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Abstract—An algebraic approach have been developed to 

study the stability of delay differential equations with m-retarded 

arguments, each of them is a multiple of fixed unknown time lag. 

The method has its basis upon transforming the characteristic 

equation related to the delay differential equation into an 

equivalent system of two algebraic equations in order to evaluate 

the value of the time lag which ensures the stability of the delay 

differential equation. 

 

Index Terms—Stability of Delay Differential Equations; 

Characteristic Equation; Linear Delay Differential Equations. 

 

I. INTRODUCTION 

 

Delay differential equations (DDE’s) are popular tools used by 

scientists in modeling real life systems. The forms of DDE 

models are usually proposed by investigators based on their 

interpretation to the system under consideration. In most 

cases, the parameters of the DDE models are unknown in 

which these parameters are often have important scientific 

interpretations and hence it is necessary to infer their values. 

Also it is a good calibration of the models formed as DDE if 

the solutions of the DDE fit the dynamical systems 

phenomena with certain parameter values, but in most cases 

this solution is so difficult to be evaluated and therefore it may 

be sufficient to study the stability of such solutions for 

increasing time without evaluating this solution explicitly, i.e., 

study its behavior for increasing time. 

Among the most popular methods that may be used to study 

the stability of linear and nonlinear ordinary differential 

equations, in general and DDE’s, in particular, are those which 

are based on analyzing certain functions called the Lyapunov 

function or by analyzing the characteristic equation related to 

the differential equation, in which so many analytical methods 

and numerical algorithms are proposed in literatures, [1]. 

Time delays are so many encountered in various real life 

systems, such as electric, pneumatic and hydraulic networks, 

chemical processes, etc. Therefore, the existence of time lags, 

regardless they are presented in the state or/and control may 

cause system’s response to be undesirable, or even so system 

instability. Hence, as a consequence, the problem of stability 

analysis for such class of systems are one of the main interests 

for many researchers, since in general the time delay factors 

make the analysis much more complicated, [5], [15]. 

A large interest in those numerical and analytical studies of 

stability properties of linear DDE’s have been paid recently, 

[13], [17]. Stability analysis of DDE’s is in particular relevant 

in control theory, where one cause of the delay is the finite 

speed. Also, good study and characterization of DDE’s and its 

stability based on its characteristic equations may be found in 

[15] and more mathematical demand treatments are given in 

[4]. 

Hsu C. S. in 1970 [10] study the stability of retarded DDE’s 

with one delay which is based on finding a particular values of 

the time delay to ensure the existence of a pure imaginary 

roots of the characteristic equation. 

Jury E. I. and Zeheb E. in 1983 [12] proposed an algebraic 

method to obtain the relevant values of certain control gain of 

a multivariable feedback system to be stable, in which the 

basis of this method involves an algebraic solution of two 

equations obtained from the real and imaginary parts of the 

characteristic equation of the system. 

A good exposition of delay equations as well as the study of 

their stability properties based on their characteristic equations 

can be found in [17]. A mathematically more demanding 

treatment is found in [8]. Engelborghs et al. in 2002 [7] 

studied a multistep time-integration based numerical method 

to compute the characteristic roots .Hassard in 1997 [9] gave a 

formula that counts the number of unstable roots of the 

characteristic equation of DDE’s. The method presented in 

[14] and [16] is also based on root counting and clustering to 

find stability regions by defining the kernel and offspring 

curves and observing an important invariance property of root 

crossings, they can completely characterize the stability 

regions. Asl and Ulsoyin 2003 [2] presented a new analytic 

approach to obtain the complete solution for systems of delay 

equations based on a Lambert-function expansion. Breda et al. 

in 2004 [3] propose a technique to compute the rightmost 

characteristic roots in which their method is based on the 

discretization of the infinitesimal generator of the solution 

operator semigroup and the approximation of the roots is 

obtained by a large sparse standard eigenvalue problem. 

Insperger and Stépánin 2002 [11] extended the method of 

semidiscretization to the study of DDE’s. Semidiscretization 

utilizes the exact solution of linear systems over a short time 

interval to construct the mapping of a finite dimensional state 

vector for the system with time delay. Chen et al. in 1997 [6] 

reformulate the characteristic equation as an equation in a 

single unknown and use a robust numerical technique to solve 

this equation. Butcher et al. in 2004 [4] study the stability 

properties of delay-differential equations with time-periodic 

parameters by employing a shifted Chebyshev polynomial 
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approximation in each time interval with length equal to the 

delay and parametric excitation period, the system is reduced 

to a set of linear difference equations for the Chebyshev 

expansion coefficients of the state vector in the previous and 

current intervals. This defines a linear map which can be 

thought of as the “infinite dimensional Floquet transition 

matrix”.  

In this paper, the method of Jury E. I. and Zeheb E. in 

composition with tau-decomposition method will be modified 

and used to study the stability of delay differential equations 

by evaluating the value of the time lag which ensures the 

stability of the differential equation. 

 

II. PRELIMINARIES AND BASIC CONCEPTS 

 

We start this section first with the formulation and the 

general outlines of the algorithm for determining the desired 

gain of multivariable feedback systems presented by Jurey E. 

I. and Zeheb E. [12]. Let G(s) denote the transfer function 

matrix of a linear time-invariant system with n-inputs and n-

outputs. The feedback system is formed by connecting each 

output to an input and the difference between the two signals 

is fed through a control gain, K, which is common to all loops. 

The characteristic equation may be formulated according to 

the following: 

 

𝑃(𝑠, 𝐾) = 𝑑𝑒𝑡[𝑔𝐼𝑛 − 𝐺(𝑠)] = 0 (1) 

 

where In is the nth order identity matrix and g =-1/K. Clear 

that, (1) defines an algebraic function s(K) which is assumed 

that without loose of generality it is irreducible over the field 

of rational functions. The problem now is reduced to obtain all 

feasible intervals of K, such that the values of s(K) are 

confined to the open left half complex s-plane (which is the 

stability condition) 

 

A. Algorithm (1), [12] 

i. From Equation (1) with pure imaginary value s = iw, 

we get two algebraic equations with two variables K 

and w, namely: 

 

𝑅𝑒[𝑃(𝑖𝑤, 𝐾)] = 0 (2) 

𝐼𝑚[𝑃(𝑖𝑤, 𝐾)] = 0 (3) 

 

ii. Sensor assembly  

iii. Solve Equation (2) and (3) for K., in which this step 

may be carried out systematically or numerically, if 

desired, and denote the real finite solutions (where it is 

assumed that both K and w are real) by K1, K2, …, Km 

with K1< K2< … < Km 

iv. The values K1, K2, …, Km will divides the real axis of 

K into m + 1 intervals. Then choose from each interval 

an arbitrary value and denote these arbitrary values by 

K(0), K(1), …, K(m). 

v. Check the zeros of 𝑃(𝑠, 𝐾(𝑗)), j = 0,1,…,m; for stability 

condition, where the complete open interval in which 

K(j) is located is a feasible interval rendering a stable 

system if and only if all the zeros of 𝑃(𝑠, 𝐾(𝑗)), j = 0, 1, 

…, m; lie in the open left half of the complex s-plane, 

which is ascertained using the Routh-Hurwitz criterion. 

 

The validity of the above algorithm is ensured also from 

[12], since it is evident that K1, K2, …, Km for which eqs. (2) 

and (3) are satisfied for some real w are value of K for which 

at least one branch of the root locus of the algebraic function 

s(K) intersects or touches the imaginary axis of the s-plane. 

Therefore, since the zeros of the polynomial are continuous 

functions of its coefficients so that each branch of the root 

locus is a continuous curve, a zero s0(K) of f(s,K) can possibly 

move from the right half to the left half of the s-plane, or vice 

versa, only for the values K from the set {K1, K2, …, Km}. 

Hence, the complete interval between successive values of Kj, 

j = 1, 2, …, m; renders either a stable or unstable system. It 

follows that f(s,K), Kj< K < Kj+1 is either a strict Hurwitz 

polynomial or not. Therefore, it suffices to check one arbitrary 

point in each of the intervals defined by the set {K1, K2, …, 

Km} to determine all the real intervals of K for which the 

feedback system is stable. 

 

Remark (1), [12], [15]: 

 

1. The stable intervals of K are open intervals and the 

values of the end points of these intervals are K1, K2, 

…, Km render unstable feedback system. 

2. The set {K1, K2, …, Km} and hence the set of check 

points {K(0),K(1),…,K(m)} can be reduced in some cases 

by noting the root locus of the pertinent branch may 

only touch the imaginary axis of the s-plane, and does 

not intersect it. The related mathematical condition of 

this case is given by: 
 

𝑅𝑒 [
𝜕𝑃/𝜕𝐾

𝜕𝑃/𝜕𝑠
] 𝑠=𝑗𝑤𝑠

𝐾 ∈ ℝ+
  

= 0  (of odd multiplicity) 

where: 

𝑑𝑃 =
𝜕𝑃

𝜕𝑠
𝑑𝑠 +

𝜕𝑃

𝜕𝐾
𝑑𝐾| 𝑠=𝑗𝑤𝑠

𝐾 ∈ ℝ+
 

= 0 

 

and it is noted that if  
𝜕𝑃

𝜕𝐾
= 0  is of even multiplicity, 

then this pertains to zero crossing of the imaginary axis. 

While when 
𝜕𝑃

𝜕𝐾
= 0 is of odd multiplicity, then the real 

values of K0 and w0 are such that they do not define 

intervals which have to be checked for stability (or 

instability), because there is no crossing of a zero from 

right to left at the jw-axis or vice versa, hence we can 

ignore these K values. Furthermore, the two adjacent 

intervals are either both stable (except the point K  K0) 

or both unstable, and it is suffices to choose a single 

check point different than K0 determined from the next 

real values of K for both intervals. 

3.  The algorithm is also applicable, with no additional 

complexity, to similar problems with constraints on the 

allowable values of the gain K, or to somewhat more 

general problems which was not considered explicitly 

by [15]. 
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The necessity and sufficient condition for stability for all 

values of gain for the multivariable feedback system may be 

stated next. 

Let 𝑃(𝑠, 𝐾) of (1) be written as follows: 

 
j j 1

0 1 mP(s,K) a (K)s a (K)s ... a (K)   
 

(4) 

 

For simplicity assume the following [12]: 

1. Equation (4) is obtained after multiplying by the 

common divisor so that 𝑎𝑖(𝐾),  

i 0,1,…,m; are polynomials in K. 

2. The form 𝑃(𝑠, 𝐾) is irreducible. 

3. 𝑎0(𝐾)  0, 𝑎𝑚(𝐾) 0; otherwise we always treat 

𝑃(𝑠, 𝐾) of reduced order. 

4. m/2 is even (where the derivation of the case m/2 is 

odd, (m1)/2 is even and (m1)/2 is odd will be evident 

and need not be repeated. 

Now, using (2) and (3) and noting (4), we have: 

 
j j 2

1 0 2 jP a (K)w a (K)w ... a (K) 0    
 (5) 

j j 4
2 1 3 j 1P [a (K)w a (K)w ... a (K)w 0

    
 

(6) 

 

B. Theorem (1), [12] 

For a multivariable feedback system with characteristic 

Equation (4), which is open-loop stable, to be stable for all 

values of the gain, it is necessary and sufficient that a real 

solution to (5) and (6) does not exist. 

Now, in order to modify the above approach for systems of 

delay differential equations, consider: 

 

𝑓 (𝑡, 𝑥(𝑡), … 𝑥(𝑔(𝑡)𝑥̇(𝑡), 𝑥̇(𝑔1)), … 𝑥̇(𝑔𝑚)) = 0 (7) 

 

with initial condition: 

 

𝑥(𝑡) = 𝜑(𝑡),   𝑡0 − 𝑟 < 𝑡 < 0, 𝜑 ∈ 𝐸𝐷  

 

where t0  ℝ+, m  ℕ, gi(t,r), i  1,2,…,m; are given 

functions representing the retarded arguments and it will be 

assumed that t0  r  gi(t,r)  t0, j  1,2,…,m; t > 0 and for 

some constant r > 0, which is called the time lag; x 

and𝑓: (0, 𝛽) × 𝐸𝐷 → 𝑅𝑛 are n-vector valued functions,            

  ℝ +. Assume that f satisfies the conditions of the existence 

and uniqueness of solutions. 

For the rest of this paper, it is necessary to recall the 

following basic definitions in stability theory: 

 

Definition (1), [1]: 

The trivial solution of (7) is stable at t0> in the sense of 

Lyapunov if for each > 0, there exists =(, t0) > 0, such that 

whenever ||||< it follows that the solution x(t, t0,) exist on 

[t0-r,∞) and ||x(t,t0, )|| <, for all t0-r ≤ t, where || . || is the 

supremum norm. 

Otherwise, the trivial solution is said to be unstable at t0. 

 

 

 

Definition (2), [1], [18]: 

The trivial solution of (7) is said to be asymptotically stable 

at t0> if it is stable and there exists 1=1(t) > 0, such that 

whenever |||| <1, then lim
𝑡→∞ 

𝑥(𝑡, 𝑡0, 𝜑) = 0 . 

 

III. STABILITY OF LINEAR ORDINARY DELAY DIFFERENTIAL 

EQUATIONS 

 

One of the special forms of (7) is the system of linear 

ordinary differential equations with deviating arguments, 

retarded and neutral, is defined by: 

 

x(t) A x(t r ) B x(t r )

m m

j j j j

j 1 j 1

   

 

   (8) 

where rj0, for all j1,2,…,m; and x(t)𝑅𝑛. Let x(t)  be any 

solution of (8) and upon substituting the transformation z(t)  

x(t)  x(t) will yields to: 

 

z(t)  A z(t r ) B z(t r )

m m

j j j j

j 1 j 1

  

 

   (9) 

 

Therefore if z(t)  0 is stable or unstable or asymptotically 

stable solution of (9), then the same is true for every solution 

of (8) and hence it is suffices to study he stability of the trivial 

solution of (8). 

Assume a solution of (8) is of the form x(t) Ve t , where V 

is an n-vector and  has a complex constant value. Hence, by 

substituting x(t) Vet in (8), the following algebraic equation 

is obtained: 

 

j jI A e B e e

m m
r r t

j j

j 1 j 1

 
 
    
 
 

    

 

  V  0 

 

 

and in order to have a nontrivial solution, one must have: 

 

det j jI A e B e

m m
r r

j j

j 1 j 1

 
 
    
 
 

   

 

   0 (10) 

 

This equation is called the characteristic equation, which is 

a polynomial of degree m that may be denoted by P(, je
r 

). 

If the roots of (10) could be found, then the stability of the 

system linear ordinary DDE (8) may be determined based on 

the following theorems: 

Theorem (2), [18]: 

If all the roots of the characteristic equation (10) have 

negative real parts, then the trivial solution of (8) is 

asymptotically stable. 

Theorem (3), [18]: 

If at least one root has a positive real part, then the trivial 

solution of (8) is unstable. 
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Theorem (4), [18]: 

If there are simple purely imaginary roots and the remaining 

roots have negative real parts, then the trivial solution of (8) is 

stable. 

The above theorem ensures that the negativeness of the real 

parts plays an important role depending on the asymptotic 

behavior theorem of the stability of the ordinary differential 

equations.  

 

IV. THE MODIFIED ALGEBRAIC APPROACH 

 

This approach consists of the evaluation of the solution of 

two algebraic equations resulting from the real and imaginary 

parts of the complex characteristic equation or polynomial 

related to the delay differential equation. This approach is 

based on that approach proposed by Jury E. I. and Zeheb E. 

[12], which is originally established for determining the gain 

of multivariable feedback control systems that will be 

modified and improved here to study the stability of the 

system of linear DDE’s by evaluating the value of the time 

lags which ensure the stability of the system under 

consideration. 

Now, consider first in particular the system of retarded 

delay differential equations: 

 
x(t) f (x(t), x(t r),..., x(t mr))    (11) 

 

where r, t > 0 and m  ℕ. Suppose that the characteristic 

equation related to eq.(11) is given by: 

 

P( , r) 0   (12) 

 

Therefore, in order to use the utilities of the complex 

numbers, letting x(t) Ve t , with the assumption that  is pure 

imaginary, i.e.,   iw, w  R. Then the characteristic 

equation (12) may be rewritten as in the following complex 

function: 

 

P(iw, r) Re[P(w, r)] i Im[P(w, r)] 0     

 

which implies from the properties of the complex numbers 

that: 

 
Re[P(w, r)] 0  (13) 

Im[P(w, r)] 0  (14) 

 

Equations (13) and (14) represent an algebraic system of 

two equations with two variables w and r which may be solved 

to find them to ensure the stability of the system of DDE’s 

given by (11). 

In addition, since the procedure of finding the characteristic 

roots of (12) or equivalently of (13) and (14) is not simple, 

because (12) is an exponential polynomial. Thus, to check the 

direction of the root loci to determine whether the roots cross 

from the right half plane to the left half plane, or vice versa. 

The characteristic equation in case of delay system contains 

an exponential terms of r, which renders the system of 

algebraic Equations (13) and (14) which are also so difficult to 

be solved. Hence, in order to find r, we introduce a new 

variable T by replacing er in Equation (12) by 
(1−𝜆𝑇)2

(1+𝜆𝑇)2 and 

therefore will be not need to use Routh-Hurwitz criteria to 

study the stability of the system. 

Now, rewrite the characteristic Equation (12) as follows: 

 

P( ,T) a (T) a (T) ... a (T)
0 1 j

j j 1       (15) 

 

where a0, a1, …, aj are polynomials in T and it is assumed that 

P is irreducible, i.e., a0(T)   0, aj(T)   0. Therefore, with 

iw, the real and imaginary parts of (15) when j is even are 

given by: 

 

P (w,T) a (T)w a (T)w a (T) 0
0 2 j

j j 2
1      (16) 

P (w,T) [a (T)w a (T)w ... a (T)w 0
1 3 j 1

j 2 j 4
2     


   (17) 

 

and vice versa if j is odd. 

The next theorem give the necessary condition for stable 

solutions of linear DDE’s presented by (11), which have been 

proved similarly to the proof of Theorem (1) given in [12] but 

with some modification. 

Theorem (5): 

If P1 and P2 have no real solutions, then (11) with the 

characteristic equation (15) is stable for all real values of the 

delay arguments. 

Proof: 

Since P1 and P2 are the real and imaginary parts of f with 

iw, with real finite solutions T and w and suppose the 

solution for T to be the set{T1, T2, …, Tm}; with T1< T2< … < 

Tm and the system (10)-(11) is satisfied for real w are those 

values of T for which at least one branch of the root locus of 

the resulting algebraic polynomial in T intersects (or touches) 

the imaginary axis of the w-plane. 

Since the zeros of a polynomial are continuous functions of 

its coefficients, so that each branch of the root locus is a 

continuous curve and a zero can possibly move from the right 

half of the w-plane to the left half of the w-plane, or vice 

versa, only for values of T from the set {T1,T2,…,Tm}. 

Hence, the complete intervals between the successive values 

Ti, i 1,2,…,m; reaches either a stable or unstable system for 

certain values of r. 

Thus no real solution to the system (16) and (17) exists, 

which means that none of the branches of the algebraic 

equations of T for which P(w,T)  0 cross or touches the 

imaginary axis of the w-plane. 

Therefore, if the system is stable for one value of T, i.e., its 

eigenvalues are clustered in the open left half of the w-plane 

and it will remains stable for all values of T.     

Remark (2): 

The new approach may be used to analyze the stability of 

the retarded linear delay systems and then improved for 

neutral systems with single or multi delays. The procedure of 

this approach may be stated and summarized as follows: 
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1. Substitute iw  in Equation (6) and then evaluate the 

algebraic system (13)-(14) with 
(1 T)

e

(1 T)

2
r

2




 

  that is 

equivalently reduced to: 

 

Re[P(w,T)] 0

Im[P(w,T)] 0

 


 
 (18) 

 

2. Solve the resulting system (18), if possible, for non-

negative real values w. The solutions may be denoted 

by the ascending set {T1,T2,…,Tm}. 

3. From the properties of the field of real numbers, the 

values T1, T2, …, Tm divide the real line T into m + 1 

intervals (Ti, Ti+1), i 1, 2, …, m. 

4. Choose an arbitrary value in each interval, where these 

values may be denoted by T(0), T(1), …, T(m). 

5. Check the zeros of P(w,T(i)), i0,1,…,m for stability. 

 

To illustrate the present approach of this paper, we will 

consider first in example (1) retarded DDE which is 

considered and studied by [10], in which the author has shown 

that the interval of the time lag to ensure the asymptotic 

stability of the system is (0,
2

3 3


). 

Example (1): 

Consider the retarded argument DDE with r, where r > 0: 

 

x(t) x(t) 2x(t r) 0    , t > 0 (19) 

 

and to find the values of r for which (19) is stable. 

First of all, the characteristic equation is obtained by 

assuming that x(t)  Vet,  ℂ. Hence    𝑥̇(𝑡) = 𝜆𝑉𝑒𝜆𝑡, 

𝑥(𝑡 − 𝑟) = 𝑉𝑒𝜆(𝑡−𝑟)  and thus we obtain: 

 

P( ,r) 1 2e 0r       (20) 

 

Now, letting iw (pure imaginary zeros), implies to: 

 

iw 1 2e 0iwr     

 

and recalling that eicos + isin, which implies that (20) 

may be rewritten as: 

 

iw 1 2(cos(wr) isin(wr)) 0      

 

Hence: 

 

[1 2cos(wr)] i[w sin(wr)] 0      

 

which is an algebraic equation. Hence the equivalent algebraic 

systems in w and r are given by: 

 
1 cos(wr) 0    

w 2sin(wr) 0    

This non-linear system may be solved to find w and r, or by 

letting 
(1 T)

e

(1 T)

2
r

2




 

 in the characteristic Equation (20) yields 

to: 

 

(1 T)
1 2 0

(1 T)

2

2


   



 
 

 

or: 

 

P( ,T) (1 T) (1 T) 2(1 T)2 2 2         

T (2T 3T ) (1 2T) 3 03 2 2 2          
(21) 

 

It is remarkable that studying the stability of (21) using 

Routh-Hurwitz method is so difficult since it is a polynomial 

of the fifth degree in w with unknown coefficients. 

Now, setting in (21),   iw, will overpass this problem and 

give:  

 

(iw) T (2T 3T )(iw) (1 2T)iw 3 03 2 2 2        

 

and hence: 

 
2 2 3 2[3 (2T 3T )w ] i[(1 2T)w w T ] 0        

 

Therefore the following system of algebraic equations will 

be obtained: 

 
2 23 (2T 3T )w 0    (22) 

3 2(1 2T)w w T 0    (23) 

 

Now, solving (22) we get: 

 

3
w

2T 3T2




 
 

 

By substituting the value of w in (23), and solving the 

resulting equation for T, we get  

T1  1/3 and T2  1/3, in which the only nonnegative value of 

T will be used which is T1  1/3; and hence implies that w1 

1.7321. 

Now, the value of T1 will divide the nonnegative real axis 

into two intervals (0,T1) and (T1,) and therefore we may 

choose an arbitrary values over each interval, say (0)
T
1

 0.1 

and (1)
T
1

 1. 

Finally, substituting (0)
T
1

 in the characteristic equation (21) 

will give: 

 

P( ,T ) 0.01 0.23 0.8 3 0
(0) 3 2
1

          
 

 

which has the roots: 
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  

19.71387301

1.64306349 3.53808595i

1.64306349 3.53808595i

 
 
  
   

 

 

 

which is clear that all the roots of  have negative real parts, 

while substituting T
(1)
1

 in (21) yields to:  

 

P( ,T ) 5 3 0
(1) 3 2
1

         
 

 

which has the roots: 

 

  

5.294

0.148 0.738i

0.148 0.738i

 
 

 
  

 

 

 

and it is clear that two roots have positive real parts. 

As a result, the corresponding value of r with T  (0,1/3) 

which stabilizes the retarded DDE (21) may be evaluated now 

which is found to be equal to r  1.2092 and therefore the time 

lag interval of asymptotic stability is (0,1.2092), which is 

agree with the result given in [18]. 

Example (2): 

Consider the retarded delay differential equation with two 

delays r and 2r, where r > 0: 

 

x(t) x(t r) x(t 2r) 0     , t > 0 (24) 

 

and to find the values of r for which (24) is stable. 

First of all, the characteristic equation is obtained by 

assuming that x(t)  Vet,  ℂ. Hence 𝑥̇(𝑡) = 𝜆𝑉𝑒𝜆𝑡,          

𝑥(𝑡 − 𝑟) = 𝑉𝑒𝜆(𝑡−𝑟), 𝑥(𝑡 − 2𝑟) = 𝑉𝑒𝜆(𝑡−2𝑟) and thus we get: 

 
r 2 rP( , r) e e 0         (25) 

 

Now, let iw  (pure imaginary zeros), then: 

 
iwr 2iwriw e e 0      

 

and recalling that ie cos isin    , which implies that (25) 

may be rewritten as: 

 

iw cos(wr) isin(wr) cos(2wr) isin(2wr) 0       

 

Hence:   

 
[cos(wr) cos(2wr)] i[w sin(wr) sin(2wr)] 0       

 

which is an algebraic equation. Hence the equivalent algebraic 

systems in w and r is given by: 

 
cos(wr) cos(2wr) 0    

w sin(wr) sin(2wr) 0     

 

and it is clear that it is very difficult to be solved analytically 

or may be solved using computer programs, but it will have 

many roots. Therefore, letting 
(1 T)

e

(1 T)

2
r

2




 

  in the 

characteristic (14) yields to: 

 

(1 T)

(1 T)

2

2


 

 

 + 
(1 T)

(1 T)

4

4

 

 

 0 
 

 

or: 

 

P( ,T) (1 T) (1 T) (1 T) (1 T)4 2 2 4             (26) 

4 5 3 4 4 2 3 3 2 2T (4T 2T ) (6T 4T ) (4T 4T ) (1 4T) 2 0              

 

 

It is remarkable that studying the stability of (26) using 

Routh-Hurwitz method is very difficult since it is a 

polynomial of the fifth degree in w with unknown coefficients. 

Now, setting in (26), iw  , will overpass this problem and 

give: 

 

T4(iw)5 + (4T2 + 2T4)(iw)4 + (6T2 4T3) (iw)3 + 

(4T+4T2)(iw)2 + (14T)(iw) + 2  0 

 

 

and hence: 

 

[(4T3 + 2T4)w4 (4T + 4T2)w2 + 2] + i[T4w5 

(6T2 4T3)w3 + (1  4T)w]  0 

 

 

Therefore, the following algebraic system will be obtained: 

 

(4T 2T )w (4T 4T )w 2 03 4 4 2 2      (27) 

T w (6T 4T )w (1 4T)w 04 5 2 3 3      (28) 

 

Now, solving (27) we obtain: 

 

w 1/ T(2 T)

1/ T

 
 
 

  

 

By substituting w  1/ T(2 T)  in (28), and solving the 

resulting equation for T, we obtain T1 0.1547005, T22.155 

and T3 0, in which the only nonnegative value of T and will 

be used which is T1 0.1547005; hence implies that w1 

1.732. 

Similarly, substituting in (28) w  1/ T  will give T  0, 

which is not feasible. 

Now, the value of T1 will divide the nonnegative real axis 

into two intervals (0,T1) and (T1,) and therefore we may 

choose an arbitrary values over each interval, say T
(0)
1

 0.1 

and T
(1)
1

 1. 

Finally, substituting T
(0)
1

 in the characteristic equation (26) 

will give: 
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P(, T
(0)
1

)  0.00015 + 0.00424 + 0.0563 + 

0.442 + 0.6 + 2 

 

 

which has the roots: 

 


0.431101 2.274499i

0.431101 2.274499i

7.047599 9.398524i

7.047599 9.398524i

27.042600

  
 
  

  
 
  
  

  

 

which is clear that all the roots of  have a negative real parts, 

while substituting T
(1)
1

 in (26) yields to: 

 

P(,T1
(1))  5 + 64 + 23 + 82 -3 + 2  

 

which has the roots: 

 


0.233585 0.416732i

0.233585 0.416732i

0.280138 1.185358i

0.280138 1.185358i

5.906894

 
 

 
  
 
  
  

 
 

 

and it is clear that two roots have positive real parts. 

As a result, the corresponding value of r which stabilizes the 

retarded DDE (24) equals to r  0.6046 and therefore the 

interval of asymptotic stability is (0,0.6046). 

 

V. CONCLUSION & RECOMMENDATIONS 

 

Stability of differential equations may be affected by the 

existence of time lags. Therefore, the evaluation of the time 

lags seems to be necessary to ensure the stability of the DDE. 

Also, the values of r which stabilize the system depends on the 

real life system under consideration and therefore, the present 

approach seems to be reliable in comparison with the other 

methods used to evaluate the time lag.  
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