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Abstract—An advanced knowledge of the river condition helps 

for better source management. This information can be gathered 

via estimation using DA methods. The DA methods blend the 

system model with the observation data to obtain the estimated 

river flow and stage. However, the observation data may contain 

some missing data due to the hardware power limitations, 

unreliable channel, sensor failure and etc. This problem limits the 

ability of the standard method such as EKF, EnKF and PF. The 

Multi Imputation Particle Filter (MIPF) able to deal with this 

problem since it allows for new input data to replace the missing 

data. The result shows that the performance of the river flow and 

stage estimation is depending on the number of particles and 

imputation used. The performance is evaluated by comparing the 

estimated velocity obtained using the estimated flow and stage, 

with the measured velocity. The result shows that higher number 

of particles and imputation ensure better estimation result.  

 

Index Terms—Missing Data; State Estimation; Multi 

Imputation Particle Filter. 

 

I. INTRODUCTION 

 

In hydrology, the estimation of the river flow, stage and state 

can contribute to better management of the water resource for 

human usage [1].  Whereby the estimated values give an 

advanced knowledge of the related parameters and helps for 

better improvements of water use efficiency and also balance 

its supply and demand [2]. By considering the energy 

harvesting concept, these parameters can also be used to predict 

the electricity that can be generated from the river system [3]. 

The estimation can be conducted using the Data Assimilation 

(DA) method. The DA method is any techniques that integrate 

observation data with the system model to produce an updated 

model state that most accurately approximates the true system 

state whilst keeping the model parameter fixed [4].  This 

method describes the flow of information from observations of 

the real system to the numerical model of the system, in the 

form of probability density function (pdf). The concern of the 

DA is to obtain the new posterior probability density of the 

system model when the new observations are involved [5]. The 

updated posterior pdf is then used to initiate the next model 

forecast. This method is desired to perform estimation in an 

optimal and consistent fashion even if the noisy measurements 

is arrived sequentially in time[6]. The general formulation of 

the pdf is represented by the Bayes theorem that is based on 

conditional probability densities [7]. 

The DA method is available in two class namely variational 

method and sequential method. The variational methods are 

based on the optimal control theory. Optimization is performed 

on the related parameters by minimizing the cost function that 

measures the model to data misfit [8]. The examples of this 

method are Variational data assimilation method (VAR), 

Evolutionary data assimilation method (EDA) and Maximum 

Likelihood Ensemble Filter (MLEF). Besides that, the 

sequential methods use a probabilistic framework and estimate 

the whole system state sequentially by propagating information 

only forward in time. This method does not require an adjoint 

model and makes it easy to adapt with the model [9]. Compared 

to the variational method, the sequential based method is 

frequently used in estimation. The examples of this method are 

the Extended Kalman Filter (EKF), Ensemble Kalman Filter 

(EnKF), Unscented Kalman Filter (UKF), Particle Filter (PF) 

and etc.  

During estimation process, the river model and the 

observation by the sensors are combined together to obtain the 

predicted river flow, stage and cross section. The river system 

and observation are nonlinear since their condition may 

changes over time and the system is most probably disturbed 

by the external factors such as the evaporation, rainfall, 

precipitation and etc. These factors are some of the 

uncertainties that must be considered during estimation 

process[8]. Besides that, the system and observation also have 

their own uncertainties and errors that influence the estimation 

result [10]. The selection of the DA methods for estimation 

considers the characteristics of the system, observation and the 

external factors, since the ability of the DA method is very 

much dependent on their characteristics [11] [12].  

There are two types of sensor for measurement namely 

Eulerian sensor and Lagrangian sensor[13]. The Eulerian 

sensors perform measurement as the water flow past the sensor 

that was placed at fixed location. While the Lagrangian sensor 

is more flexible since it observes the medium as it moves 

together with the water flow along a trajectory [2]. So, better 

measurement can be achieved by applying the Lagrangian 

sensors that provide more accurate measurement than the 

Eulerian [14]. However, the measurement by these sensors may 
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be disturbed by the obstacles and not all measurement locations 

are suitable for the sensors [2]. Besides that, the measurement 

may suffer from missing data due to the hardware power 

limitations, unreliable channel, sensor failure and etc. [15]. 

This problem may limit the ability of the standard DA method 

to perform prediction. Therefore, the Multi Imputation Particle 

Filter (MIPF) is proposed in this paper to deal with this problem 

by introducing new data input to replace the missing data. 

The paper is structured as follows. The system model, 

observation model and the state space model for estimation 

process is described in Section II. Then, in Section III, the 

effect of the missing observation during estimation is 

explained. Next, the algorithm of the MIPF method for 

estimation with missing data is described in Section IV. 

Finally, in Section V, the detail on estimation process and 

numerical simulations are discussed.    

 

II. THE MODEL 

 

The river flow model can be represented by one or two-

dimensional Saint-Venant equations depending on the 

characteristic of the water flow. If the flow is in one-

dimensional, the 1D Saint-Venant equations is considered. 

However, if the flow is not one-dimensional which may happen 

in flood plains or in large rivers, the 2D Saint-Venants equation 

is more suitable to be applied [16]. Besides that, the 

representation of the observation is referring to the movement 

of the sensor since the Lagrangian sensor is use in this 

research[2]. The combination of the system model and the 

observation is represented by the state space model and use in 

the DA method.  

 

A. System Model 

Consider one-dimensional flow without any uncontrolled 

release of water flow, the 1D Saint-Venant equations is suitable 

for river flow. This equation is among the most common 

models used for modelling the flow in open channels and 

irrigation systems [17]. The 1D Saint-Venant equations are two 

coupled first order hyperbolic partial differential equations 

(pde) derived from the conservation of mass and momentum. 

By considering a prismatic channel that have same cross-

section throughout the length of channel with no lateral inflow, 

the equation is represented as [2]. 
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where A is the cross section (m2), Q is the discharge or 

flow(m3/s), L is the river reach(m), T is the free surface width, 

D is the hydraulic depth (m), Sf is the friction slope, So is the 

bed slope, g is the gravitational acceleration(m/s2), hc is the 

distance of the centroid of the cross section from the free 

surface (m), P is the wetted perimeter, m is the Manning 

roughness coefficient. 

 

B. Observation Model 

The observation is represented by the velocity of the flow. 

Since the velocity throughout the system is change with time, 

the measurement can be performed using the Lagrangian 

sensor or drifter. The relation between the drifter velocity and 

the flow velocity at the corresponding cross-section relies on 

assumptions made about the profile of the water velocity. The 

profile is the combination of the average velocity in the 

transverse and vertical direction. In transverse direction, the 

surface velocity profile is assumed to be quartic, and the Von 

Karman logarithmic profile is assumed in the vertical direction. 

By considering a particle moving at a distance y from the center 

line and z from the surface, the relation between the particle’s 

velocity and the water flow is represented by the following 

equations [2]: 
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where w is the channel width, d is the water depth, Aq, Bq and 

Cq are constants, Kv is the Von Karman log constant. 

 

C. The state space model  

During estimation process, the system and observation is 

represented by the state space model that consists of the 

parameters of the model, observation, system noise and 

measurement noise. The development of the model involved 

the discretization of the system into n cells with each cell have 

same length. The initial conditions and the boundary conditions 

of the system is included in this model as the inputs. Further, 

the uncertainties of the model and also the inaccuracies of the 

inputs measurements are considered as the system noise, 
t

 . 

While the measurement noise, 
t

  represent the errors and the 

uncertainties of the measurements. Both noises are represented 

by the zero mean Gaussian error. Thus, the state space model 

for the estimation is described as follow: 
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where xt is the state vector at time t.  
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and the input ut contains the boundary conditions, i.e. the 

upstream flow and downstream stage. 
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where  
t

i
Q  and 

t

iH are the flow and stage at cell i at time t, 

respectively, and n is number of cells used for the discretization 

of the channel. 

Since the system is observed by K sensors, (10) can be 

reformulated into: 
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where
t

 represent the noisy observation of the state 
t

x  such 

that the 
kt ,

 is an independent and identically distributed (i.i.d) 

measurement noise and 
k

g is the measurement transformation 

for sensor k.  

 

III. PROBLEM FORMULATION 

 

The estimation of system states by using standard DA 

method apply Bayes’ theorem that denoted as [18]: 
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where
t

x is the system state at time t, 
t

 is the observation at 

time t,  
tt

xp
:1

| is the posteriori probability of state x at time 

t given observation  from time 1 to time t, )|(
tt

xp  is the 

likelihood function of state x at time t given observation  at 

time t, )|(
1:1 tt

xp  is the prior probability of state x at time t 

given observation from time 1 to time t-1, )|(
1:1 tt

p   is 

the normalizing constant. The normalizing constant is 

represented as[19]. 
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Based on (14) and (15), the posteriori probability is very 

much depending on the likelihood function )|(
tt

xp  . This 

function use the observation 
t

 to modify the prior probability 

to obtain the desired posteriori probability that represent the 

estimated state. 

In this research, the observation is related to y and z position 

of the sensors, and also the velocity of the sensors. The missing 

of the observation data will eventually affect the estimation 

process since the likelihood function could not be obtained and 

limit the ability of the standard DA method. Therefore, the 

MIPF method is introduces to perform estimation with new 

input data. 

The availability of the observations is checked at each time 

instance. The missing data are handled by introducing a 

random indicator variable, Rt,k[15] 
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The collection of observations 
kt ,
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R
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 = 0 is defined as missing 

information set 
t

 . While the available information set t  is 

the collection of 
kt ,

 for all k = 1,...,K such that 
kt

R
,

 = 1. 

 

IV. MULTI IMPUTATION PARTICLE FILTER  

 

The Multi Imputation Particle Filter (MIPF) uses randomly 

drawn values called imputations to provide a replacement for 

the missing data and then uses the particle filter to perform 

estimation with the data. The imputations are draw from the 

proposal function,  [20].  
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 is the particle set with no regard of missing data, N 

is the total number of particles, M is the total number of 

imputation, i is ith particles and j is jth imputation. 

 

Next, the imputations are reformulated into imputed data sets 
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where 
j

t
  represent all missing observation during jth 

imputation and time t, and 
t

 represent all available 

observation at time t.    

The posterior probability density with missing observation is 

represented by  
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where 
t

X is the system state at time t, 
1:0 


t

is the complete 

observation by the sensors that include available and missing 

observation, 
t

  and t:0  are defined in (16), and 
t

  is defined 

(17). 

By considering Monte Carlo approximation and imputations, 

(18) can be written as follows: 
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where M is defined in (16), 
j
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U is defined in (17), and
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 , 1:0  t  are defined in (18).  
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For each data set 
j

t
U , the probability density from particle 

filtering is written as follows: 
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where 
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,
is the system state at ith particle and jth imputation 

at time instance t, and 
ij

t

,
 is the related weight. 

The overall representation of the posterior probability 

density with missing data is determined by substituting (20) 

into (19) and form 
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where t:0 , M, N are defined in (16), tX  is defined in (18),

ij

tX ,
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V. RESULTS AND DISCUSSION 

 

The estimation the system state is carried out by blending the 

system model with the observation from the sensors, via the 

DA method. The availability of the observation data is 

demanded by the likelihood function and will certainly 

influence the estimation process as explained in section III. So, 

for missing observation problem, the MIPF can be applied 

since it has the ability to replace the missing data with the new 

data during estimation process.  

 

A. Description of the estimation process 

In this research, five sensors are used to measure the velocity 

of the flow for approximately 400 second. The sensors are 

released one by one with 30 second of interval. The river 

system has gate at the end and the gate was opened as soon as 

the final drifter was released. The estimation is conducted to 

predict river flow, stage and cross section by integrating the 

system model with the observation using the DA method. Next, 

the estimated states are used to predict the velocity of the river 

flow and compared with actual velocity by the sixth drifter to 

evaluate the performance of this method.   

 

B. Result and Discussion 

The observation data is considered to be suffered from 10% 

and 20% of missing data. Three types of the basic DA method 

namely the EKF, EnKF and PF are applied but only able to 

perform prediction before the observation data become 

unavailable for the first time as shown in Figure 1. Since the 

velocity estimation is very much related to the prediction of the 

flow and stage, this problem affects the obtained estimated 

velocity as in Figure 2. The result shows that the missing data 

affect the blending process whereby the probability calculation 

for prediction could not be carried out without the reference 

data. In order to solve this problem, external data input is 

required as a replacement to the missing data and can be 

implemented using the MIPF. 

 

 
(a) 

 
(b) 

Figure 1: The (a) flow and (b) stage estimation with missing observation data 

by using forward simulation, EKF, EnKF and PF at 30th cell 

 

 
Figure 2:  The velocity estimation with missing observation data by using 

forward simulation, EKF, EnKF and PF. 

 

The MIPF allows for any number of input data that are 

generated based on the previously available data and weight. 

The new generated data and weight are used in the prediction 
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of the desired parameter. In this research, few sets of MIPF 

with different number of particles and imputations are applied 

to different level of missing data as listed in Table 1. Since the 

MIPF is activated at the point where the PF unable to perform 

prediction, the performance of this method is observed through 

the overall estimation using this method and PF. The 

performance is evaluated based on the relative error between 

the estimated velocity and the measurement. The result shows 

that the estimation during missing data is comparable with the 

estimation during no missing problem. The percentage of 

missing data influences the number of imputation to be applied. 

For small percentage of missing data, small number of 

imputation is required and vice versa. Besides that, the number 

of particles also affects the estimation result. Whereby, better 

result can be achieved with the increasing number of particles 

before the degeneracy problem is occurred like the standard PF 

method. In this research 50 particles are used by the particle 

filtering method and for the missing data problem, 10 

imputations and 20 imputations are required by the MIPF to 

have good estimation result for 10% missing data and 20% 

missing data respectively. However, the increase of the number 

of particles and imputation will increase the computational 

time. The application of the MIPF for river flow, stage and state 

estimation with incomplete observation data able to produce 

good estimation result and ensures the chance to have good 

velocity estimation as shown in Figure 3 and Figure 4. 

 
Table 1 

The performance comparison between the MIPF during missing data and PF 

without missing data 
 

Method Particles Imputation Relative error 

(%) 

PF 

(no missing data) 
50 - 4.0576 

MIPF 

(10% missing data) 
50 5 4.0610 

MIPF 
(20% missing data) 

50 20 4.1641 

 

 

 
(a) 

 
(b) 

Figure 3: The (a) flow and (b) stage estimation without missing observation 

data by using PF, and 10% and 20% of missing observation data by using 
MIPF at 30th cell. 

 

 
Figure 4: The velocity estimation without missing observation data by using 

PF, and 10% and 20% of missing observation data by using MIPF. 

 

VI. CONCLUSION 

 

Missing data affect the quality of the observation. This 

problem disturbs the estimation process whereby the standard 

DA method such as EKF, EnKF and PF are only able to 

perform estimation whenever the observation is available. By 

applying MIPF, the missing data is replaced with new set of 

data according to the particle set during no missing data 

problem. The performance of this method is depending on the 

number of particles and imputation used. The proper 

combination of the number of particles and imputation ensure 

good estimation result.    
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