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Abstract—Optimal arrangement of components on printed 

circuit board (PCB) has become a basic necessity so as to have 

effective management of heat generation and dissipation. In this 

work, Inverse Genetic Algorithm (IGA) optimization has been 

adopted in order to achieve this objective. This paper proposes 

IGA search engine to optimize the thermal profile of components 

based on thermal resistance network and to minimize the area of 

PCB. Comparison between the proposed IGA and the 

conventional GA (FGA) performances are extensively analyzed. 

Unlike the conventional FGA, the IGA approach allows the user 

to set the desired fitness, so that the GA process will try to 

approach these set values. A reduction in the overall 

computational time and the freedom of choosing a desired fitness 

are the major advantages of IGA over FGA. From the simulation 

results, the IGA has successfully minimized the thermal profile 

and area of PCB by 0.78% and 1.28% respectively. The 

computational time has also been minimized by 15.56%. 

 

Index Terms—Components Placement Design; Fitness 

Function; Inverse Genetic Algorithm; Optimization. 

 

I. INTRODUCTION 

 

Printed Circuit Boards (PCBs) being the bedrock of modern 

electronics designs, are available in almost all electronics 

devices. They can be found in cars, aeroplanes, mobile 

phones, computers, robotics etc. These devices are part and 

parcel of everyday life. It has therefore become necessary to 

ensure an optimal arrangement of components on PCBs so as 

to get the best system performance. Various optimization 

techniques have been used for components placement on PCB 

designs such as in [1-5]. 

The most common among these techniques is the use of 

Evolutionary Algorithms. In addition, Genetic Algorithm 

which is commonly referred to as Forward Genetic Algorithm 

(FGA) is the most widely used among the Evolutionary 

Algorithms as seen in [6-12]. Genetic Algorithms have the 

advantage that they rarely get trapped in the suboptimal region 

(i.e. Local maxima or minima) as compared to the traditional 

gradient approach. This is for the reason that information from 

diverse regions in the search space is used. Consequently, the 

GA can travel from a suboptimal region if it finds better 

fitness values in some other regions within the search space 

[13].  

Other methods previously used include Particle Swamp 

Optimization as in [16, 18] and numerical analysis such as in 

[19-23]. Several other methods were used by many 

researchers. In addition, Various researches on optimal 

placement of Components for PCB design have been 

presented by many researchers, some of which included [3], 

[24-28]. Most of these researchers have used the conventional 

FGA. However, none of the researchers was found to have 

employed the use of Inverse Genetic Algorithm (IGA).   

In general, optimal management of heat generation and 

dissipation is the primary aim of components placement 

optimization.  In order to achieve this aim, the heat generating 

electronics components need to be positioned properly on the 

PCB. This will help in prolonging the device life span. 

Genetic Algorithm as the most commonly used optimization 

technique in the field of components placement optimization 

and many other fields, has failed to allow the designer to have 

a specific desired solution (i.e. the designer cannot modify the 

GA’s output to suite the design needs). In this paper, an 

Inverse Genetic Algorithm (IGA) has therefore been proposed 

to solve the aforementioned problem of FGA, and then used in 

thermal and Area optimization for components placement on 

PCB design. In practice, there is a need for the designer to 

have total control on the output of the optimization result so 

that certain design needs can be more precisely reached. This 

can be achieved by using the Inverse Genetic Algorithm (IGA) 

proposed in this work. 

 

A. Thermal Problem in PCBs  

Due to increasing need for reduction of the sizes of 

electronics devices, the PCB designs are also following the 

trend by constantly getting denser. The smaller the area of 

PCB the higher will be the heat generation density and vice-

versa [23]. Therefore, thermal management is a major area of 

concern when it comes to PCB design. The flow of current in 

the system causes heat generation in the copper conductor of 

the PCB and so is the case with electronics components. 

Hence, thermal energy is dissipated in the PCB traces. Heat 

flow is therefore proportional to the quantity of current 

flowing through the PCB traces. Therefore; 

 
2

CQ I R
 (1) 

                                       

where;      

Q is quantity of the generated heat on the copper trace of the 

PCB 

I is the current flowing through the PCB traces 

Rc is the resistance of the conductor measured at ambient 

temperature 
aT .   
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In order to minimize the heat generation and ease its 

dissipation away from the PCB, electronics components need 

to be placed optimally. High potential components (i.e. 

components that operate at high power) should be placed as 

close to the edges of the PCB as possible, so that the generated 

heat can easily get dissipated to the surrounding. Components 

that operate at high frequencies should be placed close to one 

another, so that they cancel each other’s effect. A detailed 

explanation can be found in [5]. 

 

B. Thermal Modeling on PCBs 

The thermal property of components on PCB can be 

expressed based on thermal resistance network as shown in 

Figure 1 [5]. 

 

 
 

Figure 1: Heat flow model 
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where xT  is the junction temperature of electronic component 

under test, Q
x

is the internal heat source of the electronic 

component under test, iT  is the temperature of individual 

components; 1,2,...i n  and x iR  is the thermal resistance 

between components x  and i . 

 

C. Inverse Genetic Algorithm 

Genetic Algorithm is a form of search and optimization 

technique based on the Darwinian theory of evolution. The 

Genetic and Evolutionary mechanisms perceived in nature and 

population of living creatures formed the basis for the versatile 

search technique best known as the Genetic Algorithm (GA). 

The basic principle of GA is preserving a population of 

solutions (genotypes) to a problem as encoded individual 

information whose genetic composition changes over time 

[10, 29]. An initial population is arbitrarily generated to start 

the genetic search in which fitness function is used to evaluate 

each individual. Current and subsequent individual 

generations are either eliminated or duplicated based on their 

individual fitness values. Applying GA operators will result in 

the creation of more population which in turn generate 

individuals capable of performing exceptionally well.  From 

the literature, we can infer that most of the researchers have 

previously been using the conventional Forward Genetic 

Algorithm (FGA). The major setback of the FGA is its 

inability to allow the user to manipulate the GA output. The 

inverse GA on the other hand, allows the user to set the 

desired fitness and observe the GA’s response to these 

selected fitness. The IGA works in such a manner that when 

the fitness are selected, it will try to attain these selected 

fitness values through the conventional iteration process. The 

detailed IGA flowchart is depicted in Figure 2. 

There are functions that hide the optimum from the GA, 

such functions are termed as “deceptive functions”. These 

kinds of functions mislead the GA into pursuing false leads to 

the optimum, and in most cases, the optimum can only be 

attained through pure luck. A lot of researches have been 

conducted in the past years to categorize functions that should 

be easily optimized by GA and the ones that will not. [17] has 

defined the so-called “Royal road functions” as the type of 

functions in which several parameters 1 2, ,..., nx x x  are coded 

together so that the fitness function simply becomes the 

summation of the n  functions of each parameter, i.e.; 

 

1 2 1 1 2 2( , ,..., ) ( ) ( ) ... ( )n n nf x x x f x f x f x     (3) 

 

Genetic Algorithms quickly find the required values for the 

individual parameters when these kinds of functions are 

subjected to optimization [17, 30, 31]. 

 
Figure 2: Flowchart of IGA for component placement on PCB design 

 

II. FITNESS FUNCTION FORMATION 

 

The Performance and reliability of PCB can be significantly 

improved by evenly distributing the generated heat and 
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minimizing the PCB area [5]. Although there are other 

parameters that can affect components placement design on 

PCB, such as high power components and high potential 

components, this work considered only two parameters for the 

optimization process; the temperature of each component and 

the PCB area. In practice, these two variables are conflicting 

in nature, i.e. to minimize the components’ temperature, the 

area of PCB needs to be maximized and vice-versa. However, 

in this work, both the two parameters were subjected to 

optimization through the use of inverse genetic algorithm. 

There are generally two commonly used methods when it 

comes to optimization using GA; either the Pareto or the 

weighted-sum approach [5]. But since the two objective 

functions are conflicting in nature, it will be very difficult to 

generate an optimal weight combination to minimize the 

fitness function, for it will involve a lot of trial and error 

which may not finally guarantee an optimal combination of 

weights. The Pareto approach on other hand, uses a set of non-

dominated solutions to minimize a given fitness function. In 

this work, Royal Road function [17, 30, 31] has been used. 

Thermal resistance network has been used in the prediction 

of the junction temperature and interconnections of 

components [4]. The thermal fitness of component is given in 

(4); 

 

 
_ max _

  i
i

Allow i

T
f T

T
  (4) 

 

Therefore, for k number of components placed on the PCB 

surface, Equation (4) becomes; 

 

 
_1

1
   

k

i

Allow maxi

T
f T

k T


   (5) 

                

In order to produce a smaller package size (i.e. the current 

trend in PCB design), the PCB area needs to be minimized. 

The fitness function for the PCB area is given as Equation (6); 

 

 
_

 
Allow max

A
f A

A
  (6) 

 

where;  

 

    2     max min max minA X X Y Y mm     (7) 

 

and, the maximum allowable PCB area is given by Equation 

(8); 

 

_ _ _ _ _Allow maxA Max allow x Max allow y   (8) 

 

The fitness function is defined as a function of the 

components’ temperature and PCB area, f (T, A), it is 

represented in (9) which is obtained based on the royal road 

functions as shown in (3). Equation (10) is used for 

performance measure. 

 

     ,f T A f T f A   (9) 

% 100
Old value New value

Decrease
Old value


   (10) 

 

A. The IGA Initialization 

The initialization stage is where the IGA Process starts. The 

IGA parameters such as the initial random population 

(Chromosomes), mutation and crossover rates, number of 

generations and the desired fitness as well as the PCB 

parameters such as the PCB Maximum allowable Area, 

Maximum allowable Components temperature etc. were all 

fully defined and set at the beginning of the IGA Process. 

Table 2 presents all the initial parameters needed for the IGA 

process. 

After specifying the system parameters, generation of a 

random initial population (Chromosomes) that will be 

subjected to the Genetic operation is the next stage. In order to 

generate these chromosomes, the decision variables must be 

encoded in one of the existing encoding techniques. In this 

work, the decision variables, which are the components 

positions ( ,x y ), are encoded using the binary encoding 

technique. Twenty components (which are actually all ICs) are 

to be positioned optimally within the allowable PCB Area. 

The components were encoded as a series of 20 ( ,x y ) bits 

binary strings i.e. each component has a ( ,x y ) by 20 binary 

encoded values as demonstrated in Figure 3. 

 

 

 
 

Figure 3: Encoded chromosomes 

 
For experimental purpose, the ICs consist of different 

specifications including heights, power dissipation rates, 

resistances and maximum allowable temperatures as specified 

by manufacturers. The ICs data are presented in Table 1. 
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Table 1 

The ICs Parameters 
 

ICs 
Length 

(mm) 

Width 

(mm) 

Height 

(mm) 

Power 

diss. 
(Watt) 

Resist 

(◦C/Watt) 

Tmax

(◦C) 

IC1 20 20 0.4 1.5 25 70 

IC2 20 10 0.2 0.75 25 60 

IC3 20 20 0.4 1 18 70 
IC4 40 20 0.6 2 30 90 

IC5 20 10 0.2 1 20 60 

IC6 20 20 0.2 1.25 20 70 

IC7 20 10 0.4 1.5 25 80 

IC8 40 40 0.6 2.5 40 100 

IC9 20 40 0.4 1.75 30 80 

IC10 20 20 0.2 1.25 25 70 

IC11 20 20 0.4 1.5 25 70 

IC12 20 10 0.2 0.75 25 60 

IC13 20 20 0.4 1 18 70 

IC14 40 20 0.6 2 30 90 

IC15 20 10 0.2 1 20 60 

IC16 20 20 0.2 1.25 20 70 

IC17 20 10 0.4 1.5 25 80 

IC18 40 40 0.6 2.5 40 100 

IC19 20 40 0.4 1.75 30 80 

IC20 20 20 0.2 1.25 25 70 

 

B. The Genetic Process in IGA 

Since the fitness function and the initialization parameters 

have been fully defined, the Genetic operation can be started. 

The first and foremost Genetic operator at the initialization 

stage is the Selection operator. Selection is performed on 

fitness-proportionate basis, which is also known as the 

Roulette wheel selection technique. The selection probability 

formula is represented in (11). 

 

max

max

1

( ) ( )

( ) ( )
i c

i

f x f x
p

f x f x







 

(11) 

 

where ip is the probability of selecting an individual i  whose 

fitness value in the Current population is denoted ( )f x , c  is 

the total number of chromosomes in the current population 

and 
max ( )f x  is the maximum value of ( )f x  attained. 

The next Genetic operator is the crossover, which is 

performed based on the crossover rate stated in Table 2. The 

famous Single point crossover technique is employed.  This 

stage is also known as mating because some portion of the 

selected chromosomes are randomly mixed at a certain chosen 

point in a hope that fitter offspring will be produced. 

However, to make sure that the offspring are better than their 

parent, a certain percentage of mutation is performed. Based 

on the bitwise bit-flipping method, the mutation probability 

was used to slightly modify the offspring so that they do not 

completely look like their parents. These newly generated 

chromosomes (i.e. the offspring) are used in evaluating the 

fitness function. 

After the Genetic process and evaluation of the fitness 

function, the error is calculated based on Equation (12). The 

smaller the error the closer the solution will be to the desired 

solution and vice-versa. 

 

-_ _Error Fitness Set Fitness Evaluated  (12) 

 

To safeguard the reputation of the best and most feasible 

solutions, and to ensure that they progress to the next 

generation, the elitism mechanism is of paramount 

importance. The fittest chromosome is selected and preserved 

at the end of every generation. This is obviously to ensure that 

individuals with the best fitness values at the end of one 

generation proceed to the next generation. This individual is 

used in the next generation if the newly produced chromosome 

is less fit. At the end of every iteration process, the newly 

generated chromosomes (known as the new population), 

which are produced during the Genetic process will replace 

the initial random population. The whole process of selection, 

crossover, mutation, evaluations and elitism continues, until 

the specified stopping criterion is reached (i.e. the number of 

generations, in this work). The detailed IGA flowchart has 

been previously presented in Figure 2. 

 

III. RESULT AND DISCUSSION 

 

The IGA has been implemented using MATLAB Version 

2014a (8.3.0.532), on a computer with the specifications: 

Quad-core processor (up to 1.4 GHz) 1.00 GHz, 4.00 GB of 

RAM (3.44 GB usable) and 64-bits operating system (x64-

based processor).  

In order to determine the appropriate population size and 

number of generations, a number of trials were conducted as 

shown in Figures 4 and 5. Other important parameters 

necessary for the successful execution of the IGA consist of 

the crossover and mutation rates, which were selected 

stochastically after many trials based on the consistency and 

observed quality of the simulation results. Table 2 presents all 

the parameters used in the implementation of the IGA.  

 
Table 2 

The IGA Parameters 

 

S/N Parameter Description/value 

1. Population size 100 

2. No. Generations 500 
3. Encoding Technique Binary strings 

4. Number of bits 20 

5. Selection method Roulette Wheel 

6. Crossover type Single Point 

7. Mutation method Bitwise bit-flipping 
8. Mutation rate 0.6 

9. Crossover rate 0.01 

10. Decision Variables 2 

11. Elitist Best one offspring 

 

A. Comparison between the IGA and FGA Results 

While comparing the FGA and IGA, the same GA 

parameters presented in Table 2 are used. In addition, the two 

GAs were run under the same condition (i.e. using the same 

MATLAB Version and the same computing resources) as 

described in Part III of this paper. Table 3 shows the 

comparison results. For the comparison to be clearer, the 

responses were plotted on the graph as shown in Figures 4 

until 6. 
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Table 3 

IGA/FGA Comparison 
 

Fitness 

function 
FGA results IGA results % Decrease 

f(A) 0.9224 0.9106 1.28% 
f(T) 0.7708 0.7768 -0.78% 

f(T, A) 1.7018 1.6897 0.71% 

CPU-Time (s) 1576.10 1330.90 15.56% 
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Figure 4: Temperature fitness versus generation 
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Figure 5: Area fitness versus generation 
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Figure 6: Total fitness versus generation 

 

From Figure 4, it is clear that if the short hike in temperature 

depicted in the FGA graph is neglected, the IGA has shown a 

better minimized thermal profile. But due to this small hike, 

the thermal profile has slightly increased by 0.78% as 

compared to FGA (See Table 3). Based on this explanation, it 

can be inferred that the FGA performs better in minimizing 

the temperature but only at the point where the hike occurs. 

However, this point can be ignored since it occurs for a very 

short period of time. Therefore, we can conclude that the IGA 

still performs better in minimizing the temperature of 

components if the short hike in the FGA case is ignored.  

From Figure 5, it can be observed that the IGA has 

minimized the area of PCB much better as compared to the 

conventional FGA. Using Equation (10), the percentage 

decrease in PCB area achieved by using the IGA approach 

was calculated to be 1.28% as presented in Table 3.  

Figure 6 shows the total fitness versus generation obtained 

based on (8). The result is in agreement with the previous 

assumption of neglecting the small hike observed in the FGA 

case. This is because it can be seen clearly from this Figure 

that the IGA has minimized the function f(T, A) much better 

when compared to the FGA. The percentage decrease in total 

fitness achieved using the IGA was calculated using (10), and 

it was found to be 0.71% as shown in Table 3. Although the 

FGA graph shows more tranquility, the minor fluctuations in 

the IGA are negligible as compared to its performance as 

certified from the total decrease in the overall fitness. In 

addition, it can be observed from Table 3 that the 

computational time in the IGA case is much lower as 

compared to the FGA case. The computational time has been 

minimized by 15.56%. 
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Figure 7: Optimal components placement via FGA 

 

From Figure 7, it can be observed that there are some 

clustering of components in the upper right corner of the PCB 

while leaving too much spacing in the other parts within the 

PCB area. An optimal arrangement however, should be such 

that the components are evenly placed with enough spacing 

between them. This will make heat management in the device 

much easier. The IGA on the other hand, offers a better 

components arrangement on the PCB as shown in Figure 8. 

Figure 8 observes that unlike the final optimal components 

placement obtained through the FGA, shown in Figure 7, there 

is no clustering of components. In addition, the IGA has 

provided a diagonal space between the upper and lower parts 

of the PCB area. This space will make it easier to optimally 

manage heat. Consequently, based on the final optimal 

placement of components results, obtained from the two cases, 

the IGA offers a better result. In addition, it can be seen from 

Figures 4, 5 and 6 that the IGA graphs (for fitness versus 
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generation) keep decreasing between (0-150) generations. This 

is because the IGA is performing minimization on the fitness 

function. On the other hand, the uneven nature of the IGA 

graph is due to the IGA trying to track the selected fitness 

values. 
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Figure 8: Optimal components placement via IGA 
 

 

IV. CONCLUSION 

 

In this Paper, an inverse Genetic Algorithm optimization 

search engine for components placement optimization for PCB 

design has been proposed to minimize the thermal profile and 

Area of PCB while minimizing the computational time as 

well. The fitness function was formed from the two objective 

functions, which are the PCB area and the temperature of each 

component. Based on this fitness function, conventional FGA 

was tested using the same parameters employed in the 

execution of the proposed IGA for comparison purpose. The 

performances of these two approaches were compared based 

on the components placement optimization on PCB design 

proposed in this paper. The IGA approach was found to be 

more desirable when compared to the conventional FGA due 

to users’ ability to choose a set of desired fitness (i.e. ability to 

control the GA output). Another advantage of the proposed 

IGA is its lower computational time compared to the 

conventional FGA. The IGA has minimized the thermal 

profile and the area of PCB by -0.78% and 1.28% 

respectively. The Computational time has also been 

minimized by 15.56%. The major area where improvement 

will be welcome in this work, however, is the way in which 

the IGA tracks some set fitness. Although, the problem could 

be inherent to the system under study, increasing the number 

of generations and adjusting the IGA parameters could be 

helpful. Other parameters such as the placement of 

components with high power consumption or the placement of 

Components with high potential, can be considered for further 

work. The IGA technique can be employed in other 

optimization problems, such as the optimization of heat sink 

or any other system in which the Conventional GA can be 

used. 
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