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Abstract—Linear discriminant analysis (LDA) is a 

multivariate statistical technique used to determine which 

continuous variables discriminate between two or more naturally 

occurring groups. This technique creates a linear discriminant 

function that yields optimal classification rule between two or 

more groups under the assumptions of normality and 

homoscedasticity. Nonetheless, the computation of parametric 

LDA which are based on the sample mean vectors and pooled 

sample covariance matrix are known to be sensitive to non-

normality. To overcome the sensitivity of this method towards 

non-normality as well as homoscedasticity, this study proposed a 

new robust LDA method. Through this approach, an automatic 

trimmed mean vector was used as a substitute for the usual mean 

vector in the parametric LDA. Meanwhile, for the covariance 

matrix, this study introduced a robust approach by multiplying 

the Spearman’s rho with the corresponding robust scale 

estimator used in the trimming process. Simulated and real 

financial data were used to test the performance of the proposed 

method in terms of misclassification rate. The results showed that 

the new method performed better compared to the parametric 

LDA and the existing robust LDA with S-estimator. 

 

Index Terms—Linear Discriminant Analysis; Misclassification 

Rates; Robust; Trimmed Mean. 

 

I. INTRODUCTION 

 

Linear discriminant analysis (LDA) is a multivariate 

classification technique to determine which variable 

discriminates between two or more classes, and to construct a 

classification model for predicting the group membership of 

new observations. In short, LDA aims for reliable group 

allocations of new observations based on a discriminant rule 

which is developed from a training data set with known group 

memberships. LDA are known to perform optimally when the 

assumptions of normality and homoscedasticity are met [1].  

However, optimality is hard to achieve as its computation rely 

heavily on the sample mean vectors and pooled sample 

covariance matrix.  These two statistics are known to be 

sensitive to outliers, which consequently may increase 

misclassification rate [2]. To overcome this sensitivity 

problem in the parametric LDA, researchers seek for 

alternatives in robust linear discriminant analysis (RLDA). By 

substituting the classical estimators with robust estimators 

such as M–estimators, Minimum Covariance Determinant 

(MCD) [3, 4], Minimum Volume Ellipsoid (MVE) [5], and S-

estimators [6, 7, 8], robust discriminant model with minimum 

classification error rate could be developed [1]. 

 

In this paper, an approach using automatic trimmed mean is 

proposed in the construction of new RLDA models. Unlike the 

usual trimming process, the trimming employed in this work 

take into consideration the distributional shape of the data. 

Through this trimming approach, only outliers will be trimmed 

away leaving just the good data.  Simulation and real financial 

data were used to investigate on the performance of the 

proposed RLDA.  For the real financial data, the investigation 

emphasizes on classifying “distress” and “non-distress” banks 

in Malaysia.  Due to the nature of the real data problem, our 

work only focuses on two populations. The proposed RLDA 

were then compared to the classical LDA and also to the 

existing robust LDA with S-estimators. The performance of 

the discriminants rules were evaluated by misclassification 

rate provided by simulation and real life study. 

 

II. DISCRIMINANT RULES 

 

Suppose that we have one group of p-dimensional feature 

data, x1, from population π1 of H1 distribution with mean µ1 

and covariance matrix Σ1, and the other group of data, x2, from 

population π2 of H2 distribution with mean µ2 and covariance 

matrix Σ2. A discriminant rule can be constructed to assign 

one new observation x0 to π1 or π2. One of the familiar models 

to unravel this problem is via classical LDA which is derived 

under the assumptions that all the populations have identical 

covariance, such that Σ1 = Σ2 = Σ. The classical discriminant 

rule is defined as follows in equation (1) [9]. 
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where p1 and p2 are the prior probability that an individual 

comes from population π1 and π2 respectively. Practically, the 

overall misclassification probability can be minimized based 

on this classical discriminant rule. Since the classical 

parameters, µ and Σ, are usually undefined, hence we need to 

estimate the parameters from the sample data. However, the 

performance of the classical discriminant rule will be badly 

affected if non-normality and/or heteroscedasticity occur [10]. 

It is clear that the classical discriminant rule will become non-

robust due to the sensitivity of classical estimates. 
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By plugging robust estimators for the location, µ and 

scatter, Σ, a robust discriminant rules can be developed. The 

location estimator in this paper is the automatic trimmed mean 

proposed by Keselman [11]. Trimming is one of the strategies 

to deal with outliers. This automatic trimmed mean is derived 

using data left from empirically determined trimming. It is a 

highly robust location estimator which possesses highest 

breakdown point and is defined as equation (2). 
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where 

i1, i2 = number of trimmed obs. for the both end of data 

i1 =       jkjkjkijki MADnMxx 242.ˆ   

i2 =       jkjkjkijki MADnMxx 242.ˆ   

jkM̂  = median in dimension j for group k 

  jkix  = ith ordered obs. dimension j for group k 

njk = total number of obs. in dimension j for group k 

    jkjknjkjkjk MxMxMADn ˆ,,ˆ.  1 Median  48261  

 

Meanwhile, the covariance (scatter) matrix for the RLDA is 

estimated using the product of spearman correlation 

coefficient (ρ) and rescaled median absolute deviation 

(MADn) as in equation (3).    
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(3) 

 

The two robust statistics (location and scatter) which 

replaced the mean and covariance matrix, when paired 

together in LDA formed a new robust discriminant rule 

denoted as RLDAT. 

 

III. SIMULATION STUDY 

 

A simulation study was conducted to evaluate on the 

performance of the proposed RLDA technique, denoted as 

RLDAT. These techniques were then compared against the 

classical LDA and RLDA with S-estimators (RLDAS). To 

check on the strength and weakness of the existing and the 

new techniques, a few variables were manipulated to create 

conditions commonly encountered in real life. These variables 

were percentage of contamination (ε = 0, 0.1, 0.2), sample 

sizes (n = 20, 50, 100), shift in location (μ = 0, 5) and shift in 

shape (κ = 0, 25). 

The procedure started by generating a training data set based 

on the various conditions to develop a discriminant rule for 

each condition. Next, generate another data set of size 2000 

for both groups from uncontaminated populations to validate 

the corresponding discriminant rules. This experiment is 

replicated 2000 times for each condition. The performance of 

the investigated techniques which was based on 

misclassification rates is presented in Table 1. The digits in 

brackets are the computational time (in seconds) to compute 

each condition. 

 
 

Table 1 
Mean and Computational Time of the Misclassification Rate for Various LDA Models 

 

ε μ κ 
n1 = 20   n2 = 20 n1 = 50   n2 = 50 n1 = 100   n2 = 100 

LDA RLDAS RLDAT LDA RLDAS RLDAT LDA RLDAS RLDAT 

0 0 0 
0.2115 

(3) 

0.2126 

(1221) 

0.2187 

(9) 

0.2001 

(3) 

0.2005 

(1177) 

0.2033 

(9) 

0.1968 

(3) 

0.1970 

(1393) 

0.1985 

(9) 

0.1 5 0 
0.5001 

(3) 
0.2168 
(1231) 

0.2492 
(9) 

0.4993 
(3) 

0.2013 
(1264) 

0.2188 
(9) 

0.5017 
(3) 

0.1971 
(1346) 

0.2072 
(10) 

0.2 5 0 
0.6185 

(3) 

0.5808 

(1250) 

0.3184 

(8) 

0.6650 

(3) 

0.6138 

(1278) 

0.2723 

(9) 

0.7020 

(3) 

0.6478 

(1218) 

0.2427 

(9) 

0.1 0 25 
0.3719 

(3) 

0.2131 

(1131) 

0.2191 

(9) 

0.3505 

(3) 

0.2010 

(1274) 

0.2039 

(9) 

0.3051 

(3) 

0.1971 

(1323) 

0.1985 

(9) 

0.2 0 25 
0.4442 

(3) 
0.2174 
(1134) 

0.2209 
(9) 

0.4074 
(3) 

0.2022 
(1273) 

0.2046 
(9) 

0.3651 
(3) 

0.1977 
(1305) 

0.1989 
(9) 

0.1 5 25 
0.4291 

(3) 
0.2131 
(1195) 

0.2195 
(9) 

0.4686 
(3) 

0.2009 
(1242) 

0.2040 
(9) 

0.4829 
(3) 

0.1971 
(1302) 

0.1987 
(10) 

0.2 5 25 
0.5295 

(3) 

0.2176 

(1153) 

0.2232 

(8) 

0.5814 

(3) 

0.2021 

(1101) 

0.2052 

(9) 

0.6369 

(3) 

0.1977 

(1338) 

0.1993 

(9) 

 

The results reveal that all the techniques perform equally 

well when there is no contamination (third row). 

Theoretically, under ideal condition, that is when all the 

assumptions are fulfilled, classical LDA should perform 

optimally and the results concur with the theory.  

Nevertheless, the two robust techniques do not perform much 

worse than the classical LDA. In contrast, when there is 

contamination (ε), the results show that the misclassification 

rate for the classical LDA inflates above the other two 

techniques.  At 10% contamination, regardless of the shift in 

location and shape, RLDAS performs better than RLDAT, but 

the disparities between the two techniques are quite small.  

When contamination increases to 20%, combined with shift in 

location, the misclassification rates for RLDAT are very much 

smaller than RLDAS, not to mention the LDA. When the 20% 

contamination combined with shift in shape, but without shift 

in location, the rates for RLDAS and RLDAT can be 

interpreted as almost the same for larger sample sizes.  For 
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small sample size, RLDAS performs slightly better than 

RLDAT. As the sample size increases, RLDAS outperforms 

RLDAT even though the misclassification rates for RLDAT 

decreases. Across the table, we can observe that the 

misclassification rates for RLDAT are consistently small, 

ranging from 19.85% to 31.84% as compared to RLDAS with 

the range of 19.70% to 64.78%.  Meanwhile, the range for the 

classical LDA is 19.68% to 70.20%.  In addition, the 

misclassification rates for RLDAT are consistently improving 

as the number of sample sizes increases but the pattern does 

not exist in the other two techniques.  Another added value for 

RLDAT is the computing time. As shown in the brackets under 

each condition, the computational time for RLDAT is very 

much smaller than RLDAS.  Even though the computational 

time for LDA is consistently smaller than RLDAT, the high 

misclassification rates when contamination occurs indicate 

that LDA is not a robust technique and we have to employ it 

with care. 
 

IV. REAL DATA APPLICATION 

 

Besides simulation study, all the models were also being put 

to test on real data, specifically, to classify financially 

distressed and non-distressed banking institutions in Malaysia. 

The bank data were extracted from selected balance sheet in 

annual report of 27 commercial banks from year 1988 to 1999. 

Two independent variables were used to capture variation in 

financial crisis. The variables were ratio of total shareholder’s 

fund to total assets (CA), and ratio of total shareholder’s fund 

to total equity (EQ). Table 2 shows the results of Lilliefor 

normality test for both variables in each group. 

 
Table 2 

Results of the Lilliefor Normality Test 

 

Group 
p-value 

CA EQ 

Distress 0.0066 0.0214 

Non-distress 0.1321 0.0011 

 

Normality checking on the financial data showed a violation 

of normality assumption. The performance of each model was 

based on its corresponding apparent error rates (AER) and 

estimate of misclassification rates using cross-validation (CV). 

The results of the real data analysis are presented in Table 3. 

 
Table 3 

Misclassification Rate for the Classical LDA and RLDA 
 

LDA Estimators AER CV 

LDA 0.1111 0.1111 

RLDAS 0.0741 0.1111 
RLDAT 0.0370 0.0741 

 

The real data results reveal that all RLDA are able to detect 

outliers and produces smaller error rates than the classical 

LDA. However, among the RLDA, the proposed technique 

(RLDAT) produces smallest error rate as compared to the 

existing RLDAS. The proposed model is found to be the best 

as its produces the smallest error rates via AER as well as CV. 

The simulation and real life problem results proven that the 

proposed RLDAT technique provides a comparable 

performance or better among the investigated LDA. 

 

V. CONCLUSION 

 

This paper presents an automatic trimmed mean paired with 

robust covariance to alleviate the classification problem. The 

outliers were eliminated via trimming process which took into 

consideration distributional shape of the data before 

developing the robust discriminant rule. Their function (robust 

estimators) as substitutes for the classical estimators in linear 

discriminant analysis (LDA) technique very much improves 

the misclassification rates. Even when compared to the 

existing robust LDA using S-estimator, the simulation and real 

data analysis prove that the proposed technique is comparable 

or sometimes better. The proposed technique produces low 

error rates as well as computational time.  Generally, we can 

conclude that the robust linear discriminant analysis proposed 

in this paper should be considered in solving classification 

problems especially when non-normality (outliers’ existence) 

is suspected.   
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