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Abstract—This study deals with simultaneous localization and 

mapping problem by using unscented Kalman filter to compensate 

for observation outliers. In solving simultaneous localization and 

mapping problem using algorithms such as EKF or UKF, robot 

observations play a crucial part in determining its position 

estimation in any environment. If the robot observations obtained 

unexpected or fault values, the accuracy of the estimation will be 

deteriorated. In this research, an enhanced method based on UKF 

is developed to overcome the fault observation by assigning a 

weights to the observations. By comparing the observation values 

with its own estimate to detect the fault observations and then the 

weights of these observations are determined. Simulations were 

carried up to investigate the performance of the new method by 

comparing it with EKF-SLAM, UKF-SLAM and H∞ SLAM. The 

algorithms are compared in terms of parameters such as the 

RMSE and the runtime of the algorithm by using MATLAB. 

Results show that proposed method can performed better 

compared to other in dealing with observation outliers. 

 

Index Terms—SLAM; Kalman Filter; Particle Filter; H∞ Filter; 

Mobile Robot. 

 

I. INTRODUCTION 

 

Simultaneous Localization and Mapping (SLAM) enable a 

mobile robot to operate in an unknown location in an unknown 

environment and incrementally build a map of the environment 

while using the map to determine its own location concurrently 

[1]. Smith et al. pioneered into this field by introducing the 

concept of a stochastic map where a mobile robot acquires 

information about its location and using sensor observations in 

different places at different times to organizes the environment 

[2]. 

Extended Kalman filter (EKF) [3] is one of the main 

approaches used in SLAM which consists of a state space 

model with additive Gaussian noise. However, due to the used 

of Taylor expansion in EKF which introduced the truncation 

errors, the accuracy of EKF-SLAM is very limited. Julier et al. 

proposed unscented Kalman filter (UKF) to overcome the 

problem caused by EKF. A set of chosen samples is used in 

UKF to represent the state distribution instead of using 

linearization in EKF [4]. Thus, the calculation of Jacobian and 

Hessian matrices can be avoided by using UKF-SLAM. 

Besides, higher approximation accuracy can be obtained with 

the unscented transformation.  

Particle filter particularly the method known as FastSLAM 

proposed by Montemerlo and Thrun [5] in solving the SLAM 

problem using a set of state samples through expensive 

computational cost. The advantages of FastSLAM are it is more 

robust to data association error and nonlinear system can be 

better handled. The H∞ filter approach to solve SLAM problem 

has been proposed by Chandra, Gu and Postlethwait [6]. H∞ 

overcome the limitation of conventional Kalman filter which 

suffers from the assumption of statistical noises and estimation 

accuracy is improved under non-Gaussian noise distribution 

[7]. SLAM method, which used UKF for autonomous mobile 

robot is studied and being improved to deal with observation 

outliers in this study. 

Autonomous mobile robot consists of several type such as 

unmanned aerial vehicle (UAV), unmanned ground vehicle 

(UGV) and unmanned underwater vehicle (UUV). Oguz and 

Temeltas conducted a comparison study on the filter’s 

consistency between EKF and UKF of airborne SLAM for 

UAV navigation and concluded that UKF performs better than 

EKF in terms of filter consistency [8]. An improved adaptive 

UKF-SLAM algorithm for UUV with noise statistic estimator 

proposed by Wang et al. to solve the issue of declining accuracy 

and divergence occurring when the prior noise statistic is 

unknown [9]. Panah et al. proposed an optimized UKF-SLAM 

via Radial Basis Function on UGV to overcome the error 

inherited by its noise assumption and linearization process [10]. 

In this study, UGV is considered as the autonomous mobile 

robot for performing SLAM. Furthermore, such UGV usually 

equipped with range and bearing sensor such as laser range 

finder or sonar sensor for collecting its surrounding 

information. However, the range and bearing information from 

the sensor such as mounted on UGV frequently suffer from 

false recognition of landmark due to the mobile robot drifting 

behaviour, which eventually causes the divergence of the value 

estimated by any filtering method. 

Therefore, a method is proposed in which a matrix that shows 

the reliability of the observation information is constituted by 

using difference between the observed and estimated values at 

each time and the weighting parameter related to the observed 

value is adjusted dynamically by using this matrix. Thus, the 
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deterioration in the accuracy of estimation by the unscented 

Kalman filter can be prevented even though false recognition of 

landmarks occurred.  

This paper is organized as follows: Section II describes 

SLAM models and proposed algorithm. Section III presents the 

simulation setup for comparison between different SLAM 

algorithms for unmanned grounded vehicle. Results and 

discussions in Section IV and conclusions are made in Section 

V. 

 

II. SLAM MODELS 

 

The position of the mobile robot and environment landmarks 

are normally stored in a single state vector estimated through a 

process of prediction and update which is done recursively. The 

mobile robot builds a complete map of landmarks through the 

observation of sensor model during motion process and uses it 

to estimate the position of mobile robot. Both position of mobile 

robot and position of landmarks can be estimated 

simultaneously via the relative distance between the landmarks 

and the mobile robot [1].  

 

A. Motion Model  

The Ackerman vehicle model is used in which the control 

inputs are set by the robot velocity kv , the steering angle k , the 

distance between wheels L , and denotes the time interval from 

1k  to k . 
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where kx , ky and k is the x co-ordinate, y co-ordinate and 

heading of the mobile robot respectively.  

 

B. Sensor Model 

The mobile robot is equipped with range-bearing sensor 

which takes observations of the features. The current mobile 

robot position kx , and the position of an observed feature km , 

the range and bearing can be modelled as  
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where r and is the range and bearing of the mobile robot. 
 

III. ENHANCED UKF-SLAM USING A WEIGHTING MATRIX 

METHOD 

 

The divergence of the estimated values by using any filtering 

method is caused by the system’s observational outliers [11]. 

Thus, a robust estimation method is proposed by constitute a 

matrix showing the reliability of the observation information by 

using the difference between the observed and estimated values 

at each time, and using the combination of this matrix and the 

unscented Kalman filter. First, a measure to determine the 

observational outliers is described. The Mahalanobis distance

ikr between observed values ikz and observation predicted value

1|ˆ kikz as a measure for evaluating the reliability of the 

observations ikz . The observation predicted value 1|ˆ kkz is the 

value determined by the following equation, using the state 

transition model and the observation model equation using (1) 

and (3) respectively. Here, 1|ˆ kkx indicates that the value is a 

pre-estimated value. 

 

 111| ,ˆ   kkkk uxfx   (5) 

 

 1|1| ˆˆ   kkkk xhz   (6) 

 

The Mahalanobis distance is a multivariate standardized 

measure that takes into consideration the correlation between 

variables. The Mahalanobis distance between the observed 

value and the observation predicted value is expressed as 

follows, using the observation error covariance matrix. 
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The property of the Mahalanobis distance kE is strengthened 

by squaring it, and the matrix for dynamically evaluating he 

reliability of each observation is composed as shown below. 

This matrix is a mechanism that increases the value of the 

element corresponding to a landmark when false recognition of 

the landmark occurs. 

The property of the Mahalanobis distance kE is strengthened 

by squaring it, and the matrix for dynamically evaluating he 

reliability of each observation is composed as shown below. 

This matrix is a mechanism that increases the value of the 

element corresponding to a landmark when false recognition of 

the landmark occurs. 
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The recursive process of the estimation is as described as 

follows: 
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Compute the sigma points, i and corresponding weights, 

][iW : 
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where nn  )(2  is a scaling parameter, determine the 

spread of the sigma points around 1k and is set to a small 

positive value, is a secondary scaling parameter and is set to 

zero and  is used to incorporate prior knowledge of the 

distribution of kx . 

Compute the predicted state mean, k and predicted 

covariance, k with motion noise kQ  

 1
*

1
, 


 kk

k
uf    (13) 

  *

1


k

i
mk W    (14) 

   k

T

k

i
c

k
k QW 



*

1

*

1
  (15) 

 

Compute the predicted state and covariance of the 

measurement, ky and kS respectively 
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Compute the weighting matrix, kE : 
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Compute the cross-covariance of the state and measurement
yx

k
, , Kalman gain kK and updated state mean k and 

covariance k : 
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In Step 2 of this recursive process, the square of the 

Mahalanobis distance between the observation information iky

of each characteristic point and the observation predicted value

ikẑ , i.e.,
2

ikr is stored in the matrix ik . The matrix kE for 

dynamically assessing the reliability of each observation is 

created by combining with this matrix. The property of matrix

kE is that if the observation information that has been acquired 

includes outliers, the values of the elements corresponding to 

these outlier observations take on a very large numerical value 

compared to other elements.  

In step 3, by multiplying this output evaluation matrix kE and 

the matrix kR representing the observation error, a state 

estimation weighted with reliable observational values is 

obtained.  

 

IV. SIMULATION SETUP 

 

The simulator is developed based on T. Bailey’s work [1] 

with MATLAB 2014b platform (Windows 10 system with 

2.40GHz and Intel Core i7-4700MQ CPU). The mobile robot 

proceeds with initial state  0000, vx  and then travels 

along the path. The simulation parameters and environments are 

shown in Table 1 and Figure 1 respectively. When the 

simulation reached the calculation step of 1000, the mobile 

robot is assigned the false landmark recognition to the 

observation to create the effect of drifting.  
 

Table 1 

Simulation Parameters 

 

Simulation Parameter Values 

Mobile robot velocity 3 m/s 

Velocity error 0.25 m/s 

Maximum steering angle ±30˚ 

Maximum steering angle velocity ±20˚/s 

Angular error 3˚ 

Scan area of laser range finder 0˚-180˚ 
Maximum scanning distance 30m 

Distance error 0.1m 

Bearing error 1˚ 
Control frequency 40Hz 

Observation frequency 5Hz 
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Figure 1: Simulation environment 

 

V. RESULTS AND DISCUSSIONS 

 

Using the conditions above, thirty Monte Carlo simulations 

were conducted for three types of SLAM algorithms which 

consists of EKF-SLAM, UKF-SLAM and H∞ SLAM, to 

compare with the proposed method and the results are shown in 

Figure 2. 

For fair and comprehensive comparison, EKF-SLAM, UKF-

SLAM and H∞ SLAM are compared with the same simulation 

parameters in Table 1 and simulation environment as Figure 1. 

The mean of RMSE for the mobile robot position is used as the 

evaluation criterion. The RMSE for a simulation run is 

calculated as 

    

N

ss
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N
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where
true
ks is the true state of mobile robot and kŝ is the 

estimated state of the robot, N is the number of discrete 

sampling points in one simulation run. 

From the simulation result, the proposed method which used 

the Mahalanobis distance to compute the weighting matrix 

produced a better result compared to UKF-SLAM, EKF-SLAM 

and H∞ SLAM in term of accuracy as it has the lowest position 

RMSE as shown in Table 2. However, it takes a much longer 

time to complete the same task as compared to the other in term 

of computational complexity because it need to do extra task to 

compute the weighting matrix.  

Table 2 shows the results of simulation in term of position 

RMSE and computational complexity. 
 

Table 2:  

Position RMSE and Computational Complexity 
 

SLAM algorithm Position RMSE Average runtimes 

EKF-SLAM 5.0094 148.3s 
UKF-SLAM 4.6202 148.6s 

Proposed Method 4.4246 158.7s 

H∞ SLAM 8.6773 145.9s 

 

Although H∞ SLAM has the less computational complexity, 

the estimation done by it is much more less accuracy compared 

to the other algorithm in comparison.  

 

 
Figure 2: Mobile robot positing RMSE 

 

VI. CONCLUSION 

 

In this paper, the simultaneous localization and mapping of a 

range and bearing-based UGV is studied. The information 

observed from the range and bearing sensor is used to do the 

position estimation and mapping of UGV using UKF. However, 

the information obtained by the sensor normally came with 

some unwanted noise such as drifting of mobile robot. This 

affects the estimation of UGV as it will cause divergence. Thus, 

weighting matrix which representing the reliability of the 

predicted observation value of the range and bearing 

information is proposed to overcome it. The simulation result 

showed that the position estimation done on the UGV can be 

obtained accurately using the proposed method as the weighting 

matrix prevent the deterioration of estimation accuracy when 

false landmarks are detected. 
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