
 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 8 No. 10 83

A Scalable Name Resolution System for Information

Centric Networking

Walid Elbreiki, Suhaidi Hassan and Adib Habbal
InterNetWorks Research Lab, School of Computing, Universiti Utara Malaysia, 06010 UUM Sintok, Kedah, Malaysia.

walid@internetworks.my

Abstract—Information Centric Networking (ICN) is a new

paradigm, aimed at shifting to the future Internet from host

centric to a content centric approach. ICN focuses on retrieval and

dissemination of information between pairwise communications of

hosts. Information are organized in the form of Information

Objects (IO), known as Named Data Objects (NDO). These NDO

are location independent. Objects in ICN are stored in the system

overlay; popularly known as Name Resolution System (NRS).

NDOs are requested by the Subscribers in the network to get the

needed information from the Publishers, through NRS. Thus, the

NRS is responsible in forwarding the interest packets based on the

names of NDOs. This application of ICN depends on the scalability

of the NRS. To design NRS, the most significant issue is scalability

due to the ever-increasing number of NDOs. This paper aims to

present the issues, by proposing balanced binary tree data

structure to organize and store the NDOs. The methodology

proposed in this work is thus; for every new insertion in the tree,

a Balance Factor (BF) is computed to balance the height of left and

right sub-tree. According to our investigation, balanced binary

tree provides less searching time when compared to the

Distributed Hash Table (DHT) approach. Simulation results show

that End-to-End delay decreases by increasing the throughput in

the network.

Index Terms—Information Centric Networks (ICN); Balanced

Binary Tree (BBT); Named Data Objects (NDO); Name

Resolution System (NRS).

I. INTRODUCTION

Information-centric Networking (ICN) is an emerging

architectural approach for the future Internet. It has the

potentials of solving a variety of issues in the existing Internet.

Many ICN approaches have been proposed to handle these

problems which lead towards the future Internet actualization

such as A Data-oriented Network Architecture (DONA) [1],

Content-centric Networking (CCN) [2], Network of

Information (NetInf) [3], Publish-Subscribe Internet Routing

Paradigm (PSIRP) [4] Mobility First [5] and Named Data

Networking (NDN) [6]. Several ICN approaches comprise of

name resolution system, which translates object IDs into

network addresses. Constructing NRS for approximate 1016 IDs

is really challenging with the notion of scalability, efficient

network utilization and low latency.

ICN is a networking paradigm which is proposed to solve

several problems such as, inefficient resource utilization,

distributed denial of service attacks, inadequate security and

flash crowds of Internet architecture. The ICN approaches have

experienced tremendous developments of information on the

Internet, with increasing demands for data access. ICN supports

multi access and mobility, multicast, broadcast and anycast.

Here, connectivity is irregular and in-network storage and end

host interactivity is capitalized. Data is independent of

application, location and storage which enables replication and

caching. This nature of ICN improves the scalability with

respect to bandwidth and information demands and efficiency

in communication era.

The main aim of ICN is to present as form of retrieving the

data based on location, either by name based routing or by name

resolution. In ICN, information is identified with the help of

location independent identifiers. Generally, ICN targets on

infrastructure which enables in-network caching to distribute

the content for scalability, security and cost efficiency

objectives. This is a receiver-client driven model for getting

objects which are of interest. ICN supports transparency,

interactivity and node oriented services, thereby providing

Peer-to-Peer (P2P) connectivity within the network.

In this paper, a mechanism that adapts the balanced binary

tree data structure is proposed in order to store and manage the

NDOs in a systematic order [7] [8] [9]. The mechanism is able

to minimize the average end-to-end delay thus increasing the

total throughput in the network. Since the mechanism is based

on a balanced binary tree structure, the searching time is

minimized by half on every iteration. The paper reports some

simulation results and evaluation graphs.

The remainder of this paper is organized as follows: Section

II presents the related work specifically on distributed hash

table, in which Chord and Pastry, and bloom filter in NRS are

briefed. Section III proposes our mechanism BBT based NDO

storage mechanism. This Section also comprises of theoretical

description and system model of the proposed mechanism.

Section IV highlights performance evaluation of the simulation

results with experimental setup and results and discussion.

Finally, Section V concludes the paper.

II. RELATED WORK

The basic task of NRS is to map object names to its locators,

which enables to reach the information about corresponding

object, commonly known as IP addresses. The NRS till now

mentioned are either based on DHT and based on BF. In this

section three NRS structures with their drawbacks are briefed

as follows:

Journal of Telecommunication, Electronic and Computer Engineering

84 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 8 No. 10

A. Bloom Filter in Name Resolution System (BF-NRS)

BF-NRS maintains and resolves binding between locators

and names. It takes input as names and generates locator sets as

output. The BF-NRS is based on a flat naming system which is

locator independent. The Flat naming system is the simplest

name allocation system with high flexibility, most scalable and

most advantageous in terms of privacy and persistency [10].

One of the advantages of the BF-NRS is its constant time for

insertion and search operation. This is due to the non-dependent

on the individual names in the set and efficiently supports for

the union of bloom filters and group of hash functions

implemented by bitwise OR operation.

Figure 1: Bloom Filter

BF-NRS is constructed hierarchically by combining a

network of BF-NRS servers. This comprises of a forest with

several disjoint trees that are defined by parent-child

relationship. Example of BF-NRS with name lookup table as a

tree is shown in Figure 1. In the figure, there are 8 BF-NRS

servers 𝐵𝑆1, 𝐵𝑆2𝐵𝑆7 where between servers 𝐵𝑆1 and

𝐵𝑆2 an establishment of parent child relationship exist and 𝐵𝑆2

and 𝐵𝑆3 peering relationship. The peering relationship reduces

the overhead for the top most servers by serving better

performance. The inserted data in the tree are as shown in the

example. This is a forest representation of BF-NRS with two

trees. There is a peering relationship between two trees, with

the root of the tree.

Name lookup table stores the binding of source locators and

names for all the names which are already published by the

publishers. There may be more than one source locator for

information. The input for name lookup is named and the output

it produces is locator set. BF-NRS servers announce aggregated

form of names among peers. BF-NRS servers store the 𝑛 +
𝑚 + 1 number of bloom filters, where m is the number of peers

and n is the number of child servers.

The main drawback of bloom filter is its quality of false

positive and deletion of member is not possible. At the time of

a deletion operation, reconstruction, operation is followed up in

bloom filters which is expensive. This reconstruction is known

as updating the bloom filter because of its inability to handle

deletion operation itself.

B. Distributed Hash Table in NRS

The DHT based NRS is hierarchical, distributed and

topologically embedded by the underlying network. Like bloom

filters, DHT stores binding between object IDs and locators of

object copies. The main design issue of DHT is its low latency,

scalability, locality, agility, scoping and network utilization

[11].

a. Chord Protocol

Mainly there are two types of DHTs viz: Chord and Pastry

[12]. The main features of Chord are simple, provable

correctness and performance. The main issues handled by

Chord are load balancing through implementation of distributed

hash function, decentralization of key management by storing

the keys in many nodes; availability through automatically

updating all the internal tables during node arrivals. It offers

Scalability with reduced number of lookups even then the

network is extremely large and flexible naming. These features

and advanced capabilities make the chord suitable for

implementing co-operative mirroring, distributed indexing,

large scale combinatorial search and time shared storage.

The implementation of the hash function is by mapping keys

to nodes. The assigning of the keys to nodes takes through

consistent hashing, which has several properties compared to

other techniques [13]. Figure 2 shows the Chord ring with 10

nodes where each node has five keys [14]. When Nth node joins

or leaves the network, load balancing is managed by

distributing the key to all nodes and an 𝑂(1/𝑁) fraction of keys

are moved to a different location. Chord does not allow every

node to know about every other node rather than small amount

of routing information about the nodes. The main drawback of

DHT is that all servers are linked in the form of circular linked

list and the connections are stored in appropriate server other

than servers. This causes serious trust problem with respect to

authority issue and lookup messages are propagated through

long paths.

Figure 2: Chord Protocol

b. Pastry protocol

Pastry [15] is decentralized object location, scalable and

routing mechanism for large scale peer-to-peer system [3]. This

is the overlay network where each node router interacts with

local instances of applications. Every node in Pastry is assigned

a 128 bit long random unique identifier. This ID includes

A Scalable Name Resolution System for Information Centric Networking

 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 8 No. 10 85

position of a node in a circular nodeID space ranging from 0 to

2128 -1 and is generated randomly. These nodeID are uniformly

distributed over the space. The given message and a key can

efficiently help to route the message to the destination. All the

pastry nodes are aware of all the adjacent nodes in nodeID space

and new arrivals, failures and recoveries are informed of the

applications.

Figure 3 presents the Pastry protocol implemented using

DHT. Pastry minimizes the message travel distance by scalar

proximity metric. Routing tables have the key of closest node

and candidate node enabling shortest route. Pastry is completely

scalable, decentralized and self-organizing by supporting

mobility, caching and route convergence services. The

advantage of Pastry is, it automatically adapts to the node

arrival changes in the network. The protocol has the same

drawback as the Chord.

Figure 3: Pastry Protocol

III. BBT-BASED NDO STORAGE MECHANISM (BBT-NDO

STORAGE)

In this paper, we constructed a BBT-NDO storage

mechanism for NRS which exhibits Balanced Binary Tree data

structure. The network of BBT-NDO storage is defined by a

balanced binary tree and parent-child relationship with

individual NDOs and balancing operation of tree with each

insertion of the NDO.

We divided the network into several domains as a

prerequisite for this mechanism. Each domain has its own NRS

to store the NDOs. All the resolution domains are

interconnected. In our work we consider one NRS for better

understanding and set of operations on it.

A. Theoretical description of BBT-NDO

Balanced Binary Tree data structure conceived to efficiently

perform all data structure, basic operations on large data sets

[7]. To ease the comprehension of the notions presented in the

system model, a summary of all adopted symbols is reported in

Table 1.

In general, BBT with n number of NDOs that can be used to

map IDs of the NDO, belongs to a tree data set T. On this tree

structured network, a basic function is defined for NDO

mapping or searching. The aim is to insert NDO into BBT, and

to test whether NDOs are members of the tree.

Table 1

Adopted set of symbols for BBT

Symbol Description

N Data set represented as NDO set

H
TL

Height of the tree
Left sub tree

TR Right sub tree

hR
hL

Height of right sub tree
Height of left sub tree

T Balanced binary tree data set

X New NDO to be inserted
Y

Z

K

Parent NDO

Grand parent

Searching NDO

Figure 4: NDO Mapping

NDO mapping operation is handled by these consecutive

steps;

1. The mapping or searching NDO K is as depicted on

Figure 4, mapped with root NDO.

2. If K mapped to root.

3. Return.

4. else

The NDO is checked whether the NDO value greater or

lesser than root.

5. If smaller than the root, then

Maps the element in the left sub tree.

6. else

Maps the NDO in the right sub tree.

7. Repeat until the map is successful.

B. System model for BBT-NDO storage mechanism

Balanced binary search tree is a self-balancing tree data

structure, which is also known an AVL tree. AVL tree is

invented by three researchers Georgy Adelson, Velsky and

Evgenis Landis. This binary search tree with balanced height,

height (level) of the tree is balanced from both sides. That is the

height of the two sub tree are equal or may differ by level at

most one level. After inserting a new node, if the two levels are

differed by more than one level, re-balancing is performed to

restore the property of balancing. The average and worst case

time complexity is 𝑂(𝑙𝑜𝑔𝑛), where n is the number of nodes in

the tree.

For example the balanced binary search tree, for its every

interval node 𝑣 of 𝑇, the height of the children of 𝑣 can differ

by at most 1.

Journal of Telecommunication, Electronic and Computer Engineering

86 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 8 No. 10

Figure 5: Balanced Binary Tree

The height of a BBT storing 𝑛 keys and searching time is

𝑂(𝑙𝑜𝑔𝑛).
Assume a setup with minimum number of interval nodes of a

BBT of height ℎ: 𝑛(ℎ)

We know that 𝑛(1) = 1 and 𝑛(2) = 2.

Figure 6: Height of BBT

For 𝑛 > 3 a BBT of height h with 𝑛(h) minimal contains the

root node, one BBT sub tree of height h − 1 and other sub tree

of height h − 2.

If 𝑛(ℎ) = 1 + 𝑛(ℎ − 1) + 𝑛(ℎ − 2) (1)

Such that,

 𝑛(ℎ − 1) > 𝑛(ℎ − 1) (2)

From Equation (2) we assume that,

𝑛(ℎ) > 2𝑛(ℎ − 2) (3)

𝑛(ℎ) > 2𝑛(ℎ − 2) (4)

𝑛(ℎ) > 4𝑛(ℎ − 4)𝑛(ℎ) > 22𝑛(ℎ − 2 ∗ 2) (5)

𝑛(ℎ) > 2𝑖𝑛(ℎ − 2𝑖) (6)

Solving the base case,

𝑛(ℎ) > 2
ℎ

2−1 (7)

Taking log both sides of the Equation (7)

ℎ < 2𝑙𝑜𝑔𝑛(ℎ) + 2 (8)

So the height of BBT is 𝑂(𝑙𝑜𝑔 𝑛).

a. Balance Factor

When the new node is inserted into the tree, the tree need to

be balanced. The balancing action is carried out by the balance

factor.

𝐵𝑎𝑙𝑎𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 = ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑙𝑒𝑓𝑡 𝑠𝑢𝑏𝑡𝑟𝑒𝑒 − ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑟𝑖𝑔ℎ𝑡 𝑠𝑢𝑏𝑡𝑟𝑒𝑒

The binary search tree is height balanced, if 𝑇 is a non-empty

binary search tree with 𝑇𝑅 and 𝑇𝐿 as right and left sub trees

respectively. Then 𝑇 is height balanced if and only if,

1. 𝑇𝐿 and 𝑇𝑅 are height balanced.

2. |ℎ𝑅 − ℎ𝐿| <= 1where ℎ𝑅 and ℎ𝐿 are the heights of 𝑇𝑅

and 𝑇𝐿 respectviely.

The balancing factor of a binary tree is the difference in the

heights of its two sub trees(ℎ𝑅 − ℎ𝐿). The balance factor of a

height balanced binary search tree may take on one of the

values −1, 0, +1.

b. Insertion of NDO in BBT

When a new NDO is published by a publisher, the NDO is

stored in NRS in BBT structure. The insert operation is

followed by tree balance operation. If the balance factor is

 1, 0.

Inserting NDO into NRS in BBT structure 𝑇 changes the

height of the sub tree in 𝑇. If after insertion becomes

unbalanced, from the sub tree rooted at its child 𝑦.

ℎ𝑒𝑖𝑔ℎ𝑡(𝑦) = ℎ𝑒𝑖𝑔ℎ𝑡(𝑠𝑖𝑏𝑙𝑖𝑛𝑔)(𝑦)) + 2

Now we need to re-balance the tree from its sub tree 𝑦, either

by right rotation or by left rotation.

Figure 7: Right Rotation

Figure 8: Left Rotation

A Scalable Name Resolution System for Information Centric Networking

 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 8 No. 10 87

c. Pseudo code to re-balance

Input: A node 𝑥 as parent 𝑦 and grandparent 𝑧

Output: Tree is re-balanced by a rotation involving 𝑥, 𝑦

and 𝑧

Method: Let T1, T2, T3 and T4 be an in order form of the

four sub tree of 𝑥, 𝑦, and 𝑧 not rooted at 𝑥, 𝑦 and 𝑧.

Figure 9: Unbalanced Binary Tree

Replace the sub tree rooted at 𝑧 with a new sub tree rooted

at 𝑦.
Let x be the left child of 𝑦 and T1, T2 be the left and right sub

trees of 𝑥 respectively

Let 𝑧 be the right child of 𝑦 and T3, T4 be the left and right

sub trees of 𝑧 respectively.

Deletion of a node from BBT

Deletion operation makes the BBT unbalanced.

Let 𝑥 be the unbalanced subtree after deleting a node from

the BBT. And let 𝑧 be the subtree with larger height. Then

again re-balance is a function called to balance the tree. Each

re-balancing function is followed by a check balance function

of the tree.

C. Performance Evaluation

In this paper, OMNeT++ simulation environment with INET

framework and ICNSim has been used for building simulation

models. The simulation tool is well designed, widely-used,

modular system; OMNeT++ is an open source network

simulator that has been made available for teaching, research

and development purposes [16]. The simulator has been

developed using Python and C++ along with scripting

capability in a modular fashion as a set of libraries. These

libraries can be combined together with other external software

libraries for data analysis for better presentations of the

outcomes [17].

a. Experimental Setup

Experiment environment has been created in the latest

OMNeT++ version 4.6, with INET 2.6 framework along with

ICNSim, and the GCC compiler 4.9 running on Ubnutu 14.04

LTS. For clarity purposes, Table 2 shows the simulation

parameters used in this research.

b. Results and Discussion

Figure 10 illustrates the total throughput of using distributed

hash table and balanced binary tree in bits/sec. The simulation

results were collected on power law topology with varying

numbers of publishers. Initially the total throughput is equal for

both the mechanisms. The distributed hash throughput was

fluctuating in between. However, balanced binary tree

throughput was gradually increasing as the number of

subscribers increased.

Table 2
Simulation Configuration

Parameter Description

Number of NRS 2
Number of Publishers 10-50

Number of Subscribers 10-50

Number of contents 50.000
Size of the content The size of the content is 1 GB

Publisher StartTime 0s

Publisher pubInterval 3s
Publisher datarate 3Mbps

Topologies Used Power Law Topology

Number of Host Each Router Two Host

Testing Tool OMNeT++ 4.6

Testing Application BasePSApp Application

Simulation Time 200 sec

Figure 10: Throughput of distributed hash table and balanced binary tree in
Mbps

Additionally, Figure 11 illustrates the average end-to-end

delay differences of distributed hash table and balanced binary

tree mechanism for different number of subscribers. Although

both mechanisms showed a gradual rise in the delay as the

numbers of subscribers increased, distributed hash table

mechanism seemed to be higher than a balanced binary tree.

This is because BBT searching time is less than DHT. In brief,

balanced binary tree achieves lower delay than distributed hash

tables.

IV. CONCLUSION

NRS in ICN is considered as an adequate approach to store

NDOs. NRS is beneficial to all the applications of NDOs such

as search, delete and insert by providing the facility to name

resolution and name-based routing. In this work, the proposed

mechanism adopts Balanced Binary Tree (BBT) for overlay

network to store NDOs. Simulation results show that the BBT

based NDO mechanism can show better throughput and delay

with respect to the number of subscribers' interests. Our

simulation results are evaluated with DHT based networks and

Journal of Telecommunication, Electronic and Computer Engineering

88 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 8 No. 10

the graph is shown in the previous section of this paper. The

BBT based NDO mechanism, provides a scalable solution by

accommodating 30 levels of the tree while keeping the end-to-

end delay low.

Figure 11: End-to-end delay differences of distributed hash table and balanced

binary tree

REFERENCES

[1] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S.

Shenker and I. Stoica, "A Data-oriented (and Beyond) Network
Architecture," ACM, vol. 37, pp. 181--192, 2007.

[2] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs

and R. L. Braynard, "Networking Named Content," Proceedings of the
5th International Conference on Emerging Networking Experiments and

Technologies, pp. 1--12, 2009.

[3] C. Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, B. Ahlgren and H.
Karl, "Network of Information (NetInf) - An Information-centric

Networking Architecture," Computer Communications, vol. 36, pp. 721-

735, 2013.
[4] P. Project, "Publish/Subscriber (PURSUIT)," 2010. [Online]. Available:

http://www.fp7-pursuit.eu/PursuitWeb/.

[5] I. Seskar, K. Nagaraja, S. Nelson and D. Raychaudhuri, "Mobilityfirst
future internet architecture project," Proceedings of the 7th Asian Internet

Engineering Conference, pp. 1--3, 2011.

[6] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K. Smetters,
B. Zhang, G. Tsudik, D. Massey, C. Papadopoulos and others, "Named

data networking (ndn) project," Relatrio Tcnico NDN-0001, Xerox Palo

Alto Research Center-PARC, 2010.
[7] H. V. Jagadish, B. C. Ooi and Q. H. Vu, "Baton: A balanced tree structure

for peer-to-peer networks," 2005.

[8] H. Takamizawa, K. Saji and M. Aritsugi, "A replica management protocol
in a binary balanced tree structure-based P2P network," Journal of

Computers, vol. 4, pp. 631--640, 2009.

[9] Manku and G. Singh, "Balanced Binary Trees for ID Management and
Load Balance in Distributed Hash Tables," Proceedings of the Twenty-

third Annual ACM Symposium on Principles of Distributed Computing,

pp. 197--205, 2004.
[10] A. Ghodsi, T. Koponen, J. Rajahalme, P. Sarolahti and S. Shenker,

"Naming in content-oriented architectures," in Proceedings of the ACM

SIGCOMM workshop on Information-centric networking, 2011.
[11] C. Dannewitz, M. DAmbrosio and V. Vercellone, "Hierarchical DHT

based name resolution for information-centric networks," Vols. 36, no. 7,

p. 736749, 2013.
[12] W. Elbreiki, S. Hassan, A. Habbal, M. Firdhous and M. Elshaikh, "A

Comparative Study of Chord and Pastry for the Name Resolution System

Implementation in Information Centric Networks," in Conference: 4th
International Conference on Internet Applications, Protocols and

Services (NETAPPS2015), Cyberjaya, Kuala Lumpur, Malaysia, 2015.

[13] S. T. Visala, M. Ain and Kari, "The Publish/Subscribe Internet Routing
Paradigm (PSIRP): Designing the Future Internet Architecture," in

Towards the Future Internet, IOS Press, 2009, pp. 102-111.

[14] I. Stoica, R. Morris, D. L. Nowell, D. R. Karger, M. F. Kaashoek, F.
Dabek and H. Balakrishnan, "Chord: A Scalable Peer-to-peer Lookup

Service for Internet Applications," SIGCOMM Conference on
Applications, Technologies, Architectures, and Protocols for Computer

Communications, pp. 149-160, 2001.

[15] A. Rowstron and P. Druschel, "Pastry: Scalable, Distributed Object
Location and Routing for Large-Scale Peer-to-Peer Systems," IFIP/ACM

International Conference on Distributed Systems Platforms, pp. 329-350,

2001.
[16] A. Khan, S. Bilal and M. Othman, "A performance comparison of open

source network simulators for wireless networks," 2012.

[17] K. Katsaros, G. Xylomenos and G. C. Polyzos, "MultiCache: An Overlay
Architecture for Information-centric Networking," Computer Networks,

vol. 55, pp. 936--947, 2011.

[18] J. Alpert and N. Hajaj, "Google we knew the web was big," 25 July 2008.
[Online]. Available: https://googleblog.blogspot.my/2008/07/we-knew-

web-was-big.html

[19] K. Katsaros, G. Xylomenos and G. C. Polyzos, "MultiCache: An Overlay
Architecture for Information-centric Networking," Comput. Netw., vol.

55, no. 4, pp. 936-947, #mar# 2011.

