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Abstract—Cryptography hash function is important to ensure 

data integrity when the data is transmitting in the insecure 

connections. Merkle-Damgård construction is the well-known 

architecture for most hash function algorithm. This construction 

will take arbitrary length of input and generate a fixed length of 

output which best known as hash value. The process of producing 

the hash value is executing sequentially. The implication of this is 

the computation time will increase linearly when the size of input 

increase.  Therefore, an alternative architecture that can reduce 

the computation time when input size is increase is needed 

especially in the today world where multi-core processors and 

multithreading programming are common. Hence, in this 

research an alternative Parallel Omega Network Hash 

Construction that can execute in multi-core machine is proposed.  

 

Index Terms—About Hash Function; Merkle-Damgård 

construction; Multithreading; Parallel Omega Network. 

 

I. INTRODUCTION 

 

With the rapid growth of Internet, securing the integrity and 

confidentiality of sensitive data over insecure channels are 

important. One-way hash function plays a fundamental role in 

protecting data integrity when the data is transmitting in the 

insecure connections. The data integrity is the process in 

ensuring the data is remaining unaltered during the 

transmission from creation until the reception. The basic 

operation of hash function is to takes a variable length of 

messages M as input and transform the input into a fixed 

length of output h referred to as a hash value or hash digest, h 

= H(m), where H is the hash function [9]. A “good” hash 

function has the property that hashing the arbitrary length of 

input M will generate the output h that are evenly distributed 

and apparently look random [11]. A change of single bit of the 

input M will resulted the change of the output h with high 

probability. 

Hash functions are commonly built upon the Merkle-

Damgård construction (MD), such as MD-5, SHA1 and SHA2 

families [11]. In MD construction, the input is divided into 

equal-size message blocks and passes each block sequentially 

to a function that processes the message block. The function 

returns a vector value, which is then passed back to the 

function for the next message block. The first block vector is 

pre-defined vector value; the remaining vectors are dependent 

on the previous function’s output. The hash operation is 

executed sequentially as the input to the function is fully 

dependent on the previous function’s output has resulted the 

increase of the runtime linearly if the input size is increase.  

To date, SHA2 is widely being used in many applications 

such as, ensuring integrity in cryptographic protocols, 

structuring database entries, or identifying known files in 

forensic investigations [6]. The SHA2 is built using MD 

construction. The sequential architecture of MD is recognized 

as a critical factor for overall hashing performance. In the era 

of multithreading and multi-core technology, one may need to 

find an alternative to increase the performance of hash 

function while remaining the security provided by the existing 

MD construction. An Omega Network Hash Construction 

(ONHC) proposed in [2] can execute parallel and has better 

performance compare with MD construction. The proposed 

design also provides better security in term of randomness 

compare with traditional MD construction [2]. However, there 

are some constraints in this design such as waiting time and 

serial time exist in the design. Hence, in this research a 

Parallel Omega Network Hash Construction (PON) is 

proposed as an alternative improvement in term of execution 

time compare with the existing Omega Network Hash 

Construction. However, the security of the proposed 

construction will remain same as the existing ONHC. 

 

II. RELATED WORK 

 

ONHC is proposed to improve the performance in term of 

execution time compare with the existing Merkle-Damgård 

construction (MD)[2]. The ONHC design is based on omega 

network [4] which allows hashing to be performed parallel in 

multi-core processors machine. SHA512 is used as the 

algorithm to perform the hashing. The paper shows that 

ONHC hashing the message faster than MD construction. The 

limitation for this proposal is that ‘waiting time’. For example, 

to start executing the block function’s column, it must wait for 

the previous block function’s column execute completed. This 

is because the second block function’s column is depending to 

the output from previous block function’s column. Next, the 

security result which was carried out to examine the 

randomness had shown that result ONHC is better than MD 

construction.  

Chun et al. [3] proposed Randomize-then-Combine 

Constructed Hash Function that can execute parallel multi-

threaded programming paradigms. Summation and 

concatenation are the main functions of randomization whom 

claim the proposed algorithm can prevent multi-collision. An 

experiment to evaluate the performance in term of execution 

time for the proposed method is conducted in multi-threaded 

program. However, the result is just slightly better than or 

roughly same as SHA1 [3]. 

A methodology for generic parallelizing cryptography for 

hashing schemes is proposed by Atighehchi et al. [1]. This 

proposal aims to obtain optimal performances when dealing 

with applications that consists of multi-core target processors. 
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The design is based on tree hashing scheme with lower level 

node priority. Based on this design, there is a need to 

synchronize or communication between worker threads and 

main thread which provides the input date. Beside that’s, 

synchronizations between threads are (almost) not required. 

From this, the authors claimed that by theory this strategy 

design may offer best performance. However, the design is 

just theoretical based which not yet being implemented to see 

the performance when execute it parallel in multi-core 

processor machine.  

Li et al. [7] has proposed the parallel computation in one-

way hash function. This parallel design model is based on 

pipeline technology. The design is hardware based design. The 

authors claimed that pipeline technology is an effective way to 

improve the performance of algorithm. The proposed design is 

a universal design which allow to perform under multiple 

instruction architecture and VLSI architecture. However, 

security of the hash function from the proposed design is not 

provided.  
 

III. MATH AND EQUATION 

 

Three different size of Parallel Omega Network 

Construction are designed (Figure 1), namely Parallel Omega 

Network size of 8, 16 and 32 respectively. These three 

different size serve as prototypes to determine the optimum 

size that may give the better performance when hashing three 

different size of message. SHA-512 algorithm is used as the 

function to the Parallel Omega Network Hash construction. 

The hashing process is simulated on dual-core, quad-core and 

eight-core processors machines.  
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Figure 1: Parallel Omega Network Hash Construction 

 

For better view, Figure 2 shows the process of PON 8 

execute in a single thread. The message is divided into small 

blocks. Each block is 1024 bits. Noted that the number block 

of message must be multiply with total blocks on PON such as 

12, 32 or 80 (Table 1). If the number of total block, the 

message is padding with ‘1000…’.  In the design of the PON, 

each block of function takes two different size on inputs: 512 

bits and 1024 bits (message block). The output from each 

block of function is 512 bits. The blocks on the left column 

initial vector 512 bits. The total number 512 bits block of pre-

defined initial vector depending on the number of threads are 

used (Table 1). For a single thread, 4 blocks of pre-defined 

initial vector are needed. The pre-defined initial vector is 

taken from part of the square root of 2. The following columns 

takes the input vector from the XORed of two blocks of 

intermediate hash digests from previous column. For example, 

the Omega Network Hash Construction 8 (Figure 2), the 

second column function the F5 will take the XORed 

intermediate hash digests from F0 and F2. The process 

proceeds for entire message. Finally, to get the final hash 

value for a hash message, the output of final column function 

blocks is XORed.    

To execute the PON 8 in multithreading, the total number 

block of message must be multiplying by 12. The slightly 

different part the work load for multi-core processor will be 

slightly different. For example, if the simulation is carried out 

at the quad-core processor, the total number block of message 

is 121 blocks; two processors are required to execute 36 

blocks each and the remaining two processors only required to 

execute 24 blocks of message. Lastly, output of final column 

function blocks for each thread is XORed to generate the hash 

value. This XORed operation is executed sequentially. One 

limitation is the size of PON increase, this final XORed 

process will be slower.  

Overall, the process of the different size of Parallel Omega 

Network Hash Construction is similar. The different is the 

number block functions for each column (Table 1). Besides 

that, the number blocks of message to be executed in each 

thread will be different for different size of Parallel Omega 

Network Hash Construction. 

 
Table 1   

Set of pre-defined initial vector, set of constant value and number blocks of 

function for Parallel Omega Network Hash Construction. 
 

Size of PON 8 16 32 

Number block functions 
per column 

4 8 16 

Number of column 3 4 5 

Total number blocks 
12 

multiply 
32 

multiply 
80 

multiply 

Set of pre-defined 

initial vector 
4 x p 8 x p 16 x p 

Set of constant value 12 x p 32 x p 80 x p 

 

Remark: p is the number of threads. If dual-core, then it is two threads. If 
quad-core, then it is four threads. If eight-core, then it is eight threads. 
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Figure 2: Omega Network Hash Construction 8 
 

 

IV. SIMULATION AND PERFORMANCE EVALUATION 

 

All three designs are simulated in dual core, quad-core and 

eight-core machines.  

Test design: SHA512 algorithm is used as the function to 

hash the message. The source code of SHA512 is taken from 

Olivier Gay [10]. The construction of hashing is PON size of 

8, 16, and 32. All three designs are simulated on dual-core 

processors, quad-core processors and eight-core processors. 

The specifications of the machines are as below: 

 Eight-core processors: Intel Core i7-4790 processor, 

8GB DDR3 RAM 

 Quad-core processors: Intel Core i5-4460 processor, 

4GB DDR3 RAM 

 Dual-core processors: Intel Pentium G3220 processor, 

2GB DDR3 RAM. 

Two lines of OpenMP commands are used to execute the 

proposed construction parallel. There are 

omp_get_num_procs() and #pragma omp parallel for 

num_threads(number_threads). 

 omp_get_num_procs(): This OpenMP command is used 

to get the number of processors in the machine. The 

number of processors indicate the number threads is 

created.  

 #pragma omp parallel for 

num_threads(number_threads): This OpenMP 

command is used to execute the proposed construction 

parallel based on the threads detected from 

omp_get_num_procs(). 

Performance test: Experiments involving measuring the 

execution time taken to hash three different size of files are 

conducted to compare the performance between hashing the 

files using MD construction and our proposed PONs. These 

sizes are 200 MB, 400MB and 600MB. For all the 

experiments the time is recorded for each of 100 trials. The 

average time (mean) for each experiment is calculated. 

 

 

V. RESULT AND DISCUSSION 

 

The factors evaluation the performance is included 

overhead, speed up, efficiency and running cost. During the 

execution, two types of run-time are recorded: serial run-time 

(Ts) and parallel run-time (Tp). The overhead is occurred in 

communication, synchronization, computation and memory 

constraints [5]. Overhead is calculated by To = p. Tp - Ts [8], p 

is number threads or number processors.  Whereas, speed up is 

calculated by serial run-time is divided with parallel run-time, 

S = Ts / Tp. Whereas, the efficiency (E) is a measurement of 

the speed up that compares to the effectively the usage of each 

thread E = S / p [8]. Finally, the running cost (p.Tp) is the 

product of parallel run-time and the number of threads [8]. 

 
Table 2 

Performance analysis of PON 8 on Dual-Core Machine 
 

Parallel Omega Network Hash Construction – 8 (2 Threads) 

Sizes 

(MB) 
Ts (sec) Tp(sec) To S E 

Running 

cost 

200 12.02 6.12 0.22 1.96 0.98 12.24 

400 24.04 12.19 0.33 1.97 0.99 24.37 

600 36.08 18.29 0.50 1.97 0.99 36.58 

 
Table 3 

Performance analysis of PON 8 on Quad-Core Machine 

 

Parallel Omega Network Hash Construction – 8 (4 Threads) 

Sizes 

(MB) 
Ts (sec) Tp(sec) To S E 

Running 

cost 

200 11.02 2.95 0.76 3.74 0.94 11.78 
400 22.02 5.84 1.35 3.77 0.94 23.38 

600 33.10 8.80 2.10 3.76 0.94 35.19 

 
Table 4 

 Performance analysis of PON 8 on Eight-Core Machine 

 

Parallel Omega Network Hash Construction – 8 (8 Threads) 
Sizes 

(MB) 
Ts (sec) Tp(sec) To S E 

Running 

cost 

200 9.46 2.73 12.41 3.46 0.43 21.87 
400 18.69 5.40 24.49 3.46 0.43 43.18 

600 28.08 8.10 36.71 3.47 0.43 64.79 

 
Table 5 

Performance analysis of PON 16 on Dual-Core Machine 

 

Parallel Omega Network Hash Construction – 16 (2 Threads) 

Sizes 

(MB) 
Ts (sec) Tp(sec) To S E 

Running 

cost 

200 12.31 6.43 0.56 1.91 0.96 12.87 

400 24.63 12.40 0.18 1.99 0.99 24.81 

600 36.95 18.80 0.65 1.97 0.98 37.60 

 
Table 6 

Performance analysis of PON 16 on Quad-Core Machine 

 

Parallel Omega Network Hash Construction – 16 (4 Threads) 

Sizes 

(MB) 
Ts (sec) Tp(sec) To S E 

Running 

cost 

200 11.06 3.00 0.95 3.68 0.92 12.01 

400 22.11 6.02 1.95 3.68 0.92 24.06 

600 33.17 9.01 2.85 3.68 0.92 36.03 
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Table 7 

Performance analysis of PON 16 on Eight-Core Machine 

 

Parallel Omega Network Hash Construction – 16 (8 Threads) 

Sizes 

(MB) 
Ts (sec) Tp(sec) To S E 

Running 

cost 

200 9.52 2.68 11.94 3.55 0.44 21.46 
400 19.04 5.34 23.71 3.56 0.45 42.75 

600 28.54 8.00 35.48 3.57 0.45 64.03 

 
Table 8 

Performance analysis of PON 32 on Dual-Core Machine 

 

Parallel Omega Network Hash Construction – 32 (2 Threads) 

Sizes 

(MB) 
Ts (sec) Tp(sec) To S E 

Running 

cost 

200 11.91 6.02 0.13 1.98 0.99 12.04 

400 23.82 12.05 0.28 1.98 0.99 24.11 

600 36.44 18.52 0.61 1.97 0.98 37.05 

 
Table 9 

Performance analysis of PON 32 on Quad-Core Machine 
 

Parallel Omega Network Hash Construction – 32 (4 Threads) 

Sizes 

(MB) 
Ts (sec) Tp(sec) To S E 

Running 

cost 

200 11.16 2.97 0.70 3.76 0.94 11.86 

400 22.18 5.95 1.60 3.73 0.93 23.78 

600 33.29 8.91 2.35 3.74 0.93 35.63 

 
Table 10 

Performance analysis of PON 32 on Eight-Core Machine 

 

Parallel Omega Network Hash Construction – 32 (8 Threads) 

Sizes 
(MB) 

Ts (sec) Tp(sec) To S E 
Running 

cost 

200 9.37 2.64 11.78 3.54 0.44 21.14 

400 19.08 5.26 23.02 3.63 0.45 42.10 

600 28.61 7.89 34.53 3.63 0.45 63.14 

 

 
 

Figure 3: Execution time comparison between PONs and MD Construction, 

simulated on dual-core, quad-core and eight-core machine 

 

All sizes of PON and traditional MD construction are 

simulated at dual-core, quad-core and eight-core machine 

respectively. Three sizes of message file are used to measure 

the performance in term of execution time for these all hash 

constructions. The sizes are 200MB, 400MB and 600MB. 

Overall, the execution time for all sizes of PON execute faster 

compare with the traditional MD construction in dual-core, 

quad-core and eight-core machines (Figure 3).  
 

 
 

Figure 4: Speed up comparison between three sizes of PON, simulated   on   

dual-core,   quad-core   and eight-core machine 

 

PON 8, 16 and 32 are simulated at three different types of 

machine. The performance in term of execution time in 

hashing the same size of message file is similar at the same 

machine (Table 2-10, Figure 3). This happen because the job 

of hashing the message is distributed evenly to threads to 

execute simultaneously. The number of threads depend to the 

core machine. For example, dual-core machine generates two 

threads, quad-core machine generate four threads and eight-

core machine generate eight threads. The execution time of 

hashing 200MB, 400MB and 600MB message files in dual-

core processor, all sizes of PON take roughly 6 seconds, 12 

seconds and 18 seconds respectively to generate the hash 

value (Table 2, Table 5, Table 8, Figure 3). In quad-core 

processor, all sizes of PON take approximately 3 seconds, 6 

seconds and 9 seconds to hash 200MB, 400MB and 600MB 

message files respectively (Table 3, Table 6, Table 9, Figure 

3). In eight-core processor, all sizes of PON take 

approximately 2.5 seconds, 5 seconds and 8 seconds to hash 

200MB, 400MB and 600MB message files respectively (Table 

4, Table 7, Table 10, Figure 3).  

Three types of speed up calculation are presented. There are 

speed up based on calculation (Ts/Tp), the speed up based on 

Amdahl’s law and the speed up based of Gustafson Barsis’s 

law (Table 12). The fastest speed up is achieved by the PON 8 

with four threads, 3.769 seconds, for input size of 400MB (Fig 

4) and the average speed up is 3.75 seconds (Table 11). Based 

on Amdahl’s law and Gustafson Barsis’s law, the speed up for 

PON 8 still the higher one as this design only 10% of serial 

execution time. The lowest speed up in average it PON 32 for 

executing in all types of machines. This is because the serial 

execution time for this design is the highest consists of 30% of 

execution time. 

Efficiency based on calculation ((Ts/Tp)/p), efficiency based 

on Amdahl’s law and efficiency based of Gustafson Barsis’s 

law are three efficiency calculation are presented. In generally, 

the PON 8 execute more efficiency in all machines based on 

three efficiency calculation. The lowest efficiency is where the 

designs execute at quad-core machine (Table 13, Table 14). 

Based on running cost calculation, the higher processors or 

threads, the higher cost is required to execute the proposed 

designs. Hence, the simulation in eight threads at eight core 

machine has higher running cost. The lowest running cost is 

simulation at dual-core machine with two threads. 
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Table 11 

Comparison of speed up among all Parallel Omega Network Hash Construction 

 

 2 Threads 4 Threads 8 Threads 

Sizes (MB) 8 16 32 8 16 32 8 16 32 

200 1.96 1.91 1.98 3.74 3.68 3.76 3.46 3.55 3.54 

400 1.97 1.99 1.98 3.77 3.68 3.73 3.46 3.56 3.63 

600 1.97 1.97 1.97 3.76 3.68 3.74 3.47 3.57 3.63 

Average 1.97 1.95 1.97 3.76 3.68 3.74 3.46 3.56 3.60 

 
Table 12 

Comparison of speed up among all Parallel Omega Network Hash Construction based on Amdahl’s law and Gustafson Barsis’s law 

 

   
Average speed up 

S=Ts/Tp 

Amdahl’s law speed 
up 

S=N/[βN+1-β] 

Gustafson Barsis’s law 
speed up 

S=N-(N-1)β 

PON 
Serial 

Code (β) 
Parallel 
Code 

2T 4T 8T 2T 4T 8T 2T 4T 8T 

8 0.1 0.9 1.97 3.76 3.46 1.82 3.08 4.71 1.9 3.7 7.3 

16 0.2 0.8 1.95 3.68 3.56 1.67 2.50 3.33 1.8 3.4 6.6 

32 0.3 0.7 1.97 3.74 3.60 1.54 2.11 2.58 1.7 3.1 5.9 

 

Table 13 
Comparison of efficiency among all Parallel Omega Network Hash Construction 

 

Sizes 

(MB) 

2 Threads 4 Threads 8 Threads 

8 16 32 8 16 32 8 16 32 

200 0.98 0.96 0.99 0.94 0.92 0.94 0.43 0.44 0.44 

400 0.99 0.99 0.99 0.94 0.92 0.93 0.43 0.45 0.45 

600 0.99 0.98 0.98 0.94 0.92 0.93 0.43 0.45 0.45 
Average 0.98 0.98 0.99 0.94 0.92 0.94 0.43 0.44 0.45 

 
Table 14 

Comparison of efficiency among all Parallel Omega Network Hash Construction based on Amdahl’s law and Gustafson Barsis’s law 
 

 
Efficiency 

S=(Ts/Tp)p 

Amdahl’s law speed up 

S=(N/[βN+1-β])/p 

Gustafson Barsis’s law speed up 

S=(N-(N-1)β)/p 

PON 2T 4T 8T 2T 4T 8T 2T 4T 8T 

8 0.98 0.94 0.43 0.91 0.77 0.59 0.95 0.93 0.91 

16 0.98 0.92 0.44 0.83 0.63 0.42 0.90 0.85 0.83 

32 0.99 0.94 0.45 0.77 0.53 0.32 0.85 0.78 0.74 

 

VI. CONCLUSION 

 

The main objective of designing PON is achieved as the 

performance in term of execution time is faster compare with 

MD construction. While remaining the security level in term 

of randomness, the proposed design has overcome the 

limitation in ONHC [2]. Three sizes of PON are designed (size 

of 8, 16, 32) and are tested on dual-core, quad-core and eight-

core machines which allowed the process of hashing execute 

parallel which maintaining the security of hash function in 

term of randomness. Overall, PON 8, 16, and 32 when hash 

the same size of message file at the same machine take the 

similar execution time, speed up, overhead and efficiency. 

Therefore, it is hard to justify which size of PON is optimal to 

provide better performance. However, by considering the 

performance for hashing small size of message. PON 8 will 

execute faster as to complete one round of omega network, 

PON 8 just required go through 12 blocks of function compare 

with PON 16, 32 blocks of function and PON 32, 80 blocks of 

function (Table 1). The serial code of PON 8 is the lesser 

compare with other size of PON design (Table 12). In 

conclusion, PON 8 is chosen as the main design among other 

sizes of PONs.   
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