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Abstract—Time-frequency representation of a signal has been 

widely used in various research areas to analyze non-stationary 

signals (ie. electromyography (EMG) signals). However, due to 

the high computational complexity of certain time-frequency 

distribution techniques, the application of these techniques in the 

analysis of long duration EMG signals is not suitable. To 

overcome this problem, muscle contraction segmentation is 

essential to process the existed EMG signals, since not all of the 

EMG signal contains valid information to be analyzed. Thus, this 

paper presents an algorithm to automatically detect and segment 

the muscle contractions existed in EMG signal during long 

duration recordings. Surface EMG signals were collected from 

biceps branchii muscle of ten subjects during manual lifting. 

Subjects were required to lift a 5 kg load mass with lifting height 

of 75 cm until experiencing fatigue. The utilization of 

instantaneous energy of EMG is used to estimate the presence of 

first muscle contraction, second muscle contraction and until the 

last muscle contraction. This instantaneous energy is obtained 

from spectrogram and a threshold value is set to differentiate 

between muscle contractions and noise. This research shows that 

the algorithm is able to automatically segment muscle 

contractions in EMG signal based on the signal instantaneous 

energy. 

 

Index Terms— Manual Lifting; Spectrogram; Segmentation; 

Instantaneous Energy; Electromyography. 

 

I. INTRODUCTION 

 

Electromyography (EMG) signal is a measure of the electrical 

activity in human body produced by skeletal muscles [1]. 

There are two kinds of EMG signals; surface EMG (sEMG) 

and intramuscular EMG (imEMG) [2]. For research purposes, 

sEMG has been the preferred method by past researches due 

to its non-invasive properties; easy to apply and free from pain 

[3]. 

The processing of the signals are essential to analyzed and 

detect any medical abnormalities, activation level or to 

analyze the biomechanics of human movement. Common 

application of EMG signals is in the area of muscle fatigue 

estimation, where it is define as a progressive decline of the 

muscles performance during long period of time [4]. Bio-

signal processing is a critical part in biomedical engineering in 

order to classify the time and frequency content of a signal 

thus represents the muscle condition and helps to detect and 

monitor fatigue development. One of the problem arises from 

this research is cause by the high computational complexity of 

time-frequency distribution (TFD) techniques to analyze the 

signal especially in dealing with long recordings of EMG 

signals [5]. 

To solve this problem, data segmentation is required to 

segment and separate valid muscle contraction signals from 

the baseline and noise as in figure 1. This helps to limit and 

reduce the computational burden and time.  

 
 

Figure 1: Example of a raw EMG signal 

 

EMG signal consists of two main components, which are 

muscle activation and baseline. The component with the 

fatigue information in it is the muscle activation only, and this 

is the important signal to be analyzed. Some research has been 

done to segment muscle contraction based on either time or 

frequency domain [6], [7]. These methods fail to accurately 

segment the signals due to the nature of the signal itself, where 

in time domain the statistical properties changes over time and 

the signal is assumed as a stationary signal, whereas the 

limitation of spectral analysis is that it cannot provide 

simultaneous time and frequency localization of the EMG 

signal. 

Since EMG is a non-stationary signal that varies with time, 

instantaneous energy is proposed to characterize the temporal 

behavior of the signal. This instantaneous energy is obtained 

from the time-frequency representation (TFR) produced by 

spectrogram. 
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II. EXPERIMENTAL SETUP 

 

A. Subjects 

Ten volunteers (5 men and 5 women) in healthy condition 

were used as subjects in the study. The subjects aged were 

between 21 to 25 years (mean ± S.D.: 23 ± 1.633) and all were 

right handed, with no history of musculoskeletal injuries. 

Table 1 shows the complete demographic data of the subjects.  

 
Table 1 

The subjects’ demographic data 

 

Criteria Minimum Mean Maximum 

Age (year) 21 23 25 

Body mass (kg) 48 61.5 75 

Body height (cm) 156 163 170 

 

 

B. Data Acquisition 

This study focuses on the right biceps branchii muscle and 

the subjects were required to do manual lifting task with 

different lifting height. sEMG signals are sampled at 1500 Hz 

and filtered by a low pass filter with the range of 0-500 Hz 

using surface EMG (TeleMyo 2400T G2, Noraxon, USA) and 

MyoResearch XP Master Software (Noraxon, USA). The 

procedure for surface electrode placement follows the Non-

Invasive Assessment of Muscle (SENIAM) guideline to obtain 

maximum pickup area of the EMG signals and to ensure 

signals obtained from each subject is stable [8]. Figure 2 is the 

surface EMG electrodes attached at the biceps branchii label 

as input (A) and reference electrode location (B). 

 

 
 

Figure 2: Surface EMG electrode’s placement at the right biceps. 

 

The muscle area was prepared by cleansing the skin surface 

using BD Alcohol Swabs of 70% Isorophyl Alcohol, and leave 

to dry before rubbing with the Signa Gel, 250g tube which is 

highly conductive before attaching Ag/AgCl electrodes 

(diameter 10mm). 

 

C. Lifting Tasks 

sEMG data were then recorded during manual lifting task 

with 5 kg load mass and 75 cm of lifting height. The starting 

standing position of the subjects are 0° in front of the shelf. 

They were required to lift the load onto the shelf repetitively 

until experiencing fatigue muscle. This is when the simulation 

time stopped. Each lifting produced muscle contractions, and 

each contraction signal was divided into four phases as in the 

Figure 3. Details for the phases are shown as follows:  

 

Phase 1: Subject takes the load  

Phase 2: Traveling the load onto the shelf  

Phase 3: Place the load onto the shelf  

Phase 4: Release the load  

   
 

Figure 3: Four phases involved in each lifting for 75cm lifting height 

 
 

III. SEGMENTATION ANALYSIS TECHNIQUE 

 

Raw data of the EMG signals are post-processed using a 

new algorithm to produce time-frequency representation 

(TFR) and instantaneous energy using spectrogram. Hanning 

window of 1024 is used to analyze the EMG signal since it 

produces the best result in terms of resolution. The work 

carried out to determine the best window size has been 

reported in [9] and will not be further discussed.  

The instantaneous energy are basically used to provide 

auto-segmentation of the muscle contraction in the EMG 

signal before proceeding to the next part of the research which 

is fatigue muscle identification based on instantaneous RMS 

voltage, Vrms(t). This part is already explained in [10].  

 

A. Spectrogram  

Spectrogram is one of the TFR that represents the three 

dimensional of the signal with respect to time and frequency 

in magnitude. The FFT have the limitation, which is not able 

to cater non-stationary signal whose spectral characteristic 

changes in time and frequency. It is the result of calculating 

the frequency spectrum of window frames of compound signal 

and provides high frequency resolution [9], [11], [12]. 

Spectrogram is the squared magnitude of the short time 

Fourier transform (STFT) and can be expressed as Equation 

(1) below: 

 

𝑆𝑥(𝑡, 𝑓) = | ∫ 𝑥(𝜏)𝑤(𝜏 − 𝑡)𝑒−2𝜋𝑓𝜏

∞

−∞

|

2

𝑑𝜏 (1) 

 

where 𝑥(𝜏) is the input and 𝑤(𝑡) is the observation window. 

Hanning window is used because it has lower peak side slope 

suitable for this task. 

 

B. Instantaneous Energy 

Instantaneous energy has been used in various disciplines of 

research particularly for non-linear dynamic signals such as 

bio signals.  The used of instantaneous energy in analyzing bio 

signals specifically electrocardiogram (ECG) signal has been 

studied by [13]. Instantaneous energy is estimated from the 

TFR to identify the characteristics of EMG signal. Formula for 

instantaneous energy can be defined as the integration of TFR 

from 𝑓 = 0 to maximum frequency as shown in Equation (2). 

 

Phase 1 Phase 2 Phase 3 Phase 4 
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𝐸(𝑡) = ∫ 𝑆𝑥(𝑡, 𝑓)𝑑𝑓

𝑓𝑚𝑎𝑥

𝑓=0

 (2) 

 

where 𝑆𝑥(𝑡, 𝑓) is the TFR of the signal and 𝑓𝑚𝑎𝑥 is the 

maximum frequency.  

 

C. Thresholding 

Since segmentation involves separating a signal into 

regions corresponding to the signal properties, the difference 

in the signal instantaneous energy holds a good measure to 

distinguish between the object of interest (muscle activation) 

and the rest (baseline and noise). This latter group is also 

referred to as the background. A simple way to segment such 

regions is through thresholding technique, the separation 

between muscle activation and the baseline plus noise. 

Thresholding creates binary number by turning all values 

below a certain threshold to zero and all values above the 

threshold to one. 

If M(t) is the thresholded version of IE(t) at some global 

threshold Ethres, 

 

𝑀(𝑡) = {
       1      𝑖𝑓 𝐸(𝑡) ≥ 𝐸𝑡ℎ𝑟𝑒𝑠

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

 

where E(t) is the instantaneous energy. 

From the thresholded instantaneous energy, the segmented 

raw signal can be obtain as: 

 

𝑥𝑠(𝑡) = 𝑥(𝑡) ∙ 𝑀(𝑡) (4) 

 

where xs(t) is the segmented raw signal. 

An important thing when deals with thresholding, to set the 

threshold value, parallel diagram of the raw signal and the 

instantaneous energy are referred to see if two or more distinct 

modes can be identified. Different threshold values may result 

in losing too much of the muscle activation signal or 

sometimes getting too many extraneous signals (baseline and 

noise). 

 
IV. RESULTS AND DISCUSSION 

 

The algorithm is applied to the raw EMG signal in figure 

6(a). It consists of 36 lifting repetitions before experiencing 

muscle fatigue. The raw data is in time domain and 

spectrogram is used to obtain the time-frequency 

representation (TFR) of the signal (Figure 6(b)). The 

instantaneous energy in figure 6(c) are calculated based on the 

overall TFR. Instantaneous energy is due to the energy 

transfer from the body during the contraction of muscle 

activity. The maximum instantaneous energy produced is 

6.42x10-5 J and the minimum is 1.59x10-5 J. A threshold value 

of 0.5x10-7 is set to the instantaneous energy to produce the 

activation intervals for each muscle contraction (Figure 6(d)). 

Values above the threshold are represented as 1, while values 

below the threshold are represented as 0. The red dotted lines 

in figure 6 is to show that the instantaneous energy parameter 

able to accurately identify the muscle contraction and 

separates it from the baseline. 

From the RAW signal, segmented data are analyze one by 

one to transform the data from time to frequency domain 

through FFT and then analyzed by using spectrogram before 

represents it in instantaneous RMS voltage, Vrms(t) to  obtain  

the information of fatigue muscle and pattern of   the signal.  

However, the calculation and analysis of the Vrms(t) is not 

included in this paper as it already been discussed in [10]. 

Figure 4(a) shows the overall raw EMG signal for the whole 

36 lifting repetitions that spread from 0 sample through 

5.5x105 samples. The result of the auto-segmentation process 

leads to the signal in Figure 4(b), which shows the graphical 

view of the first muscle contraction (0 to 10800 samples). 

 
 

Figure 4: (a) Overall raw EMG signal. (b) Raw EMG signal of the first muscle 

contraction 

 

It can be seen that each muscle contraction can be retrieve 

without losing any of the important information. The first 

muscle contraction represents all of the four lifting phases for 

the first repetition.  

TFR of the first muscle contraction is shown in figure 5. 

Since the amplitudes of the signal are represented in colours 

(blue –low amplitude, red – high amplitude), the peak of the 

signal can be easily distinguished. From the TFR, Vrms(t) is 

then calculated for each contraction and the average Vrms(t) 

represents as a reliable fatigue indices. Detailed explanations 

of this fatigue indices can be referred from the previous paper, 

as this study only focuses on the development of an auto-

segmentation algorithm. 
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Figure 5: TFR of the first muscle contraction by using spectrogram 
 

A. Performance measurement 

In order to assess accuracy of the simulation results, mean 

absolute percentage error (MAPE) was used as index. Smaller 

value of MAPE offers more accurate results. It can be define 

as: 

 

𝑀𝐴𝑃𝐸 =  
1

𝑁
∑ |

𝑥𝑖(𝑛) − 𝑥𝑚(𝑛)

𝑥𝑖(𝑛)
|

𝑁

𝑛−1

𝑥100% (5) 

 

where xi(n) is actual value, xm(n) is measured value and N is 

number of data.  

The duration for the actual muscle contraction from n = 1 

until n = 36 are measured and compared with the duration of 

the segmented muscle contraction. The MAPE of the analysis 

is important to determine the performance of the segmentation 

process, thus provide an important measure when compared 

with others segmentation techniques. The performance 

measures based on MAPE can be classified into 4 types as 

follows: 

 
Table 2 

MAPE performance measures [14] 
 

MAPE values Performance Measures 

< 10% Excellent 

10 – 20%  Good 
20 – 50% Acceptable 

> 50% Unacceptable 

 

Table 3 shows the comparison between the actual signal and 

segmented signal. From the analysis, MAPE obtained is 

1.404% which is considered as excellent performance based 

on Table 2. 

 

V. CONCLUSIONS 

 

Instantaneous energy is proposed as a new technique to 

automatically segment EMG signal. Investigation of the 

biceps branchii muscle from 10 subjects shows that 

instantaneous energy has a distinct pattern to differentiate 

between muscle activation and baseline. This important 

finding is expected to help reduce the computational burden in 

the analysis of TFD for long duration of EMG signal 

recordings. 
 

Table 3 

Comparison performances between actual signal and segmented signal 
 

No. of muscle 
contraction 

Actual 

Duration 

(seconds) 

Segmented 

signal 
duration 

(seconds) 

Absolute 

percent error 

(%) 

1 7.032 7.197 2.346 

2 6.842 6.970 1.871 
3 6.853 6.950 1.415 

4 5.065 5.176 2.192 

5 5.301 5.317 0.302 
6 5.322 5.359 0.695 

7 5.458 5.569 2.034 

8 5.691 5.781 1.581 
9 5.394 5.425 0.575 

10 4.451 4.477 0.584 

11 4.570 4.658 1.926 
12 5.350 5.478 2.393 

13 5.832 5.990 2.709 

14 4.586 4.604 0.392 
15 5.260 5.279 0.361 

16 5.650 5.767 2.071 

17 5.101 5.117 0.314 
18 5.150 5.188 0.738 

19 5.296 5.393 1.832 
20 5.692 5.727 0.615 

21 5.780 5.827 0.813 

22 5.820 5.849 0.498 
23 5.503 5.639 2.471 

24 5.430 5.487 1.050 

25 7.032 7.156 1.763 
26 5.380 5.443 1.171 

27 5.614 5.649 0.623 

28 5.680 5.795 2.025 
29 6.060 6.192 2.178 

30 4.889 4.975 1.759 

31 4.870 4.885 0.308 
32 5.190 5.361 3.295 

33 4.620 4.695 1.623 

34 4.370 4.497 2.906 

35 6.010 6.009 0.017 

36 6.182 6.249 1.084 
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Figure 6: (a) The raw sEMG signal obtained from biceps branchii during manual lifting. (b) The time-frequency representation of the overall signal.  (c) The 

instantaneous energy for each muscle contraction. (d) Activation intervals for each muscle contraction obtained using the threshold calculation. 
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