
 ISSN: 2180-1843   e-ISSN: 2289-8131   Vol. 8 No. 11 41 

 

A Review of Social-Aware Navigation Frameworks 

for Service Robot in Dynamic Human Environments 
 

 

S. F. Chik1, C. F. Yeong2, E. L. M. Su1 T. Y. Lim3, Y. Subramaniam4, P. J. H. Chin4 
1Faculty of Electrical Engineering Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia. 

2Centre for Artificial Intelligence and Robotics, Faculty of Electrical Engineering,  

Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia. 
3Malaysia Japan Institute of Technolgy (MJIIT), Faculty of Electrical Engineering,  

Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia. 
4DF Automation and Robotics Sdn. Bhd., Taman Impian Emas, 81310 Skudai, Johor, Malaysia. 

sfchik91@gmail.com 

 

 
Abstract—The emergence of service robot into human daily 

life in the past years has opened up various challenges including 

human-robot interaction, joint-goal achievement and machine 

learning. Social-aware navigation also gains vast research 

attention in enhancing the social capabilities of service robots. 

Human motions are stochastic and social conventions are very 

complex. Sophisticated approaches are needed for a robot to 

abide to these social rules and perform obstacle avoidance. To 

maintain the level of social comfort and achieve a given task, the 

robot navigation is now no longer a search for a shortest 

collision-free path, but a multi-objective problem that requires a 

unified social-aware navigation framework. A careful selection of 

navigation components including global planner, local planner, 

the prediction model and a suitable robot platform is also 

required to offer an effective navigation amidst the dynamic 

human environment. Hence, this review paper aims to offer 

insights for service robot implementation by highlighting four 

varieties of navigation frameworks, various navigation 

components and different robot platforms. 

 

Index Terms—Navigation Framework; Path Planner; Review; 

Social-Aware. 

 

I. INTRODUCTION 

 

Robots are not only operate in the industry world, but also 

venture into human daily lives, co-exist with people in 

restaurants, hotels, shopping malls, hospitals and healthcare 

centres [1-3]. Pepper [4], a human-like robot developed by 

Aldebaran is able to welcome customers in shops. REEM [5], 

a wheeled humanoid service robot is placed in shopping malls 

and exhibitions to give service and entertain people. Another 

mobile service robot, OSHbot [6], developed by Lowe’s 

Innovation Labs and Fellow Robots can bring customer to the 

location of requested products in a hardware store. To 

navigate in dynamic human environment, robots have to 

handle the stochastic human motion and abide the social 

conventions to avoid human-robot conflicts. According to Hall 

[7], human proxemics can be categorized into intimate, 

personal, social and public, with different proxemics reserved 

for specific relationship. Kendon described [8] the formation 

of group conversation as F-formation, which consist of o-

space, p-space and r-space. For a conversation group of two 

people, the formations can be further represented by N-shape, 

vis-a-vis, V-shape, L-shape, C-shape and side-by-side, 

showing that social rules are indeed complex. Social-aware 

navigation is vital for social acceptance in these scenarios 

where robots have to understand and respect human cues. 

Navigation in dynamic human environment is therefore no 

longer a problem to find a collision-free path, but is a task to 

achieve a joint goal with human-robot mutual understanding. 

Kruse et al. [9] did a review on human-aware navigation, 

highlighting various research areas including comfort, 

naturalness, sociability and also discussed about navigation 

components in social environments. Rios-Martinez [10] on the 

other hand surveyed on the importance of proxemics on social 

robot navigation. Various navigation methods have been 

proposed and hence navigation frameworks are important to 

unite methods from different research focuses for service 

robot implementation. Hence, this paper highlights four 

varieties of frameworks, various navigation components and 

robot platforms used in literatures related to social-aware 

navigation in dynamic human environment for the past three 

years. The literature search is conducted using online search 

engines and manual search of robotics conferences and 

journals, limited to English language literatures. The rest of 

the article is organized as follows: Section II introduces the 

navigation components including global planner, local planner 

and prediction model. Section III describes different kinds of 

navigation frameworks for social-aware navigation. Robot 

platforms used in researches of social-aware navigations are 

introduced in Section IV. A discussion on navigation 

frameworks, navigation components and robot platforms is 

presented in Section V. Section VI concludes with a summary 

of the selection of navigation components, frameworks and 

robot platforms for service robot implementation, and 

provides insight for future researches. 

 

II. NAVIGATION COMPONENTS 

 

A. Global Planner 

Global planner provides a mobile robot an optimal and 

collision-free route from the current position towards the goal. 

A global planner requires a known or partially-known static 

map of an environment to process before proceed to 
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navigation.  

Rapidly-Exploring Random Trees (RRT) [11], a 

probabilistic global planner, is well-known for path planning. 

RRT offers a quick solution search across the problem 

domain, also identified as a metric space, X through random 

sampling. RRT treats the path planning problem as to find a 

path from an initial state, xinit to the goal state xgoal. For every 

iteration, a state transition to xnew is carried out and is bounded 

by the criteria that xnew ∈ Xfree  , where xfree is the free region 

within X. Complement of Xfree is represented by Xobs, where 

Xobs can be the obstacle region or any configuration where a 

robot will end up with a collision.  The state transition 

equation is as follows: 

 

                                          ),( uxfx       (1) 

 

where ẋ is the derivative of state with respect to time and u is 

a vector input from a set U required to transit from current 

state, x to xnew. Vertex generated by xnew and edge created 

between xnew and x are recorded for further expansions until a 

path is form between xinit and xgoal. The advantage of RRT is 

that f(x,u) is able to account for kinematic and dynamical 

constraints during state transition, which is suitable for many 

practical applications. Shrestha et al. used RRT [12] as global 

planner to plan path in an environment with human. Pérez-

Higueras et al. [13] suggested RRT can also be used as local 

planner instead, due to its real-time capability which is very 

crucial to result in an effective human-avoidance. To further 

improve RRT path planner, researcher proposed different 

variants including RRT* [14] and dual-tree RRT (DT-RRT) 

[15]. 

 

 
 

Figure 1: A path planned using RRT for kinodynamic car [11] 
 

Another popular global planner is the A* search algorithm 

[16], which is a deterministic planner that utilizes the distance 

between the current processing node and the goal node on the 

solution space as heuristic [17] components to return a 

globally shortest path as shown in Figure 2. The cost function 

of A* algorithm is as follows: 

 

                               )()()( nhngnf                (2) 

 

where n is the current node, g(n) is the path cost from the start 

node to node n and h(n) is the cost estimation of the cheapest 

path from node n to the goal. A* algorithm treats nodes with 

different states: open, closed and unvisited, then places them 

into respective lists. A* algorithm works by placing the 

current checking node n into the closed list while its 

surrounding nodes are put under the open list, then the cost 

function for each surrounding node is calculated. These 

surrounding nodes are the child nodes and are paired to the 

current checking node n, or simply the parent node. The next 

checking node is then selected from the open list with the 

smallest value of the cost function. Again, the cost function 

for each surrounding node is calculated and paired to the new 

node n. Special check is required for surrounding node that is 

already in the open list, whether the previous or the new path 

cost g(n) to that node is lower. If the current path cost is lower, 

then that node has to be paired to that new node n. This 

process is repeat until the goal node lies beside the current 

node n, and a shortest path between the start and the goal node 

can be form by tracing back the paired child and parent nodes. 

 

 
 

Figure 2: A* algorithm planned a shortest path on a grid environment 
 

If the heuristic part, h(n) is omitted, the result is an 

algorithm namely the Dijkstra’s algorithm [18]. Other variants 

of A* include: D* [19], Focussed D* [20], D* Lite [21] and 

LPA* [22]. A* algorithm and A* variants are able to return a 

shortest feasible path. Thus, many literatures [23-27] 

regarding navigation in dynamic human environments utilized 

A* algorithm for global planning. While some [13, 28, 29] use 

Dijkstra algorithm due to its simplicity when computational 

time is not crucial. 

 
Table 1 

A summary of Global Planners with Respective Literatures 

 

Global 
Planners 

Literatures Advantages Disadvantages 

RRT [12] 

Accounts for 

robot kinematic 
and dynamical 

constraints 

Does not result in 
shortest path 

A* 

algorithm 
[23-27] 

Returns shortest 
path depending on 

defined grid size 

Does not consider 
robot kinematic and 

dynamical constraints 

Dijkstra’s 

algorithm 
[13, 28, 29] 

Returns shortest 

path depending on 

defined grid size 

High memory 
requirement and 

computational time for 

large environment 

E* [30] 

Has dynamic 
replanning 

capability 

Dynamic capability is 

redundant with the 

existence of local 
planner 

Global 

artificial 
potential 

field 

[31] 
Real-time obstacle 
avoidance 

Dynamic capability is 

redundant with the 
existence of local 

planner 

Wavefront 

algorithm 
[33] 

Simple 

implementation 

Greater memory 
requirement and 

computational time for 

large environment 
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Other than RRT and A* algorithm, Weinrich et al. [30] 

utilized E* algorithm as global planner that has dynamic 

replanning capability in the research of socially compliant 

robot navigation. In a study of indoor human monitoring, 

Lizuka et al. [31] used a Global Potential Field Approach that 

can overcome the local minimum issue in robot navigation. 

Wavefront algorithm or known as NF1 [32], is a simple global 

planner that expands the search to all adjacent nodes until the 

start node and goal node are covered, utilized by Oli et. al. 

[33] for path planning that incorporates human motion 

behavior. A summary of different global planners used in 

social-aware literatures is shown in Table 1. 

 

B. Local Planner 

Local planner focuses on collision avoidance for dynamic 

obstacles, where global planner could not handle efficiently. 

Fox et al. [34] proposed the Dynamic Window Approach 

(DWA), a local planner, which take account of robot 

kinematic and dynamic constraints. DWA algorithm plans 

collision-free trajectory in two steps. First, DWA reduces the 

search space by pruning those non-achievable velocities. This 

step takes account of three sets of velocities: circular 

trajectories, admissible velocities and dynamic window. 

Circular trajectories, Vs consists of velocities for the next time 

interval that does not intersect with an obstacle. Admissible 

velocities, Va represents a set of velocities that a robot is able 

to stop before it reaches an obstacle. While dynamic window, 

Vd consists only velocities that can be reached within the next 

time interval. The search space Vr is then restricted by 

intersecting Vs, Va and Vd. The second step of DWA is to 

maximize an objective function by choosing the possible 

velocities in Vr from step one. The objective function is as 

follows: 

                                             

)),(),(),((),(  vvelvdistvheadvG      (3) 

 

where head(v,ω) measure the heading of the robot with the 

goal position, dist(v,ω) defines the distance closest obstacle 

detected and vel(v,ω) represents the speed of the trajectory, σ 

is used to normalized the weightages α, β and γ to [0,1].  

 

 
 

Figure 3: DWA aligns the robot current heading to goal using the angle θ from 

a velocity predicted position [34] 

 

Figure 3 shows DWA is able to align the heading of the 

robot to the goal point using velocity predicted position. The 

nature of DWA that derive path from motion dynamics 

enables several literatures [24, 30, 33, 35, 36] successfully 

implemented DWA for human collision avoidance. 

DWA however does not consider the velocity of the 

obstacle as Velocity Obstacle (VO) [37] does. VO is a 

planner, which generates avoidance manoeuvres by selecting 

the robot velocities outside the collision cone, where collision 

cone consists of velocities that would result in collision with 

obstacles moving at given velocities, at some time in future. 

Figure 4 shows that a size-reduced robot A and obstacle B are 

moving at velocities Â with magnitude VA and B̂ with 

magnitude VB respectively.  The first step to compute VO is to 

reduce the size of A to a point as shown in Figure 4 and 

enlarge obstacle B by the radius of A. Then, define the 

collision cone, CCA,B  as follows: 

 

                           }ˆ|{ ,,,   BVCC BABABA


                  (4) 

 
where V⃗A,B is relative velocity of Â with respect to B̂, 

calculated using V⃗A,B =V⃗A - V⃗B and λA,B is the trajectory of 

V⃗A,B. 

 

 
 

Figure 4: Collision cone CCA,B defined by VO for moving robot A and 

moving obstacle B [37] 

 

Any relative velocity outside of the collision code CCA,B 

bounded by λr  and λf  is guarantee to be collision-free, 

provided that the obstacle B̂ maintains its current shape and 

speed.  VO is able to simplify a complex dynamic situation 

using velocity space. To obtain the absolute velocity of A, just 

simply add the velocity of B, V⃗B  to each of the velocities in 

CCA,B as shown in (5) as follows: 

         

BBA VCCVO


 ,
                              (5)   

  

where ⊕ is the Minkowski vector sum operator. Then for the 

case of multiple obstacles, the resulting VO is the union of the 

individual velocity obstacles given by (6). 

 


m

i Bi
VOVO

1
                               (6) 

 

where m is the total number of obstacles and VOBi is the 

velocity obstacle for ith obstacles. Hence, by selecting the 

velocity outside of VO can ensure a collision-free path. 

However, VO treats the collision-avoidance as a task to be 

done by the robot alone, which does not imply the case where 

human will take reciprocal action to avoid the robot. Berg et 
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al. proposed Reciprocal Velocity Obstacle (RVO) [38], which 

is an extension of VO that in a multi-agent environment, each 

agent moves by considering the behavior of other agents to 

achieve a mutual collision avoidance. DongXiang et al. [39] 

used a variant of RVO, the Optimal Reciprocal Collision 

Avoidance (ORCA) [40] to pro-actively avoid pedestrians. 

There are researches [28, 41] used Dijkstra’s Algorithm as 

local planner by computing fractions of shortest path to 

achieve a temporal goal. X-Y-T Space [42] and time-

dependent A* [26] local planners used the same concept by 

generating sub-goals in order to avoid human and non-human 

obstacles. There are some other local planners that directly 

incorporate the information from human prediction model 

(Section II C) to replicate human in collision avoidance. A 

summary of local planners used in social related robot 

navigation is presented in Table 2. 

 
Table 2 

Different Local Planners Used in Social-Aware Literatures 

 

Local 

Planners 
Literatures Advantages Disadvantages 

DWA 
[24, 30, 33, 

35, 36] 

Accounts for 
robot kinematic 

and dynamic 

constraints 

Does not predict 

obstacle motion 

ORCA (VO 
Variant) 

[39] 

Considers and 

predicts obstacle 

motion 

Does not take account 

of kinematic and 

dynamic constraints 

Dijkstra’s 

algorithm 
[28,41] 

Simple 

implementation 

Does not take account 

of robot kinematic and 

dynamic constraints 
and obstacle motion 

X-Y-T 

Space 
[42] 

Accounts for 

robot kinematic 
and dynamic 

constraints and 

predicts obstacle 
motion 

Performance and 
computational effort 

depends of defined 

grid size 

Time-

dependent 

A* 

[26] 
Simple 
implementation 

Does not take account 

of robot kinematic and 
dynamic constraints 

and obstacle motion 

With 
human 

prediction 

model 

Table 3 

Predicts human 
dynamic motion 

and accounts for 

social conventions 

Sophisticated 

implementation 

 

C. Prediction Model 

 Prediction of human motion further improves the 

effectiveness of the navigation in a populated dynamic 

environment. A simple way to predict human motion is by 

using the linear model where human trajectories are formed by 

mostly straight lines, as used in VO local planner.  

To better represent the stochastic human behaviour, Helbing 

and Molnar [43] proposed the Social Force Model (SFM). 

SFM defines that pedestrian motions are motivated by the 

environment where social forces are coming from the 

destination, surrounding objects and other pedestrians. The 

general model for a pedestrian i is given by the social force 

term: 

 

)()(
)(

ttF
dt

tdv
i

i 


                         (7) 

 

where ξ⃗ is a fluctuation term to represent random variations 

of behaviour. The term F⃗i is the summation of the 

pedestrian’s desired force towards a goal f⃗i
goal and other 

interacting forces F⃗i
int. 

 

                                            int

i

goal

ii FfF


  (8) 

 

The term f⃗i
goal defines that each pedestrian i moves in a 

desired velocity v⃗i
0  and is subjected to necessary deviation of 

v⃗i and hence can be represented as follows:  

 

                                            )(
1 0

ii

i

goal

i vvf





 (9) 

                                             

where τi  is the relaxation time. F⃗i
int is the interacting forces 

applied on pedestrian i, from other pedestrians and obstacles. 

In the application of robot navigation, F⃗i
int includes the 

interaction with robot. Helbing and Molnar [43] did a software 

simulation on SFM with a walkway (Figure 5) of 10 meter 

wide and 50 meter long and a uniform pedestrian motion is 

observed, reflecting the real world scenario.  

SFM is implemented in several literatures [23, 35, 44-47] 

for human-aware navigations, proving the effectiveness and 

practicality of the prediction model.  

 

 
 

Figure 5: Pedestrian motion based on SFM where the filled and unfilled 

circles indicating pedestrians walking in opposite directions [43] 

 

Another modelling method is through observing the human 

motion and apply feature extraction and learning using Inverse 

Reinforcement Learning (IRL) [48]. A brief introduction of 

Markov Decision Process (MDP) [49] is needed to describe 

IRL. MDP is an environment representation using a tuple 

(S,A,{Psa},γ,R), where S is a finite set of N states s, A is a set 

that consist of k number of actions a, Psa(s') is the probability 

of state transition from s to s'  by taking action a, γ∈[0,1] is the 

discount factor and R is the reward function at a given state s. 

From this state space representation, MDP offers an optimal 

policy π* for state transitions based on state utility U to obtain 

the best reward. The optimal policy is computed as follows: 

                                            





'

)(
)'()'(maxarg)(*

s

sa
sAa

sUsPs               (10) 

 
where U, the utility of state s, is computed using the following 

Bellman equation: 

                                            





'

)(
)'()'(max)()(

s

sa
sAa

sUsPsRsU           (11) 

MDP is a probabilistic planning technique to obtain an 

optimal policy of a situation with given finite states and 

actions by maximizing reward. IRL however deals with the 

inverse problem where a policy and elements in the MDP 
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tuple (S,A,{Psa},γ,R) are given except the reward function R. 

The task of IRL is to identify the reward function R such that 

π* is an optimal policy in the MDP. In the context of social-

aware navigation, the finding of reward function R is to 

describe an observed behaviour such as a crowd motion and a 

demonstration from an expert. Vasquez et al. [28] did a 

comparative study between the Max-margin IRL [50] and 

Maximum Entropy IRL [51] for crowd navigation and both 

learning-method offering similar performance, which is better 

than manual weight tuning. Kim and Pineau [41] proposed a 

socially adaptive path planning using IRL to define the cost 

function for the planner, offering comfortable and safe 

trajectory. Kuderer et al. [25] proposed IRL for navigation in 

human environments, showing better results than other 

dynamic global planner methods. Pérez-Higueras et al. [13] 

also used IRL and is able to transfer human motion behaviour 

to a mobile robot.  

There are also other modelling methods such as multi-goal 

Interacting Gaussian Processes (mgIGP) [52, 53] that is able 

to reason multiple goals of human motions. Hamiltonian 

Markov Chain Monte Carlo sampling (HMCMC) [54], 

another method that can learn the stochasticity of the observed 

human trajectories. Human Motion Behaviour Model 

(HMBM) [33], is a model that enables robot to perform 

human-like decision in various commonly human encountered 

scenario. For simplicity, several researches [26, 39, 42, 55, 56] 

used linear model that just consider human moves linearly. 

Table 3 summarized the prediction models proposed by 

selected literatures.  

 
Table 3 

Literatures Using Different Prediction Models to Social-Aware Navigation 

 

Prediction 

Models 
Literatures Advantages Disadvantages 

Linear 
[26, 39, 42, 

55, 56] 

Easy 

implementation 

Unable to fully 
represent a human 

motion 

SFM 
[23,35,44-

47] 

The relationship 
between 

pedestrians, robot 

and static 
obstacles are 

presented in 

discrete 
components and 

can be adjusted 
separately 

The environment has 

to be clearly known 
beforehand in order to 

predict the possible 

goals of the 
pedestrians 

Learning 

approach 

(IRL, 

HMCMC) 

[13,25,28, 

41,54] 

Able to model the 

human motion and 
easily adapt to 

different 

environment 

Performance depends 

on proper selections of 

observed features and 

local planner 

mgIGP [52,53] 

Able to react base 

on predicted 

human motion 
goal 

Requires external 

sensor setups 

HMBM [33] 

Able to perform 

human-like 
decision in 

various commonly 

human 
encountered 

scenario 

Have to define every 
possible scenario 

 

III. NAVIGATION FRAMEWORKS 

 

Global planner, local planner and prediction model, each 

navigation component plays distinct roles in a social-aware 

navigation. Hence, a proper navigation framework is needed 

to unify these components. Different navigation frameworks 

are formed under the combination of different components, 

where this paper highlights four types of frameworks.  The 

arrows in Figures 6 until 9 represent the data flow between 

components.  

 

A. Framework 1: Sole Global Planner 

 

Global Planner
Obstacle 

Detection

Mapping

Robot Actuators Sensors

 
 

Figure 6: A Sole Global Planner navigation framework 

 

A navigation framework with only global planner requires 

least implementation effort. Once the map information is 

obtained, the global planner computes a shortest or any 

feasible path from current location to the goal and gives 

command to the robot actuators. When an obstacle is detected, 

the global planners will have to repeat the path planning 

process, this results in move-stop-move scenario that impact 

the path smoothness. Although some improvements are done 

on global planners to account for dynamic obstacles, this 

framework is still insufficient to produce socially acceptable 

trajectories. According to Kollmitz et al. [26], paths produced 

by global planner often require large robot motion divergent 

which reduces the level of human comfort. This framework is 

used by Shrestha et al. [12], where replanning is required 

whenever a person is blocking the original path.  

 

B. Framework 2: Global Planner with Local Planner 

In order to improve collision-avoidance in path planning, 

reactive local planner has to be introduced into the navigation 

framework. The problem with local planners such as VO and 

DWA is that they are not suitable for stand-alone applications 

due to insufficient future planning. However, these local 

planners have collision-avoidance capability that outperform 

global planner with poor dynamic obstacle handling but has 

better look-ahead. Hence, the combination of global planner 

and local planner as shown in Figure 7 is able to minimize 

drawbacks of each method. This framework is utilized in the 

research work of Xia et al. [36] for navigation and exploration 

in human environment. However, this framework is still 

insufficient to deal with highly dense human environment with 

complex human motion. 
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Global Planner

Obstacle 

Detection

Mapping

Robot Actuators Sensors

Local Planner

 
 

Figure 7: A Global Planner with Local Planner navigation framework 

 

Local planner can be improved to be more pro-active in 

obstacle avoidance. As mentioned by DongXiang et al. [39], 

VO and DWA are classical local planners that avoid obstacles 

reactively and can be enhanced using reciprocal and pro-active 

collision avoidance methods such as ORCA and machine 

learning. Pro-active methods are able to predict the stochastic 

motion of human by using human behavioral models to 

achieve a more effective human-robot collision-avoidance. To 

predict human motion, several components have to be added, 

which will be presented in the next navigation framework. 

 

C. Global Planner with Predictive Local Planner 

 

Global Planner

Obstacle 

Detection
Mapping

Robot Actuators

Sensors

Local Planner

Human Detection

Human Tracking

Prediction Model

 
 

Figure 8: A Global Planner with Predictive Local Planner navigation 

framework 

 

In the prior mentioned navigation frameworks, obstacle 

detection is for collision-avoidance between robot and both 

non-human and human subjects. In this framework, human 

detection is separated from obstacle detection and this enables 

the robot to behave differently when encountered a human or a 

non-human obstacle. Some literatures [24, 26] proposed to 

assign a Gaussian cost function to human to avoid personal 

space intrusion. Hence, the robot trajectory often keeps a 

further distance between human than that of other obstacles. 

This method of keeping distance often uses a linear human 

prediction model and thus it is the easiest way to provide 

acceptable level of comfort to pedestrians. However, using a 

linear model is susceptible to the “freezing robot problem” 

(FRP) [57], where the robot decides that stop moving is the 

safest choice instead of planning another path. Hence, instead 

of a linear model, a Social Force Model (SFM) [43] is used to 

improve the navigation framework. A stream of publications 

[23, 35, 44-47] used SFM prediction model to produce an 

effective navigation amidst pedestrians. Some researchers [13, 

25, 28, 41, 54] take effort to model the crowd motion and 

expert demonstrations using machine learning and transfer the 

human behavior model to the local planner. With the 

predictive model, local planner is able to plan a better 

collision-free path based on the trajectories of human that are 

likely to follow in future instead of reactively avoiding them.  

Pérez-Higueras et al. [13] utilized this navigation framework 

to enable their service robot to move through populated public 

premises. Talebpour et al. [24] designed a domestic robot 

using this navigation framework to produce socially 

acceptable robot movement. Other literatures [33, 41, 46, 47] 

implemented this framework to predict and reason human 

motion for better obstacle avoidance and to display social-

aware behavior.  

 

D. Social-aware Global Planner with Predictive Local 

Planner 

 

Global Planner

Obstacle 

Detection

Mapping

Robot Actuators

Sensors

Local Planner

Human Detection

Human Tracking

Prediction Model

Social Costs

 
 

Figure 9: A Social-aware Global Planner with Local Planner navigation 
framework 

 

To further improve the social-aware navigation framework, 

the global planner can be fed with social costs reviewed by 

Kruse et al [9], such as object padding, object occlusion and 

hidden zones. Social costs include object padding, object 

occlusion, hidden zones and many more. This results in a 

higher overall social awareness for the robot trajectory. With 

added social costs, a robot is able to plan path to avoid 

expected crowded areas, select a favorable human 

approaching direction and pick a right side on a pedestrian 

street even before starting navigation. This navigation 

framework reduces the burden of local planner to perform a 

social-aware motion, and thus resulting a more human-like 

robot behavior.  
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IV. ROBOT PLATFORM 

 

Different types of robot platform can yield different 

performance in social-aware navigation due to its capability in 

tracking the planned path and performing human-robot 

collision avoidance. 

 

A. Differential Drive 

 Differential drive platform enables a robot to change its 

orientation θ by varying the speed of the wheels at both sides 

(Figure 10), but limited to 2 degree of freedom (DOF). In an 

ideal environment, when both wheels are rotating at the same 

speed and same direction, the robot can either move forward 

or backward in a straight line. The robot can make a turn by 

commanding one of the wheel to move at different speed. 

When both wheels turn at the same speed but different 

directions, the robot will rotate in place. The instantaneous 

robot orientation θ(t)  at t time  is given by Equation (12): 

 

                                
oLR btVVt   /)()(                 (12) 

 

where VR and VL are the velocities of right wheel and left 

wheel respectively, b is the distance between 2 wheels and θo 

is the initial robot orientation. Due to the simple kinematics of 

this platform, various robot prototypes [23-26, 35, 36, 39, 41, 

44, 55] in social-aware navigation researches utilize 

differential steering platform to for path planning in human 

environment. However, path planner has to incorporate the 

complex non-holonomic constraints [58] of the differential 

drive platform. 

 

 
 

Figure 10: A differential drive platform can change its orientation θ by 

varying the speed of the wheels (VR and VL). [59] 

 

B. Omnidirectional Drive 

 Omnidirectional drive is able to overcome the non-

holonomic constraints of differential drive by employing 

special kind of wheel such as the Omni wheel or Mecanum 

wheel [60]. The free rotating rollers around the periphery of 

the wheel (Figure 11) enables omnidirectional drive platform 

to move laterally and rotates while moving in any direction in 

a planar space. The kinematics equation of the 3-wheeled 

omnidirectional drive platform with δ=60° can be written in 

the following matrix form: 
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where Vx and Vy are the velocity components of robot 

platform in the reference frame X and Y, ωp is the rate of 

rotation about pivot axis, R is the distance from the pivot axis 

to the wheel and V1, V2 and V3 are the tangential velocities the 

wheels. By varying the velocity of the wheels, this robot 

platform is able to change its rotational and linear velocities at 

the same time. 

 

 
 

Figure 11: A 3-wheeled omnidirectional drive platform [61] 

 

Omnidirectional drive platform can better perform obstacle 

avoidance due to its holonomic characteristic. Hence, several 

social-aware navigation studies used this platform for their 

experimental robots [4, 12, 29, 42]. Table 4 summarized the 

robot platforms used by selected literatures. 

 
Table 4 

Robot Platforms Used by Selected Literatures 

 

Robot 
Platform 

Literatures Advantages Disadvantages 

Differential 

drive 

[13, 23-26, 

35, 36, 39, 

41, 44, 55] 

Simple platform 

construction 

 

Suffers from non-

holonomic constraints, 

poor obstacle 
avoidance capability 

Omni-
directional 

drive 

[4, 12, 29, 

42] 

Flexible 

movement, good 
obstacle 

avoidance 
capability 

Complex platform 

construction 

 

V. DISCUSSION 

 

Various navigation components and frameworks have been 

introduced in the previous sections and selecting the right ones 

can improve the overall performance of the robot social-aware 

navigation. Hence, this section aims to provide a comparative 

discussion on each methods, in the context of service robot. 

For global planner, A* algorithm is the most suggested 

planner to be used due to its easy implementation and is able 

to yield a shortest path. Algorithms for dynamic environments 

such as D*, LPA* and E* are complex to be implemented and 

furthermore, dynamic factors can be easily encountered using 

local planners. RRT that uses a random sampling technique to 

explore the search space might find a solution faster than A*, 

however it does not result in a shortest path. Solution path 

provided by RRT is also poor in smoothness. However, when 

the robot is required to navigate in a very confined space and 

to reach its goal in a specific orientation, A* algorithm can fail 

to plan a feasible path for robot with differential drive 

platform since it does not consider the kinematics constraints 



Journal of Telecommunication, Electronic and Computer Engineering 

48 ISSN: 2180-1843   e-ISSN: 2289-8131   Vol. 8 No. 11  

of the platform. Solutions to this can be either using an 

omnidirectional drive platform or use RRT that is able to 

incorporate the constraints into its planning. Both A* and RRT 

requires greater computational time as the problem domain 

scales up, but this problem can be solved using temporal 

planning methods reviewed by Kruse et al. [9].    

For local planner, DWA that accounts for robot kinematics 

and dynamical constraints is suggested to be used to ensure 

the robot plans achievable paths. Local planner alone is 

insufficient for human-robot collision avoidance, where a 

prediction model is needed. For simplicity, local planner 

ORCA with linear prediction model can be considered 

because it can be used without the usage of sophisticated 

crowd motion model. The hardware setups for ORCA requires 

only minimal on-board sensors mounted the robot. Thus 

implementing ORCA is relatively simple as compared to other 

methods that require several over-head sensors to monitor the 

pedestrian movements. ORCA is suitable for service robot 

navigation in large environments such as shopping malls and 

event halls where external sensors are difficult to be installed. 

For smaller indoor environments such as cafeterias, 

restaurants and health care centers, external sensors such as 

depth camera and Laser Range Finder (LRF) can be installed 

to model and predict the crowd motion. Some literatures [53, 

55] utilized this kind of hardware setting to replicate human 

motion and produce effective social-aware navigation. 

However, it is important to realize that the implementation is 

very complex.  

SFM and modelling based on machine learning techniques 

can outperform a linear model, putting aside the complexity. 

SFM has the advantage of presenting the relationship between 

pedestrians, robot and other obstacles in discrete components, 

which can be adjusted separately. However, a full detail of an 

environment must be known beforehand in order for SFM 

perform optimally. Hence, in an unknown or partially known 

environment, one can consider using the machine learning 

methods which can adapt to different environments over time, 

but require more sensors to extract crowd features as compare 

to other methods.   

Deciding which navigation framework to be used is always 

based on the components (global planner, local planner and 

prediction model) available. The most complete social-aware 

navigation framework is Framework 4 mentioned in the 

previous section. Framework 3 and framework 4 are 

difference by an added social cost component for global 

planner. The latter has advantage in certain specific occasion 

such as approaching human, else, both frameworks are able to 

provide a highly social acceptable navigation in dynamic 

human environments. However, both frameworks are almost 

impossible to be implemented without a complex prediction 

model and external sensor setups. To achieve the minimum 

requirement of a decent social-aware navigation, Framework 2 

can be considered where DWA as the local planner, which 

take account of the robot dynamic constraints. Framework 2 

can also be easily modified with a social-cost added global 

planner to enhance the social capability of the service robot. 

Classical Framework 1 are not encouraged to be considered in 

service robot implementation since it lacks of a local planner 

for collision avoidance which is not suitable to handle the 

stochastic human behavior. Table 5 shows a summary of 

literatures that utilized different frameworks for social-aware 

navigation. 

Selection of robot platform can also impact the effectiveness 

of the selected navigation framework. Omnidirectional drive 

platform is preferable to differential drive due to its holonomic 

characteristic that can perform better human-robot collision 

avoidance.  
 

Table 5 

Different Social-Aware Navigation Frameworks Used in Literatures 

 

Frameworks Literatures Advantages Disadvantages 

Sole Global 
Planner 

[12] 

Simple 

implementation 

for overall-path-
focused 

applications 

 

Poor obstacle 
avoidance 

Global 

Planner with 
Local Planner 

[36] 

Accounts for 

performance of 

overall-path and 
obstacle 

avoidance 

Poor obstacle motion 

prediction 

Global 
Planner with 

Predictive 

Local Planner 

[13, 24, 33, 

41, 46, 47] 

Good obstacle 
motion 

prediction using 
defined or learnt 

model 

Social-aware aspects 

depends solely on 
local planner 

Human-aware 

Global 
Planner with 

Predictive 

Local Planner 

- 

Able to reduce 
the burden of 

local planner in 

social-aware 
motion using 

global planner 

Sophisticated 

implementation 

 

VI. CONCLUSION 

 

Navigation in dynamic human environment is a task more 

than just seeking for the shortest collision-free path between 

two locations. It is a task to maintain the human comfort level, 

perform human-like motion, respect social conventions and at 

the same time to accomplish a given goal. Existing literatures 

provide various methods to cater for different social scenarios, 

with each method having its merits and caveats. Hence, it 

often leads to confusion in selecting methods for 

implementation. This review thereby highlights four 

navigation frameworks including: sole global planner 

(Framework 1), global planner with local planner (Framework 

2), global planner with predictive local planner (Framework 

3), and social-aware global planner with predictive local 

planner (Framework 4), to provide an insight for researchers 

on which navigation frameworks and components to be used 

for service robot implementation. It is suggested that A* 

algorithm to be used as global planner. Local planner however 

has to be selected based on the framework used. Hence, if 

Framework 2 is chosen, DWA is advisable to be the local 

planner. For Framework 3 or Framework 4, ORCA local can 

be selected for easier hardware implementation that uses a 

linear prediction model. To obtain the best performance for 

navigation in dynamic human environment, SFM or IRL as 

the prediction model can be considered. For robot platform, 

omnidirectional drive is preferred for a better human-robot 

collision avoidance. A unified navigation framework such as 

Framework 4 can be further studied and implemented in order 
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to better realize the pros and cons. Future researches might 

also consider comparing and evaluating the performance of 

different human motion modelling techniques to reduce 

ambiguity during implementation of social-aware navigation. 
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