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Abstract—This paper presents a fault detection and diagnosis 

(FDD) for a nonlinear systems using multiple Cubature Kalman 

Filter (CKF) model. The proposed scheme able to identify sensors 

and actuators fault even with the presences of process and 

measurement noise. Comparison between actual faults with 

expected fault trajectory enables the FDD to narrow down 

possible scenario. The utilization of continuous stirred tank 

reactor (CSTR) simulation illustrates the performance of the 

scheme in nonlinear system. Result of the study shows the 

proposed method works effectively in determine the type of fault 

occurs in the CSTR.  

 

Index Terms—Cubature Kalman Filter; Bank of Residual; 

CSTR. 

 

I. INTRODUCTION 

 

Manufacturing plants can have many sensors and actuators all 

working together to ensure the process works perfectly.  But 

even with state of the art components, manufacturing plants 

can still encounter degradation, which later can cause 

malfunctions [1].  

Fault is an unpermitted deviation of at least one 

characteristic property or parameter of the system from the 

acceptable/usual/standard condition [2]. Researchers currently 

opt to analytical redundancy in developing fault detection and 

diagnosis (FDD) due to its ability to reduce the numbers of 

hardware used in the systems [3]. Model based method is one 

such example, it involves the process model, which is obtained 

by identification of the system. Based on the model, the 

consistency of the measured actual output and estimated 

output is monitored.  

Kalman Filter has been known to provide a very good state 

estimation by using statistical representation of the system. It 

becomes the basic structure for recent estimator. Such as 

Extended Kalman Filter (EKF) and Unscented Kalman Filter 

(UKF) which their ability to handle nonlinearity is proven 

[4,5]. The recent extension to Kalman filter is Cubature 

Kalman Filter (CKF), which based on third degree spherical 

radial cubature rule [6]. It achieves success since its 

introduction [7-9], and recently has come to the attention of 

FDD [5, 10]. 

FDD such as [11,12] focus much on sensor fault and other 

generals disturbance. F. Pierri developed an observer based 

FDD for sensor faults [1]. Unknown input observer (UIO) has 

been J. Zarei main focus in designing FDD, and it involved 

sensor fault [13]. But sensors fault is not always the main 

contribution to system failure, actuator fault can also produce 

the same effect to the system. The numbers of research 

focusing on isolating sensor and actuator faults has seen a rise 

in FDD area, this to show the importance of identifying faults. 

Motivated by this consideration, this research focus on FDD 

for sensor and actuator fault using CKF. The proposed method 

FDD consist of multiple CKF model to generate a set of 

residuals, this residual is later compared with another set of 

expected fault trajectory to identify type of faults. The main 

contribution of this work is the exploitation CKF ability to 

estimate and diagnose sensor and actuator faults.  

This paper is organized as follows. Section II provides the 

formulation for nonlinear system with actuator and sensors 

faults. It includes reviewing the general concept of CKF 

discussion the proposed FDD structure to detect and identify 

faults.  Setup for scheme simulation is describe in section III. 

Simulation results obtained from a non-linear Continuous 

Stirred Tank Reactor (CSTR) are presented in Section IV, and 

conclusions are presented in Section V. 

 

II. METHODOLOGY 

 

A. Problem Formulation  

Consider a nonlinear discrete time system with sensors and 

actuator faults as: 

 

 

(1) 

         

where xk  is the state of the dynamic system at discrete time k , 

f (.)  and h(.) are some known functions, uk  is the known 

control input, yk is the measurement,  u  denotes the unknown 

fault vector for the actuators,  y  denotes the unknown fault 

vector for the sensors, vk-1 and wk  are independent process 

and measurement Gaussian noise sequences with zero means 

and covariance’s Qk-1and Rk , respectively. On the receipt of a 

new measurement at time k , we update the old posterior 

density of the state at time k -1. 

In this work, we consider the problem of FDD for at most 

three faults. It encompasses the cases combination of two 

actuators and a single sensor. Since a large number of 

simultaneous faults would occur less frequently, the 
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consideration of proposed faults would meet most of the 

practical needs. Preparatory to the presentation of the FDD 

mechanism, we review the CKF to estimate the nonlinear 

model system states.  

 

B. Cubature Kalman Filter (CKF) Algorithm  

A set of model estimators is required to develop. The 

number of estimator depends on number of expected faulty 

state trajectory. Each estimator requires to be filtered using 

CKF. The following is the steps required in implementing the 

scheme: 

 

a. Time Update 

1. Assume at time k  that the posterior density 

function 

 

p(xk-1 |Dk-1) = N(x̂k-1|k-1,Pk-1|k-1) is known. 

 

Factorize 

 

Pk-1|k-1 = Sk-1|k-1Sk-1|k-1

T

 
(2) 

 

2. Evaluate the cubature points (i =1,2,...,m) 

 

Xi,k-1|k-1 = Sk-1|k-1xi + x̂k-1|k-1 (3) 

 

 where m = 2nx . 
 

3. Evaluate the propagated cubature points 
(i =1,2,...,m) 

 

Xi,k|k-1

* = f (Xi,k-1|k-1,uk-1) 
(4) 

 

4. Estimate the predicted state 

 

x̂k|k-1 =
1

m
Xi,k|k-1

*

i=1

m

å
 

(5) 

 

5. Estimate the predicted error covariance 

 

Pk|k-1 =
1

m
Xi,k|k-1

* Xi,k|k-1

*T -
i=1

m

å x̂k|k-1x̂k|k-1

T +Qk-1

 

(6) 

 

b. Measurement Update 

1. Factorize 

 

Pk|k-1 = Sk|k-1Sk|k-1

T

 (7) 

 

2. Evaluate the cubature points (i =1,2,...,m) 

 

Xi,k|k-1 = Sk|k-1xi + x̂k|k-1 (8) 

 

3. Evaluate the propagated cubature points 
(i =1,2,...,m) 
 

Yi,k|k-1 = h(Xi,k|k-1,uk ) (9) 

 

4. Estimate the predicted measurement 

 

ŷk|k-1 =
1

m
Yi,k|k-1

i=1

m

å
 

(10) 

 

5. Estimate the innovation covariance matrix 

 

Pzz,k|k-1 =
1

m
Yi,k|k-1

i=1

m

å Yi,k|k-1

T - ŷk|k-1ŷk|k-1

T + Rk
 

(11) 

 

6. Estimate the cross-covariance matrix 

 

Pxz,k|k-1 =
1

m
Xi,k|k-1

i=1

m

å Yi,k|k-1

T - x̂k|k-1ŷk|k-1

T

 

(12) 

 

7. Estimate the Kalman gain 

 

Wk = Pxz,k|k-1Pzz,k|k-1

-1

 
(13) 

 

8. Estimate the updated state 

 

x̂k|k = x̂k|k-1 +Wk (yk - ŷk|k-1)  
(14) 

 

9. Estimate the corresponding error covariance 

 

Pk|k = Pk|k-1 -WkPzz,k|k-1Wk

T

 
(15) 

 

C. Fault Detection  

In practical applications, it is necessary that generated 

residuals be robust against disturbance, noise and uncertainties 

[13]. If the designed state estimation is stable, the state 

estimation error converges to zero asymptotically. Residual is 

commonly used to detect fault occurring in the system [3,14]. 

Thus, in the steady state under fault free condition, residual 

formulation: 

 

rk = yk - ŷk = 0
 

(16) 

 

where ŷk  is the estimated measurement. This signal should 

deviate from zero (zero mean) when a fault occurs i.e. rk ¹ 0. 

 

D. Fault Diagnosis  

Fault diagnosis is a task consists of determining of the fault 

type as details as possible [18]. To identify fault, comparison 

of the measured signal with the expected trajectory of the 

process need to be done. This common technique for fault 

identification purpose is to generate a symptom signal, which 

is called error. Error signal has similar characteristics as a 

residual, but is generated by comparing estimated 

measurement with possible expected trajectory. 

Comparing the faulty scenario with expected trajectory 

requires a certain index of similarities and contrast. The higher 

the error signal shows large differences between the two 
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signals while low error signals shows similarity of the 

compared signals. 

 

esc,hyp = ŷsc - yhyp (17) 

where 
esc,hyp  denotes the generated error between estimated 

measurement and expected trajectory, ŷsc denotes estimated 

measurement, 
yhyp  denote the estimated expected trajectory. 

Expected trajectory is the hypothesize process output with 

one or more faults introduced to the process models. For each 

faulty scenario, the expected process trajectory is computed 

using the process model and the state estimates generated by 

the CKF that is subjected to sensors and actuators faults. The 

number of expected faulty state trajectory depends on the 

number of sensors and actuators. 

 

q f = 2m
 

(18) 

 

where q f  denotes numbers of expected faulty state trajectory, 
m  denotes numbers of sensors/actuators. 

For the case of 2 actuators and 1 sensor, the following fault 

combination is presented. i , 7...,0i ,can be defined as 

follows; 0  no fault, )~( 11 u , )~( 12 y , )~,~( 113 yu , )~( 24 y , 
)~,~( 215 yu , )~,~( 216 yy , )~,~,~( 2117 yyu .  

This method is a modification from a much complex 

concept from Miao Du [16] and Bo Ding [11]. Each of the 

fault combinations will be used to generate fault trajectory, 

depends on the number of fault scenario. The produced 

expected trajectory is y0 , y1, y2 , y3 , y4 , y5 , y6 , y7 . 

These expected fault trajectory is compared with actual 

measurement of the process to generate error. The generated 

error is as follows: esc,0 = ŷsc - y0, esc,1 = ŷsc - y1, esc,2 = ŷsc - y2, 
esc,3 = ŷsc - y3, esc,4 = ŷsc - y4 , esc,5 = ŷsc - y5, esc,6 = ŷsc - y6, esc,7 = ŷsc - y7 , 

where sc  is the scenario of the current estimated 

measurement.  

The generated error will be monitored to determine the type 

of fault occurred. If these are done correctly, the error with the 

faulty scenario will always be zero and the type of fault 

occurred can be determined. Error in scenario 5 with expected 

trajectory 5 will be equal to zero. This is due to expected 

trajectory 5 signal is the same with scenario 5. Other error will 

produce a certain amount of value depends on the similarity of 

scenario 5 with other expected trajectory. Set of errors 

generated:  
e5,0 ¹ 0, e5,1 ¹ 0, e5,2 ¹ 0, e5,3 ¹ 0, e5,4 ¹ 0 , e5,5 = 0, e5,6 ¹ 0, e5,7 ¹ 0. 

Due to the nonlinearity, complex system, and actuator 

faults, the signal produce can have a very complex nature. 

Constant changes and drift in the system is produced, which 

make the identification process much more complicated. Thus, 

errors which have scenario similar to expected trajectory will 

not always be zero, but a smaller value when it is put side by 

side to other error, shows is the close similarity. e5,5 » small  

Threshold can be used to separate the small error with large 

error. But for this research, we proposed root mean squared 

error (RMSE) to generate better result. RMSE usually used for 

determine the performance of certain estimation by enhance 

the error produced to clearly see the characteristic of the 

signal. For this case it is used to evaluate the close similarity 

between the measured signal and expected fault trajectory. 

Zero is a good indication of very high similarity. RMSE(e5,5 ) » 0  

 

III. SIMULATION  

 

A. Continuous Stirred Tank Reactor (CSTR)  

In this section a nonlinear chemical process adopted from 

[13] is considered to illustrate the efficiency of the proposed 

method. Figure 1 show the schematic of CSTR. 

 

 

 
 

Figure 1: CSTR schematic 
 

The CSTR model is described by the following equation. 

 

 

(19) 

 

The model is rewritten in normalized dimensionless form 

as: 

 

 

(20) 

 

 

 

 

 



Journal of Telecommunication, Electronic and Computer Engineering 

66 ISSN: 2180-1843   e-ISSN: 2289-8131   Vol. 8 No. 11  

Table 1 

Normalized CSTR Model Parameters 
 

 
 

where p1, p2, p3, p4, p5, p6, p7, p8 and p9 are summarized in 

table 1 above and the control input u1 = u2 = u3 = u4 = u5 = 1. 

The parameters of the designed filter are specified as:  

Q = diag{10-6, 10-6, 10-6, 10-6},  

R = diag{10-6, 10-6, 10-6},  

x0 = [-0.9754, 0.4725, 0.4269, 0.3793]T,  

where Q, R, x0 are applied to generate simulation data. 

Details of the given simulation setup can be referred in 

[5,13] 

 

B. Fault Scenario Simulation  

In order to determine the effectiveness of the proposed fault 

detection mechanism, multiple scenarios have been carried 

out. A scenario is a possible fault combination that the actual 

system can encounter. Even though, the CSTR simulation 

contain 5 actuators and 4 outputs, we only take into 

consideration for scenario which deals with fault  u1,  y1, and 

 y2  only. Thus the number and combination of fault scenario is 

similar to the number of expected trajectory. 

The total simulation time is k=100, and the sensor and 

actuator faults are described as follows: 

 

 

u1 =
0, 0 £ k < 25

0.5, 25 £ k £100

ì
í
ï

îï  

(21) 

 
y1 = 0, 0 £ k £100{

 
(22) 

 

y2 =
0, 0 £ k < 25

0.5, 25 £ k £100

ì
í
ï

îï  

(23) 

 

IV. RESULT  

 

Figure 2 shows the comparison between estimated CKF 

output and the measured output. This is to show the ability of 

the CKF to produce good estimation of the measured signal. 

Convergence of the estimation can be seen in the early steps of 

the CKF output. Figure 3 shows CSTR output within scenario 

5 (fault type 5), fault occurred at time k=25. 

 

 
Figure 2: Estimated measurement with no fault (Scenario 1) 

 

The measured filtered output is compared with expected 

fault trajectory to obtain the necessary error which can 

determined the similarity between the two comparisons. 

Figure 4 shows a set of errors detected for scenario 5, there are 

8 expected trajectory generated to be compared with the 

measured signals. Each trajectory is associated with specific 

type of faults. Error 5 is related to combinations of fault 

actuator one and sensor one. The error that is very close to 

zero indicates the type of faults currently the systems is facing.  

Table 2 shows the RMSE for the compared scenario and 

trajectories. Each expected fault trajectory or fault hypothesis 

is compared with the fault scenario. Comparisons between the 

two signals produce an error that is used to determine the 

fault. The lowest RMSE value in the scenario indicates the 

fault that the system is currently exposed. Large RMSE shows 

dissimilarity between the faults occurred in the measured data 

and expected fault trajectories. Thus, the fault can be deduced. 

 

V. CONCLUSION 

 

Identifying sensors and actuators fault can help user to focus 

on the source of the fault at the same time reduce the time and 

cost to mitigate the problem. In this paper, we proposed FDD 

sensor and actuator fault in nonlinear system.  

The advantage of CKF is exploited in the proposed scheme 

and able to compensate any nonlinearities, measurement noise, 

and to differentiate sensor and actuator fault. Also, the CKF 

has been embedded in a multiple model scheme, resulting the 

multiple expected fault trajectory. 
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The number of models is based on the number of possible 

fault logic, in this case, the actual single sensor fault, single 

actuator fault or combination of faults can accurately be 

determined. Deducing the type of fault occur falls under 

classifying problem, there are many way of classification and 

can be the extension of this research. The CSTR simulation 

shows the effectiveness of the fault isolation using the 

proposed methods.  

 

 
 

Figure 3: Estimated measurement with fault at time, k=25, (Scenario 5) 

 

 
 

Figure 4: Generated possible expected trajectory error from Scenario 5 (
e5,i , 

i = 0...7). Note 
e5,5  have signal very close to zero to indicate similarity. 

 

Table 2 

RMSE Comparison Between Scenario and Expected Fault Trajectory 
 

 
 

REFERENCES 

 
[1] F. Pierri, G. Paviglianiti, F. Caccavale, M. Mattei. “Observer-based 

sensor fault detection and isolation for chemical batch reactors.” 
Engineering Applications of Artificial Intelligence vol.21, no.8, pp. 

1204–1216, 2008. 

[2] D. Schrick, “Remarks on terminology in the field of supervision, fault 
detection and diagnosis.” Proc IFAC Symp Fault Detection, Supervision 

Safety for Techn Procss, 1997, 959 - 964 

[3] Zhiwei Gao, Carlo Cecati, Steven X. Ding. “A Survey of Fault Diagnosis 
and Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-

Based and Signal-Based Approaches.” IEEE Transactions on Industrial 

Electronics, vol.62, pp.3757 – 3767, 2015. 
[4] K. Salahshoor, M. Mosallaei, M. Bayat. “Centralized and decentralized 

process and sensor fault monitoring using data fusion based on adaptive 

extended kalman filter algorithm.” Measurement vol.41, no. 10, pp. 
1059–1076, 2008. 

[5] H. M. Qian, Z.D. Fu, J.B. Li, L.L. Yu. “Robust fault diagnosis algorithm 

for a class of lipschitz system with unknown exogenous disturbances.” 
Measurement vol.46, no.8, pp.2324–2334, 2013. 

[6] I. Arasaratnam, S. Haykin. “Cubature kalman filters.” IEEE 
Transactions on Automatic Control 54 (6) (2009) 1254–1269 

[7] W.Li, Y.Jia. “Location of mobile station with maneuvers using an IMM-

based cubature Kalman filter.” IEEE Transactions on Industry 

Electronics vol.59, no. 11, pp. 4338-4348, 2012. 

[8] D. Macagnano, G.T. Freitas de Abreu. “Adaptive gating for multitarget 

tracking with Gaussian mixture filters.” IEEE Transactions on Signal 
Processing vol.60, no.3, pp.1533-1538, 2012. 

[9] X. Tang, J. Wei, K. Chen. “Square-root adaptive cubature Kalman filter 

with application to spacecraft attitude estimation.” 15th International 
Conference on Information Fusion (FUSION), 2012, pp.1406-1412. 

[10] J. Zarei, J. Poshtan. “Design of nonlinear unknown input observer for 

process fault detection.” Industrial & Engineering Chemistry Research, 
vol.49, no. 22, pp. 11443–11452, 2010. 

[11] B. Ding, H. Fang. “Multi-faults detection and estimation for nonlinear 

stochastic system based on particle filter and hypothesis test.” 
International Journal of Systems Science, vol. 47, no.16, pp.3812-3821, 

2016. 

[12] S. Rajaraman, J. Hahn, M.S. Mannan. “Sensor fault diagnosis for 
nonlinear processes with parametric uncertainties.” Journal of 

Hazardoes Materials, vol. 130, no. 1, pp. 1-8, 2006. 

[13] J. Zarei, E. Shokri. “Robust sensor fault detection based on nonlinear 
unknown input observer.” Measurement, vol. 48, pp.355-367, 2014. 

[14] J. Mohd Ali, N.H. Hoang, M.A. Hussain, D. Dochain. “Review and 

classification of recent observers applied in chemical process systems.” 
Computers and Chemical Engineering, vol. 76,pp. 27–41, 2015. 

[15] R. Isermann .“Fault-Diagnosis Systems: An Introduction from Fault 

Detection to Fault Tolerance.” Springer -Verlag Berlin Heidelberg, 
2006. 

[16] M. Du, J. Scott, P. Mhaskar. “Actuator and sensor fault isolation of 

nonlinear process systems.” Chemical Engineering Science vol.104 
pp.294-303, 2013. 

 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%2522Authors%2522:.QT.Zhiwei%20Gao.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%2522Authors%2522:.QT.Carlo%20Cecati.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%2522Authors%2522:.QT.Steven%20X.%20Ding.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=41
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=41

