begin(),

PrisonerNum.end()),

PrisonerNum.begin());

thrust::transform_if(

 thrust::make_zip_iterator(

 thrust::make_tuple(

sequence.begin(),

PrisonerNum.begin())),

 thrust::make_zip_iterator(

 thrust::make_tuple(

sequence.end(),

PrisonerNum.end())),

BoxContent.begin(),

change_my_nodes,if_condition());

}

Timer Stops

Elapsed time is calculated and printed

StartTimer(&t1);

for (inti=0; i<n; i++)

 for (int j=1; j<n/2; j++)

 if (Results[i] !=i)

Results[i]=Boxes[Results[i]];

printf("Time = %.3f\n", StopTimer(t1));

Timer Starts

__global__ void OpenBoxes(int* A)

 {

 __shared__ int Result[n], Initial0[n];

 inti = threadIdx.x;

 for (int j=0; j< ((n/2)-1); j++)

 if(Result[i]!=i)

 Result[i] = Initial[Result[i]];

 }

Timer Stops

Elapsed time is calculated and printed

The 100 Prisoners Problem: Parallel Execution Using Graphics Processing Unit

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 9 No. 3 213

Thrust has proven its ability to be efficient for data

intensive applications. Kaczmarski and Rzążewski have

used permutation generation as their test application. This is

because they believed it has four considerable features,

including a high number of read/write operations. This is the

most important feature that needs to be considered, when

implementing 100 prisoners problem. The permutation

generation also uses constant iterator, counting iterator and

transformation iterator. We used transformation iterator for

the implementation of 100 prisoners. Their evaluations

showed that when implemented on Fermi architecture,

Thrust can produce efficient results as good as a low level

CUDA code [8].

C. Analysis of the execution times

The implementations are performed on a personal

computer with these specifications: GeForce GT 425M

(Fermi Architecture, Compute Capability 2.1), Intel Core i7

(1.73 GHz), Windows7, CUDA5, Visual Studio 2012.

The average execution time of the strategy is measured for

different problem sizes. The codes are executed 5 times and

the average of these 5 execution times is reported. The

results are presented in Table 2 and Table 3.

In order to get realistic results for the GPU speedup,

memory transfer times need to be either included or proven

to be of no concern. Gregg and Hazelwood stated that “the

location of the data that is being processed before, during,

and after kernel execution” is an underestimated factor [9].

So, the GPU processing time without memory transfers

before and after, may not be a proper measurement of actual

GPU performance. As described in section B, we have an

initial data transfer. We studied the implementation of the

strategy only, not inclusive the whole modeling procedure of

the 100 prisoners problem. Therefore, the vector generation

and data preparation is beyond the scope of our study.

However, our experiment on sample problem sizes showed

that the calculated speedups with and without the initial

memory transfer remains almost similar.

The speedup presented in Table 2 is the ratio of the

sequential implementation to the Thrust-based parallel. The

speedup presented in Table 3 is the ratio of the sequential

implementation to the user-defined parallel for small

problem sizes. The growth of the speedup with increasing

problem sizes is shown in Figure 1 and Figure 2.

Table 2

CPU vs. GPU average execution times (ms) using global memory

Problem

size

Sequential

execution on CPU

Parallel execution on

GPU- Thrust library
Speedup

100 0.008 0.62 0.012

500 0.204 3.791 0.053

1,000 0.99 8.91 0.111

5,000 18.979 38.976 0.486

10,000 99 144 0.687

50,000 4,009 4,804 0.834

100,000 37,632 22,773 1.652

Table 3

 Average execution times for small problem sizes (ms) using shared
memory

Problem

size
Sequential

Parallel

Thrust

Parallel

user-defined

Speedup

64 0.005 0.354 0.078 0.064

128 0.015 0.844 0.111 0.135

256 0.062 1.652 0.094 0.659

512 0.255 4.082 0.110 2.318

1024 1.027 7.147 0.211 4.867

Figure 1- The GPU speedup using global memory.

Figure 2- The GPU speedup using shared memory.

The guided analysis of NVIDIA Visual does not support

unified memory profiling for devices that have computation

capability less than 3.0; hence, it does not support ours,

which is 2.1. Based on the examination of GPU Usage, the

profiler suggestions are shown in Figure 3 and Figure 4.

Journal of Telecommunication, Electronic and Computer Engineering

214 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 9 No. 3

Figure 3- Analysis Results for the Thrust-based parallel implementation,

Problem size=1024

Figure 4- Analysis Results for the Thrust-based parallel implementation,

Problem size=100000

 The GPU's high throughput is achieved by hiding

memory access latency with computation rather than high-

speed caches. GPU has a high floating-point capacity and is

suitable for data-parallel computations. Data-parallelism is

the execution of a single program, with a high arithmetic

intensity, on numerous data elements in parallel. Arithmetic

intensity is defined as the ratio of arithmetic operations to

memory operations [10]. GPU is limited in cache memory.

Further, although the global memory2 is big, it is slow.

Therefore, it has a very high peak bandwidth on its on-

board memory, which is of limited size. However, in more

recent architectures, the burden of this limitation is eased to

some extent [11].

 The main general rules [12] for creating high performance

GPGPU programs are: (1) keep the data on the GPGPU, (2)

give GPGPU enough work to do, and (3) consider data

reuse within the GPGPU in order to avoid memory

bandwidth limitations.

 Based on these specific features of the GPU,

performance-friendly factors include maximization of

arithmetic operations, maximization of the number of

simultaneously running threads, high ratio of computation

2Global memory has a high latency of up to 800 clock cycles

to memory access, regular memory accesses, getting and

keeping data on GPU and focusing on data reuse.

However, the usual optimization techniques used to ease

the burden of memory latency such as asynchronous

transfer, overlapping computation with communication,

minimization ofhost/device data transfer, could not be used.

This is because, the implemented strategy is a pointer-

following algorithm with an irregular data access pattern

and a very low arithmetic intensity. For a small problem

size, using shared memory is a beneficial optimization

technique, as shown in Table 3. However, optimal

utilization of shared memory requires the minimization of

bank conflicts since shared memory is composed of memory

banks that can be accessed simultaneously. However, this

condition is not possible with the algorithm's irregular data

access pattern, this is not possible. Further, a bigger problem

size yields better resource utilization. With reference to the

comparison between Figure 3 and Figure 4, the increased

problem size results in improved GPU usage for specific

factors. These factors include Memcpy size and compute

utilization.

As presented in Table 2, speed up increases by increasing

the problem size. This relationship is not the results of the

process of a larger data to be processed and we are using the

GPU efficiently. Rather, this is because the O(n2) sequential

algorithm's execution time grows faster than the parallel

algorithm’s. As we can see in Figure 5, the growth of CPU’s

execution time is faster that GPU’s. The horizontal axis

shows the problem size growth. The vertical axis shows the

execution time growth caused by the problem of size

growth.

Figure 5 - Execution Time Growth: CPU vs. GPU

IV. CONCLUSION

Although the independent nature of each prisoner's search

procedure indicates a high potential for parallelism, it is not

straightforward in practice. A high volume of read/writes

from/to the slow global memory is GPU's bottleneck. GPU

is designed to hide latency through intensive computations,

a property, which is entirely absent in this algorithm. In

spite of the memory overhead, GPU outperforms CPU for

larger problem sizes.

The 100 Prisoners Problem: Parallel Execution Using Graphics Processing Unit

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 9 No. 3 215

The results are highly dependent on the usage of graphics

card since the crucial factors like global memory latency,

shared memory size, or the number of shared memory banks

are dictated by the hardware.

REFERENCES

[1] A. Gal, P. B. Miltersen. “The Cell Probe Complexity of Succinct Data

Structures”, Proc. of 30th InternationalColloquium on Automata,

Languages and Programming (ICALP'03), Eindhoven, 2003, pp. 332-

344.
[2] E. Curtin, M.Warshauer. “The locker puzzle”, Math Intell, vok. 28,

pp. 28-31, 2006.

[3] P. P. Stanley,Algebraic Combinatorics: Walks, Trees, Tableaux, and
More, Springer-Verlag: New York, 2013, pp. 187-189.

[4] J. Nickolls, W. Dally, “The GPU Computing Era”,IEEE Micro,vol.

30, pp. 56-69, April 2010.
[5] F. Nazemi Jenabi, H. Hamidi, Parallel computing on Hybrid CPU-

GPU systems, Payam Noor University, Tehran, Iran, 2014,

Unpublished Master’s thesis.

[6] D. E. Knuth, “Seminumerical algorithms”, in The Art of Computer

Programming, 3rd ed. vol. 2, Boston: Addison–Wesley, 1998, pp.
145–146.

[7] Thrust Quick Start Guide v8.0, NVIDIA Corporation, 2017.

[8] K. Kaczmarski, P. Rzążewski,“Thrust and CUDA in Data Intensive
Algorithms”, in New Trends in Databases and Information Systems,

M. Pechenizkiy and M. Wojciechowski, Ed. Addison Springer-Verlag

Berlin Heidelberg, 2013, pp. 37-46.
[9] C. Gregg, K. Hazelwood. “Where is the data? Why you cannot debate

CPU vs. GPU performance without the answer”, inProc. of the IEEE

International Symposium on Performance Analysis of Systems and
Software (ISPASS '11), Washington, DC, USA, 2011, pp. 134-144

[10] J. D. Owens, M. Houston, D.Luebke, S. Green, J. E. Stone, J. C.

Phillips. “GPU Computing”, in Proc. IEEE, vol. 96, no. 5, pp. 879-
899, May 2008.

[11] Kihgariff E, Fernando R.” The GeForce 6 Series GPU Architecture”,

in GPU Gems2: programming techniques for high- performance
graphics and general-purpose computation, M. Pharr, Ed. Addison-

Wesley Professional, 2005, pp. 471-492.

[12] R. Farber,Cuda Application Design and Development. Waltham
USA : Morgan Kaufmann, 2011, pp. 13-15.

