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Abstract—Earlier models were a simplified form of the 

complex vehicle system, which was governed by the important 

parameters and states. These parameters and states were either 

obtained indirectly through some simplified equations or directly 

measured using instrumentation. In either case, the models were 

designed on the basis of parameters and state availability or 

importance, and not to have a complete model representation and 

maximum parameter utilization through estimation and 

instrumentation. Since a complete vehicle model can lead to a 

better controller. Without considering all the important 

parameters, a complete model is not obtained to design better 

controllers. All types of controllers, classical, optimal, nonlinear 

and linear controllers use the basic equations that govern the 

vehicle dynamics. This paper reviews all the previous models 

with greater insight into each system. The aim is to provide a 

better understanding of each model, its shortcomings and how it 

can represent the complex vehicle model. 

 

Index Terms—Parameter Estimation; Vehicle Models; Tire 

Modelling; Estimation. 

 

I. INTRODUCTION 

 

The first cars used was a crude form of modern vehicles, 

having thin bicycle like tires, and a basic chassis with rigid 

suspension that resembled the horse driven carts [1]. The 

vehicle parts were a modified form of the bicycle technology 

[1]. Based on the model, the insight into the system helped the 

industry to modernize the design into modern cars. Since most 

of the design and control work was done by purely mechanical 

engineers, earlier cars were a marvel of mechanical design 

only [2-3]. As electronics made its way into highly complex 

system like airplanes and ships, their importance in 

automobiles was realized [3]. The first use of electronics in 

cars was in the firing of engine plugs to have smooth ride. At 

that time, passive electrical systems were introduced. The first 

active electronic system was in the design of antilock braking 

system [3]. Its utilization helped save the lives of many 

people. It also influenced the industry to have active electrical 

systems.  

The following sections provide a brief overview of the 

historical achievements that has resulted into modern cars and 

has provided greater insight to build better ones in the future.   

   

II. VEHICLE MODELLING  

 

There are several types of models available, such as, bicycle 

model, half car model and full car model [1,3]. Following is a 

short description of some of the commonly used models. 

A. Bicycle Model  

In bicycle model the front wheel and the rear wheel of the 

automobile are considered as the two wheels of a bicycle. The 

distance between the wheels is considered to be “ l ” distance. 

The center of gravity of the bicycle is considered to lie 

between the front and the rear wheels at distance “ a ” from the 

front wheel and distance “ b ” from the rear wheel.   

The net forces acting on the bicycle are resolved along the 

direction of motion ( xF ) and perpendicular to the direction of 

motion ( yF ) as shown in Figure. 1.  

 

 
Figure 1: Force diagram of the bicycle model 

 

In Figure. 1, the bicycle is moving with a velocity “V ” and 

is turning with a steering angle (  ). Due to the motion, the 

center of gravity (c.g) is traveling with the velocity “V ” at a 
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net direction (  ), caused by the interaction of the steering 

angle (  ) and the front and rear tire slip angles  yx  . The 

non-zero slip angle (  ) causes the bicycle to turn at a turn 

rate of ( z ) rad/s. The state space of the bicycle model is 

given in (1)[1-5]. Consider: 

 

C0 =Ca f +Car

C 1= aCa f +bCar,C2 = a2Ca f +b2Car
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The model given in (1) uses the tire coefficients of the front 

and rear wheels. It considers the automobile has full freedom 

in roll, to compensate the centripetal forces acting on the 

model during turns. This assumption is not true for auto- 

mobiles, therefore, the model is not suitable for complete 

vehicle analysis. 

 

B. Full Car Model 

The full car model is more accurate than the bicycle model, 

since it considers the 4-wheel traction and braking forces 

when modeling. The forces acting on the vehicle are resolved 

along the body longitudinal, lateral and vertical axis. The 

angular velocity along the longitudinal axis ( ), lateral axis 

( ) and vertical axis ( ) are also included in the analysis. A 

typical block diagram of a four-wheel car model is given in 

Figure. 2.  

 
 

Figure 2: Force diagram of a full car model [1]. 
 

In Figure 2, the vehicle front wheels are turning with a 

steering angle (  ) causing lateral force components to act on 

each tire. This results into tire saturation causing slips in each 

wheel at a slip angle ( i ). The resulting motion of the vehicle 

causes it to turn with a yaw rate ( z ). The net forces and 

moments acting in the longitudinal and lateral direction are 

given by (2) [1-7,33-40]. 

 

Fxå = (Fflx +Ffrx )cosd +Frlx +Frrx -

(Ffly +Ffry )sind - ApVx
2sign(Vx)

Fyå = (Fflx +Ffrx )sind + (Ffly +Ffry )cosd +

Frly +Frry - ApVy
2sign(Vy )

Ixxwz = a[Fflx +Ffrx sind +Ffly +Ffry cosd]-

b(Frly +Frry )+ e[(Fflx cosd -Ffly sind)+

(Ffry sind -Ffrx cosd)]+ e(Frrx -Frlx )

                  (2) 

 

Similarly, the simplified roll model is represented in state 

space form in Equation (3) (assuming   is small) [1], [4], [5], 

[7], [17].  

In this model, the center of gravity is considered to be ( cgh ) 

high from the road floor with roll stiffness ( K ) and roll 

damping coefficient ( B ). The parameters and states used in 

the model are defined in Figure (3). 
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Figure 3: Vehicle Roll Model (ISO8855) [5]. 

 

Equation (3) is important for roll dynamics of the vehicle, 

which is related to suspension dynamics. In automobile, the 

purpose of the suspension system is to absorb vibrations 

caused by the road surface irregularities, engine vibrations, 

adjust terrain angles to ensure better ride comfort and improve 

the contact surface between tires to ensure stability and 

improved mileage [8-12]. 

Earlier, suspension models were usually obtained by 

considering the quarter car model (one wheel only). The 

equations for a quarter car model are given in Equation (4) [8-

10]. 
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In Equation. 4, 1x  represents the vertical displacement of 

the suspension lower part and 5x  represents the vertical 

displacement of the suspension upper part. While tx  

represents the disturbance input through the tire with spring 

constant tK . The spring and damper coefficients K are 

B and respectively. A full car suspension system considers the 

suspension having four wheels. A detailed suspension system 

includes the 4-wheel suspension system model as given in 

Figure. 3 

 
 

Figure 3: Full car model with states defined 

 

In Figure. 3, the front lower suspension moves with the 

terrain with accelerations  fzfyfx aaa  along the vertical axis 

of the lower suspension. The rear suspension is also moving 

with the terrain with accelerations  rzryrx aaa . The chassis 

has engine vibrations, terrain gradients and induced road grade 

vibrations via the lower suspensions with accelerations 

 czcycx aaa  [11-12]. 

In full car suspension model, the linear displacements 

 54321 xxxxxx represent the front left, front right, rear 

left and rear right lower suspension and chassis displacements 

respectively, while the angular displacements    76 xx  

represent the roll and pitch of the chassis [28-30]. The set of 

spring constants  4321 kkkkK   and  4321 bbbbB  

represent the individual spring constants and damping 

coefficients of each damper. The full car suspension system is 

given in (5) [1], [3], [10,13-15]. 

Equation (5) shows the performance of the suspension 

depends upon the performance of the dampers. In dampers, the 

significant source of the disturbance is due to the road surface, 

which has a spectral content in the 1 Hz to 12 Hz range, 

making it difficult to reduce using fixed dampers [9], since 

they are tuned to reduce only a limited range of disturbance 

frequencies [9-15].  

An effective method to reduce the road surface induced 

disturbance is to use semi-active dampers in comparison to 

other semi-active and fully active or passive suspensions [9-

15], due to their failsafe and lower power requirements [10]. 

The suspension system is nonlinear [16-18], so suspension 

dynamics must be considered in the suspension dynamic 

model. A completely nonlinear model is suitable for proper 

control of the suspension [18]. Since suspensions are in 

contact with the terrain through tires, the performance of the 

suspension and automobile dynamics depends upon the tire 

models.  
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III. TIRE MODELS 

 

Tires provide the necessary friction forces required by the 

vehicle against externally applied forces of traction, braking 

and lateral forces. When externally applied forces become 

excessive, the tires can no longer provide sufficient friction 

forces to overcome their effect, so they start slipping [19]. The 

tire slips are different when the vehicle is accelerating, when it 

is braking or moving along a curved path as given by Equation 

6 [1,3,19]. Slipping in tires causes the vehicle to move at 

slower speeds and in arbitrary directions (tire slip angle). The 

tire force-slip angle relationship is anti-symmetric with 

hysteresis [1,3,19]. 

There are several models available for tires. The first tire 

model was the Fiala model presented in 1954 [20], in which 

the tire stiffness was assumed to be uniform along the tire slip 

angle C  and tire center line C . 

The Fiala tire model is important because it describes the 

relationship of the reaction force zF on tire adhesion, 

measured in terms of stiffness coefficients along the 

longitudinal and lateral direction. It does not provide the 

relationship between tire and slip [1-3,20].  
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The Dug off tire was the first model that provided the 

analytical relationship of slip with force as given in Equation 

(7). 

 

 

Fxi =
Jili when a ³ 0

Jili (li +1) otherwise

ì

í
ï

îï

ü

ý
ï

þï
,

Fyi =
ui tan(ai )

ui (li +1)tan(ai )

ì

í
ï

îï

ü

ý
ï

þï
,

where Ji =
Cxili
1+ li

f (g i ), ui =
Cyi tan(ai )

1+ li
f (g i )

g i =
mFz (1+ li )

2 (Cxili )
2 +Cyi tanai

, f (g i ) =
1 if g ³1

(2 -g i )g i otherwise

ì

í
ï

îï

 (7) 

 

This model provides a comprehensive analytical model for 

tires. It does not however, consider the direction of motion 

effect on the performance of tires. The geometrical properties 

of the tires are also not sufficiently explained for obtaining the 

tires stiffness.  

A more thorough model was the magic formula model 

presented in delft, October 1991 [21], which was later 

modified in 1997 [22]. According to the magic tire model, the 

forces exerted in the longitudinal ( xF ) and lateral ( yF ) 

direction are different and related with the tire shape, 

curvature, longitudinal slip angle and lateral slip angle as 

given by Equation (8)[1, 3, 21-22]. 

 

x(k + SH ) =n sin[v tan-1 V (k + SH )]-E{V (k + SH )-

tan-1 V (k + SH )}]; Fx = x(k + SH )+ SH

y(a + SH ) =n sin[v tan-1 V (a + SH )]-E{V (k + SH )

- tan-1 V (a + SH )}]; Fy = y(a + SH )+ SH

Ck =
Vx

J
Ca =

Vx

J
, where J = max(V,ey )

     (8) 

 

The output behavior of this equation is modified with the 

parameters [ ,  , k , E, vS , HS ].  The various shape para 

meters used in the magic formula model are defined in Figure 

4. 

 

 

 
 

Figure 4: Definition of various parameters of Magic Formula Model [21] 

 

Since, tires are responsible for providing the necessary 

traction and braking forces required by the automobile to be 

controllable [1,3]. They also help in overcoming the excessive 

lateral forces exerted on the automobile during heavy turns 

[23-27]. A better tire model can help in designing a controller 

that can help in better yaw control. The magic tire model is a 

promising model [45].  
 

IV. STATE SPACE REPRESENTATION OF FULL CAR MODEL 

 

The full car model can be linearized and represented in the 

state space representation form. The process of linearization 

starts with calculation of the wheel slip angle [28-30,43,44]. 

The 4-wheel slip angles are resolved using the steering angle 

inputs and velocity components. The electronic steering 

system used to model the steering input is also included. 

Similarly, the slips in each wheel are modeled using the wheel 

traction equation for angular velocity [28].  

The space matrix representation of the full car model is 

given in Equation (9)[28-30]. 

 

a11 =
Ap Vx

M
;

a12 =wz +
K1 sind

M (Vx + ewz )
+

K2 sind

M (Vx - ewz )
;

a13 =
aK1 sind

M (Vx + ewz )
+
aK2 sind

M (Vx + ewz )
;

a15 =
J1 cosd

M
;

 

a14 =
(K1 +K2 )sind

M
;

a23 =
aK1 cosd

M (Vx + ewz )
+
aK2 cosd

M (Vx - ewz )
-

bK3

M (Vx - ewz )
-

bK4

M (Vx + ewz )
;

a16 =
J2 cosd

M
; a17 =

J3

M
; a18 =

J4

M
; a21 = -wz;

 

(9) 
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a37 = -e
J3

Iz
, a38 = e

J4

Iz
, a68 = -

(1+ l2 )

Vx
a18

 

a83 = -
(1+ l4 )

Vx
a14, a44 = -

1

t
, a63 = -

(1+ l2 )

Vx
a14

 

a22 =
Ap Vy

M
+

K1 cosd

M (Vx + ewz )
+

K2 cosd

M (Vx - ewz )
+

K3

M (Vx - ewz )
+

K4

M (Vx + ewz )
,

 

a86 = -
(1+ l4 )

Vx
a16
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(1+ l4 )

Vx
a17, a24 =

(K1 +K2 )
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, a25 =

J1 sind
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a26 =
J2 cosd

M
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J1 sind

M
, a26 =

J2 cosd

M
;

a88 = -
(1+ l4 )

Vx
a18 -

R2

w4J4

IwVx
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K1(acosd - esind)
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+
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-

bK3
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Vx
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The model given by (9), considers the automobile traction 

system, the electronic steering system response, and the tire 

dynamics. It also considers the mass distribution of the 

automobile. The model therefore, is more accurate. Since the 

model includes several sub-models, traction and braking 

model, tire model, full car model, the model consists of a large 

number of states and parameters. The proper use of this model 

is possible if the required parameters and states are available. 

Since many of the parameters are not measurable [1,3], 

estimators of various types are suggested. 

 

V. STATE AND PARAMETER OBSERVER 

 

State and parameter estimators are used to estimate 

unknown states using either automobile kinematics equations, 

called "Kinematics based Estimation", or automobile model 

equations, called “Model based Estimation”. Tables 1 and 2, 

list both types of observers used for the estimation of various 

parameters and states.  

 
Table 1 

List of Some Kinematics Based Observers  

 
Variables 

Measured 

Variables 

Estimated 
Method Used 

,, yw a   ,  
Nonlinear Observer [4], [31], [37], 
[42] 

zyx aaa ,,  yx VV ,  Kalman Filter [2], [26] 

GPSGPS pV ,  
M

VV yx  Kalman Filter [35], [42] 

zyxsT 

 
,M  Recursive least square [11], [33] 

VAA yx ,,  zM  Fuzzy Logic [25] 

GPS

GPSGPSV


,
 ,V  

SO3 Filter [32] 
 

Received Mobile 

Signals 
V  Triangulation [34] 

age
GPSGPS

Im
,

 Vxp ),(  Particle Filter [36] 
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Table 2 

List of Parameters And States Estimated Using Model Based Estimation  

 
Variables 

Measured 

Variables 

Estimated 

Model 

Used 
Method Used 

GPSz   
rf

bxyx VV




 Bicycle Kalman Filter [5] 

,, yx aa  
 ,

,, yx VV
 Full Car 

Nonlinear 

Observer [6], 

[12], [41] 

ya,,   CGhcg,  Bicycle 
Multiple Models 

with switch [38] 

MVa xy,

 
  Full Car DHME [39] 

zyx

zyx aaa

 ,,

,,,
 

,

,, zyx VVV
 Bicycle 

Kalman Filter 

[40] 

 ,,z  zM  Full Car Fuzzy Logic [25] 

zx

zxw aa
 ,

,,
 zF,  Full Car 

Extended 

Kalman Filter 

[42] 

 

In either form of estimation, various sensors are used with 

complex equations. The performance of the estimators 

depends upon the performance, speed and cost of the 

algorithm and on the accuracy of the sensors [1, 3, 24, 46]. 

The above tables list the number of sensors used in respective 

observers. Among the estimation schemes, the most suitable 

observer is using SO (3) based observer, since its 

computational complexity is significantly less than the kalman 

based and non-linear observer based schemes [32, 46]. 

 

VI. CONCLUSION 

 

This paper presents a conclusive review of the different 

vehicle models used for the control and analysis of 

automobiles. The bicycle model presented in the simplest 

model but it does not include the interaction of the four wheels 

in obtaining the slips. The full car model is a complete 

representation of the vehicle chassis motion but it is 

incomplete until the suspension dynamics and tire dynamics 

are included, making the model nonlinear. Linear methods, 

therefore, become in adequate for controller design and 

estimation. Nonlinear schemes like sliding mode [43-44] 

optimal control [28-30] and intelligent control [24-25] are 

possible candidates. 
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