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Abstract—This paper presents a model-based design technique 

to estimate the dynamic model of a nonlinear soft tissue phantom 

using MATLAB Simulink. The soft tissue model was developed 

using black-box modeling approach; simulations were performed 

based on acquired set of single input-output data and processed 

using MATLAB System Identification toolbox. Wavenet and 

sigmoid estimators were used to acquire the best overall 

performance. Comparison study has been made between the 

simulation and experimental results. Our finding shows that the 

obtained model is sufficient to represent the model of soft tissue 

phantom with a mean error of 4.12% compared to the real 

system. 

 

Index Terms—System Identification; Soft Tissue Modeling; 

RV-2AJ; MATLAB; Simulink; Nonlinear ARX. 

 

I. INTRODUCTION 

 

Model-based design is an approach that allows rapid and cost-

effective development of dynamic systems, including control 

system, signal processing, and communication system. In 

model-based design, a system model is the main element in 

the development practice, from essential development through 

design, execution, and examination [1]. Hence, modeling is 

acknowledged as the first step of any system analysis and is 

considered as an important task in scientific studies [2]. 

Normally, achieving model of a system requires either 

physical law modeling or via an identification process [3]. 

However, it is important to realize that physical law modeling 

often needs hard-to-obtain expert comprehension about the 

system to be modeled, and thus system identification is 

introduced. In system identification, a model can be 

established by preparing a set of measured input and output 

data without the needs of understanding the system [4], [5]. 

The identified models can then be used for output prediction, 

system analysis and diagnostics, system design, and control. 

In medical application, stiffness of a human soft tissue has a 

nonlinear characteristic with uncertainties compared to the 

stiffness of a hard and linear environment like steel. Therefore, 

force feedback is often necessary in this research area such as 

to provide a good and reproducible conduction of an 

ultrasound signal, while at the same time preventing artery 

deformation [6]. Furthermore, a haptic interface in minimally 

invasive surgery is used to produce a trajectory for a surgical 

robot and feel contact forces from the working environment 

[7]. A novel force feedback based tele-operation system for 

medical application is also presented in [8] and [9]. Other 

researchers also incorporated force feedback for a medical 

robot in order to alleviate fatigue in echography [10]. Based 

on these researches we can conclude that environment 

stiffness is one of the contributing factors that affect force 

control performance especially when it involves interaction 

with human soft tissue. 

For that reason, this study discusses on the development of 

a dynamic simulation model for a generic multipurpose soft 

tissue phantom through a system identification design 

technique. MATLAB System Identification toolbox is used to 

determine the time domain model of the tissue phantom. 

 

II. DESIGNS 

 

Nonlinear ARX (autoregressive exogenous) models 

describe nonlinear structures using a parallel combination of 

nonlinear and linear blocks [11]. Previously, various 

researchers have used nonlinear ARX model for system 

identification [11]–[15]. The nonlinear and linear functions are 

expressed in terms of variables called regressors [3]. There are 

several nonlinear estimators that can be used such as wavelet 

network, sigmoid network, tree partition, custom network, and 

neural network. In this study, the performance of wavelet and 

sigmoid network estimators are chosen and compared due to 

the simplicity of the structure.  

In order to analyze an open system with a classical black-

box approach, only the behavior of the stimulus/response is 

accounted to infer with the unknown box. Hence for better 

understanding, the representation of a black-box modeling for 

the soft tissue model is depicted in Figure 1. The input is a 

depth level of force sensor driven towards the model while the 

output is the resulted force from the model’s deformation. The 

mathematical model representation is given in Equation (1) 

and (2). 

  

 
Figure 1: Black-box modeling approach on soft tissue phantom 
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(1)  𝐹 = 𝑘𝑥 (1) 

𝑘 =
𝐹

𝑥
 (2) 

 

The general scheme to determine a dynamic model of a 

tissue phantom using MATLAB System Identification toolbox 

involved several stages as illustrated in Figure 2. The initial 

step is to design the experiment setup for appropriate data 

collection of system input and output. Afterwards, multiple 

model structures of nonlinear ARX are generated and chosen 

based on previous knowledge along with trial and error. 

Selected models are then identified and validated to see 

whether they meet the model requirements 

 

 
 

Figure 2: General steps in system identification 
 

 

A. System Description 

Figure 3 shows the interconnection layout of hardware used 

in the proposed setup. It essentially involved a host computer, 

an articulated industrial robot arm, and a force/torque (F/T) 

sensor. In this setup, the output signals from the sensor are 

collected on the host computer while the input and output of 

the robot’s position is handled using the pendant. 

 

 
Figure 3: Hardware configuration for data acquisition 

The 5-degree of freedom (DOF) RV-2AJ industrial robot 

arm from Mitsubishi is connected to its controller (Figure 3: 

Robot controller) with a multi-axis F/T sensor mounted at the 

robot end effector. The high precision motors with integrated 

absolute position encoders constantly assured stable operation 

[16]. In the past, considering that the 17kg compact-sized 

robot has a repeat position accuracy of ±0.02mm, several 

researchers have used the robot model to develop a 

master/slave teleoperation system [17], construct a robot 

simulation software (RSS) using virtual reality interface 

method [18], control and observe the robot via internet using a 

client application for a remote access laboratory [19], [20], 

and inaugurate algorithm for a writing robot [21], [22]. 

As previously mentioned, the end-effector of the robotic 

arm is fitted with a near-zero noise distortion six-axis Mini40 

F/T sensor from ATI Industrial Automation. The sensor is 

used to quantify the force acted upon the tissue phantom 

whenever both of them are in contact. More importantly, the 

sensor is connected to its controller (Figure 3: F/T controller), 

where its main purpose is to convert strain gauge data from the 

sensor to Cartesian components of forces and torques. The 

sensor which was also attached to a human-like industrial 

robot was applied to provide force feedback on a human body 

[6]. The same concept but with a parallel link robot instead 

was also exercised to alleviate fatigue in echography [10]. 

Further researches on integrating a F/T sensor to a robotic arm 

in similar research area has also been worked out for 

reconstructive surgery [23]–[25], developing a skincare robot 

[26], assisting lung motion compensation during needle 

insertion [27], estimating needle deflection during soft-tissue 

needle insertion [28], and developing rehabilitation robot for 

wrist rotation [29]. 

 

B. Data Acquisition 

The first step in system identification modeling is to identify 

and gather relevant data from both robot and tissue phantom. 

Therefore the data collection setup is presented in Figure 4. 

We have determined the input of the model to be the distance 

of the robot’s end effector travel towards the tissue phantom 

and the output is reaction force component of the phantom. To 

acquire the corresponding data, the robot was programmed 

manually via the teach pendant to move starting from the 

surface of the phantom with increments of 0.5mm until it 

reaches 10mm of travel while the force component at each 

increments are recorded simultaneously. The process is 

repeated until desired amount of data are achieved. 
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Figure 4: Data acquisition setup for tissue phantom 

 

In this research, only z-axis force data are gathered since our 

main concern is to develop force control on this axis and 

position control on x and y-axis [30]–[32]. Additionally, 

communication between the F/T controller to the host 

computer was set using serial RS-232 connection at a baud 

rate of 9600Bd with sampling rate of 2500Hz. The resulted 

input and output data for the experimental setup is shown 

accordingly as in Figure 5. 

 

 
 

Figure 5: Input signals (robot travel towards phantom) and output signals 
(acting force towards robot) 

 

 

 

III. SIMULATION RESULTS AND ANALYSIS 

 
A. Model Identification 

In the System Identification toolbox, half portion from a 

total of 3820 acquired data was selected for data evaluation 

while the other half for data validation. Nonlinear ARX model 

estimation with wavenet and sigmoid network estimator was 

chosen to study which of both estimators will result in better 

model identification. Table 1 shows the comparison outcome 

between different model structures with summary on the best 

fit percentage, autocorrelation function (ACF) and cross 

correlation function (CCF). Multiple sets of model structures 

were used to estimate the system model up to 3 terms of 

output [na], input [nb] and delay [nk].  

 

B. Model Validation 

In order to validate the authenticity of the model, the best 

fitting between the simulation response of the identified model 

and the actual plant was recognized. Essentially, model with 

best fit percentage signifies how much that model is able to 

represent the actual system. 

Apart from the best fit, autocorrelation of residuals and 

cross correlation analysis were examined as well. The 

confidence level for both correlations was set at 95% (p-value 

of 0.05). Models with good performance should have the 

response within this limit but if the response deviates 5-10% 

out of range, it is still considered as good while over 10% is 

accounted as poor.  

Based on test results in Table 1, we have concluded that 

sigmoid estimator produces the best nonlinear ARX model at 

[2 2 0] model structure. The model fit is relatively high at 

96.23% and it passes both the ACF and CCF analysis. 

Comparison between actual and simulated model output is 

presented in Figure 6 while Figure 7 shows the autocorrelation 

and cross correlation analysis. 

 

 
 

Figure 6: Simulation and actual response of system output 
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Table 1 

Model fit and correlation test summary for nonlinear models using wavenet 

and sigmoid estimators 

 
Model 

Structure 
Wavenet Estimator Sigmoid Estimator 

[na nb nk] 
Model 

Fit, % 

A

CF 

C

CF 

Model 

Fit, % 

A

CF 

C

C
F 

0 1 0 99.40 X X 99.40 X X 

0 1 1 95.42 O X 95.43 O X 

0 1 2 93.55 X X 93.56 X X 

1 1 0 99.40 X X 99.40 X X 

1 1 1 -137.90 O X 41.51 O X 

1 1 2 93.55 X X -19.73 O X 

2 1 0 15.18 X X 97.17 X X 

2 1 1 -109.20 O X 0 O X 

2 1 2 -111.90 O X 0 O X 

3 1 0 90.97 X X 96.04 X X 

3 1 1 -93.20 O X 0 O X 

3 1 2 -342.50 O X 0 O X 

0 2 0 97.62 X X 97.28 X X 

0 2 1 95.15 X X 94.73 X X 

0 2 2 93.31 X X 93.05 X X 

1 2 0 -2446 X X 78.23 X X 

1 2 1 -130.50 O X 64.60 O X 

1 2 2 -122.80 O X 0 O X 

2 2 0 68.82 O O 96.23 O O 

2 2 1 -576.80 O X 62.76 O X 

2 2 2 -122.20 O X 56.89 O X 

3 2 0 68.63 O O 91.74 X X 

3 2 1 -634.40 O X 64.32 O X 

3 2 2 -505.90 O X 73.64 O X 

0 3 0 93.66 X X 96.69 X O 

0 3 1 84.95 X X 94.44 X X 

0 3 2 93.32 X X 92.89 X X 

1 3 0 70.94 O O 92.69 X X 

1 3 1 -139.10 O X 79.12 O X 

1 3 2 -25.50 O X 29.28 O X 

2 3 0 70.34 O O 95.10 X X 

2 3 1 -482.80 O X 61.27 O X 

2 3 2 -158.7 O X 70.36 O X 

3 3 0 69.95 O O 35.87 X X 

3 3 1 -756 O X -810.40 O X 

3 3 2 -324.60 O X -28.35 O X 

 

Legend: O means pass while X means fail. Shaded values indicate model 

structure with pass in both ACF and CCF. 
 

 
 

Figure 7: Autocorrelation and cross correlation analysis for [2 2 0] nonlinear 
ARX sigmoid estimator 

 

Comparison of final mean value between the measured and 

simulation data is given in Figure 8 while the exact values and 

difference errors are listed in Table 2. From the given graph 

we can see that the nonlinearity curve of the simulated model 

closely resembles the measured point from the experiment. 

The mean error of the simulated model on the other hand only 

produces 4.12% indicating the high accuracy of the selected 

nonlinear ARX model structure. 

 

 
 

Figure 8: Measured vs simulation of final mean value 

 
 

 



Estimation of Nonlinear ARX Model for Soft Tissue by Wavenet and Sigmoid Estimators 

 ISSN: 2180-1843   e-ISSN: 2289-8131   Vol. 8 No. 7 127 

Table 2 

Measured and simulation output force at fixed input distance 

 
Input 

Distance (cm) 

Output Force (N) Error 

(%) Measured Simulation 

0.05 0.1675 0.1777 6.06 

0.10 0.3935 0.3549 9.82 
0.15 0.5895 0.5259 10.79 

0.20 0.7849 0.7034 10.39 

0.25 0.9877 0.9152 7.34 
0.30 1.2431 1.1600 6.69 

0.35 1.5194 1.4120 7.07 

0.40 1.8907 1.6940 10.40 
0.45 2.2825 2.0420 10.54 

0.50 2.7048 2.4780 8.38 

0.55 3.3528 3.0440 9.21 
0.60 4.1174 3.8510 6.47 

0.65 5.0153 4.9970 0.37 

0.70 5.9738 6.0330 0.99 
0.75 6.3653 6.7690 6.34 

0.80 7.4116 7.5350 1.66 

0.85 8.4368 8.4920 0.65 

0.90 9.4982 9.4660 0.34 

0.95 10.4597 10.4400 0.19 

1.00 11.4357 11.4200 0.14 

  
Mean Error 4.12 

 

Legend: 𝐸𝑟𝑟𝑜𝑟 =  
|𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛|

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑
× 100% 

 

 

IV. CONCLUSION  

 

In this study, the model-based design approach of a generic 

multipurpose tissue phantom has been presented. The 

proposed setup uses MATLAB System Identification toolbox 

to develop the simulation model of a tissue phantom. Based on 

the earlier findings, the highest best fit of a simulated model 

produced from the toolbox does not necessarily means the best 

overall model. Autocorrelation and cross correlation function 

has to be considered as well. 

Simulation study has been conducted to validate the selected 

nonlinear ARX model structure based on a high best fit and a 

pass in correlation analysis. From the results and comparisons, 

[2 2 0] model structure using sigmoid estimator happened to 

be the best model that closely resembles the real system with 

relatively low mean error of 4.12%. 

Lastly, this work has demonstrated that model-based design 

practice that incorporates tasks of system identification is a 

straightforward process when done correctly in MATLAB 

Simulink environment. In our research, force control can be 

developed in later stages considering that we have obtained 

the model and characteristics of the soft tissue phantom. By 

using a model of real tissue phantom for simulation purposes, 

we could develop a robot-assisted surgical system that would 

comply with any human tissues and body parts once the tissue 

characteristics are recognized.  
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