

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 6 87

Parallel Omega Network Hash Construction

Chai Wen Chuah, Nurul Azma Abdullah
University Tun Hussein Onn Malaysia, Batu Pahat, 86400, Johor, Malaysia.

cwchuah@uthm.edu.my

Abstract—Cryptography hash function is important to ensure

data integrity when the data is transmitting in the insecure

connections. Merkle-Damgård construction is the well-known

architecture for most hash function algorithm. This construction

will take arbitrary length of input and generate a fixed length of

output which best known as hash value. The process of producing

the hash value is executing sequentially. The implication of this is

the computation time will increase linearly when the size of input

increase. Therefore, an alternative architecture that can reduce

the computation time when input size is increase is needed

especially in the today world where multi-core processors and

multithreading programming are common. Hence, in this

research an alternative Parallel Omega Network Hash

Construction that can execute in multi-core machine is proposed.

Index Terms—About Hash Function; Merkle-Damgård

construction; Multithreading; Parallel Omega Network.

I. INTRODUCTION

With the rapid growth of Internet, securing the integrity and

confidentiality of sensitive data over insecure channels are

important. One-way hash function plays a fundamental role in

protecting data integrity when the data is transmitting in the

insecure connections. The data integrity is the process in

ensuring the data is remaining unaltered during the

transmission from creation until the reception. The basic

operation of hash function is to takes a variable length of

messages M as input and transform the input into a fixed

length of output h referred to as a hash value or hash digest, h

= H(m), where H is the hash function [9]. A “good” hash

function has the property that hashing the arbitrary length of

input M will generate the output h that are evenly distributed

and apparently look random [11]. A change of single bit of the

input M will resulted the change of the output h with high

probability.

Hash functions are commonly built upon the Merkle-

Damgård construction (MD), such as MD-5, SHA1 and SHA2

families [11]. In MD construction, the input is divided into

equal-size message blocks and passes each block sequentially

to a function that processes the message block. The function

returns a vector value, which is then passed back to the

function for the next message block. The first block vector is

pre-defined vector value; the remaining vectors are dependent

on the previous function’s output. The hash operation is

executed sequentially as the input to the function is fully

dependent on the previous function’s output has resulted the

increase of the runtime linearly if the input size is increase.

To date, SHA2 is widely being used in many applications

such as, ensuring integrity in cryptographic protocols,

structuring database entries, or identifying known files in

forensic investigations [6]. The SHA2 is built using MD

construction. The sequential architecture of MD is recognized

as a critical factor for overall hashing performance. In the era

of multithreading and multi-core technology, one may need to

find an alternative to increase the performance of hash

function while remaining the security provided by the existing

MD construction. An Omega Network Hash Construction

(ONHC) proposed in [2] can execute parallel and has better

performance compare with MD construction. The proposed

design also provides better security in term of randomness

compare with traditional MD construction [2]. However, there

are some constraints in this design such as waiting time and

serial time exist in the design. Hence, in this research a

Parallel Omega Network Hash Construction (PON) is

proposed as an alternative improvement in term of execution

time compare with the existing Omega Network Hash

Construction. However, the security of the proposed

construction will remain same as the existing ONHC.

II. RELATED WORK

ONHC is proposed to improve the performance in term of

execution time compare with the existing Merkle-Damgård

construction (MD)[2]. The ONHC design is based on omega

network [4] which allows hashing to be performed parallel in

multi-core processors machine. SHA512 is used as the

algorithm to perform the hashing. The paper shows that

ONHC hashing the message faster than MD construction. The

limitation for this proposal is that ‘waiting time’. For example,

to start executing the block function’s column, it must wait for

the previous block function’s column execute completed. This

is because the second block function’s column is depending to

the output from previous block function’s column. Next, the

security result which was carried out to examine the

randomness had shown that result ONHC is better than MD

construction.

Chun et al. [3] proposed Randomize-then-Combine

Constructed Hash Function that can execute parallel multi-

threaded programming paradigms. Summation and

concatenation are the main functions of randomization whom

claim the proposed algorithm can prevent multi-collision. An

experiment to evaluate the performance in term of execution

time for the proposed method is conducted in multi-threaded

program. However, the result is just slightly better than or

roughly same as SHA1 [3].

A methodology for generic parallelizing cryptography for

hashing schemes is proposed by Atighehchi et al. [1]. This

proposal aims to obtain optimal performances when dealing

with applications that consists of multi-core target processors.

mailto:azma%7d@uthm.edu.my

Journal of Telecommunication, Electronic and Computer Engineering

88 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 6

The design is based on tree hashing scheme with lower level

node priority. Based on this design, there is a need to

synchronize or communication between worker threads and

main thread which provides the input date. Beside that’s,

synchronizations between threads are (almost) not required.

From this, the authors claimed that by theory this strategy

design may offer best performance. However, the design is

just theoretical based which not yet being implemented to see

the performance when execute it parallel in multi-core

processor machine.

Li et al. [7] has proposed the parallel computation in one-

way hash function. This parallel design model is based on

pipeline technology. The design is hardware based design. The

authors claimed that pipeline technology is an effective way to

improve the performance of algorithm. The proposed design is

a universal design which allow to perform under multiple

instruction architecture and VLSI architecture. However,

security of the hash function from the proposed design is not

provided.

III. MATH AND EQUATION

Three different size of Parallel Omega Network

Construction are designed (Figure 1), namely Parallel Omega

Network size of 8, 16 and 32 respectively. These three

different size serve as prototypes to determine the optimum

size that may give the better performance when hashing three

different size of message. SHA-512 algorithm is used as the

function to the Parallel Omega Network Hash construction.

The hashing process is simulated on dual-core, quad-core and

eight-core processors machines.

Produce the final digest value by

XORing the outputs generated

from the core machine

Print the digest

value

Execute parallel

until entire data

Enter the file name

Read and divided message into equal size blocks (Mi)

Parallel Omega

Network Hash

Construction

Get number core of machine

After execute the last blocks:

XOR digest value from last column

of Omega Network

Complete entire blocks
message?

Yes

8 16 32

12 32 80

PON

Total Blocks
1

Mi is divided with total blocks of PON, depending which size

of PON is used such as

W = Mi/12 or Mi/32 or Mi/80.

W has no remaining blocks?

Data is padded to be

exact total blocks of

PON

Yes

No

W is divided with number
core machine. That is the
work load for each core

machine

sadas

sadas

sadas

sadas

Figure 1: Parallel Omega Network Hash Construction

For better view, Figure 2 shows the process of PON 8

execute in a single thread. The message is divided into small

blocks. Each block is 1024 bits. Noted that the number block

of message must be multiply with total blocks on PON such as

12, 32 or 80 (Table 1). If the number of total block, the

message is padding with ‘1000…’. In the design of the PON,

each block of function takes two different size on inputs: 512

bits and 1024 bits (message block). The output from each

block of function is 512 bits. The blocks on the left column

initial vector 512 bits. The total number 512 bits block of pre-

defined initial vector depending on the number of threads are

used (Table 1). For a single thread, 4 blocks of pre-defined

initial vector are needed. The pre-defined initial vector is

taken from part of the square root of 2. The following columns

takes the input vector from the XORed of two blocks of

intermediate hash digests from previous column. For example,

the Omega Network Hash Construction 8 (Figure 2), the

second column function the F5 will take the XORed

intermediate hash digests from F0 and F2. The process

proceeds for entire message. Finally, to get the final hash

value for a hash message, the output of final column function

blocks is XORed.

To execute the PON 8 in multithreading, the total number

block of message must be multiplying by 12. The slightly

different part the work load for multi-core processor will be

slightly different. For example, if the simulation is carried out

at the quad-core processor, the total number block of message

is 121 blocks; two processors are required to execute 36

blocks each and the remaining two processors only required to

execute 24 blocks of message. Lastly, output of final column

function blocks for each thread is XORed to generate the hash

value. This XORed operation is executed sequentially. One

limitation is the size of PON increase, this final XORed

process will be slower.

Overall, the process of the different size of Parallel Omega

Network Hash Construction is similar. The different is the

number block functions for each column (Table 1). Besides

that, the number blocks of message to be executed in each

thread will be different for different size of Parallel Omega

Network Hash Construction.

Table 1

Set of pre-defined initial vector, set of constant value and number blocks of

function for Parallel Omega Network Hash Construction.

Size of PON 8 16 32

Number block functions
per column

4 8 16

Number of column 3 4 5

Total number blocks
12

multiply
32

multiply
80

multiply

Set of pre-defined

initial vector
4 x p 8 x p 16 x p

Set of constant value 12 x p 32 x p 80 x p

Remark: p is the number of threads. If dual-core, then it is two threads. If
quad-core, then it is four threads. If eight-core, then it is eight threads.

Parallel Omega Network Hash Construction

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 6 89

F0

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR Hash Digest

1024 bits input 512 bits input SHA-512

Function

References:

F
512 bits

intermediate hash

digest

512 bits intermediate hash digest

Figure 2: Omega Network Hash Construction 8

IV. SIMULATION AND PERFORMANCE EVALUATION

All three designs are simulated in dual core, quad-core and

eight-core machines.

Test design: SHA512 algorithm is used as the function to

hash the message. The source code of SHA512 is taken from

Olivier Gay [10]. The construction of hashing is PON size of

8, 16, and 32. All three designs are simulated on dual-core

processors, quad-core processors and eight-core processors.

The specifications of the machines are as below:

 Eight-core processors: Intel Core i7-4790 processor,

8GB DDR3 RAM

 Quad-core processors: Intel Core i5-4460 processor,

4GB DDR3 RAM

 Dual-core processors: Intel Pentium G3220 processor,

2GB DDR3 RAM.

Two lines of OpenMP commands are used to execute the

proposed construction parallel. There are

omp_get_num_procs() and #pragma omp parallel for

num_threads(number_threads).

 omp_get_num_procs(): This OpenMP command is used

to get the number of processors in the machine. The

number of processors indicate the number threads is

created.

 #pragma omp parallel for

num_threads(number_threads): This OpenMP

command is used to execute the proposed construction

parallel based on the threads detected from

omp_get_num_procs().

Performance test: Experiments involving measuring the

execution time taken to hash three different size of files are

conducted to compare the performance between hashing the

files using MD construction and our proposed PONs. These

sizes are 200 MB, 400MB and 600MB. For all the

experiments the time is recorded for each of 100 trials. The

average time (mean) for each experiment is calculated.

V. RESULT AND DISCUSSION

The factors evaluation the performance is included

overhead, speed up, efficiency and running cost. During the

execution, two types of run-time are recorded: serial run-time

(Ts) and parallel run-time (Tp). The overhead is occurred in

communication, synchronization, computation and memory

constraints [5]. Overhead is calculated by To = p. Tp - Ts [8], p

is number threads or number processors. Whereas, speed up is

calculated by serial run-time is divided with parallel run-time,

S = Ts / Tp. Whereas, the efficiency (E) is a measurement of

the speed up that compares to the effectively the usage of each

thread E = S / p [8]. Finally, the running cost (p.Tp) is the

product of parallel run-time and the number of threads [8].

Table 2

Performance analysis of PON 8 on Dual-Core Machine

Parallel Omega Network Hash Construction – 8 (2 Threads)

Sizes

(MB)
Ts (sec) Tp(sec) To S E

Running

cost

200 12.02 6.12 0.22 1.96 0.98 12.24

400 24.04 12.19 0.33 1.97 0.99 24.37

600 36.08 18.29 0.50 1.97 0.99 36.58

Table 3

Performance analysis of PON 8 on Quad-Core Machine

Parallel Omega Network Hash Construction – 8 (4 Threads)

Sizes

(MB)
Ts (sec) Tp(sec) To S E

Running

cost

200 11.02 2.95 0.76 3.74 0.94 11.78
400 22.02 5.84 1.35 3.77 0.94 23.38

600 33.10 8.80 2.10 3.76 0.94 35.19

Table 4

 Performance analysis of PON 8 on Eight-Core Machine

Parallel Omega Network Hash Construction – 8 (8 Threads)
Sizes

(MB)
Ts (sec) Tp(sec) To S E

Running

cost

200 9.46 2.73 12.41 3.46 0.43 21.87
400 18.69 5.40 24.49 3.46 0.43 43.18

600 28.08 8.10 36.71 3.47 0.43 64.79

Table 5

Performance analysis of PON 16 on Dual-Core Machine

Parallel Omega Network Hash Construction – 16 (2 Threads)

Sizes

(MB)
Ts (sec) Tp(sec) To S E

Running

cost

200 12.31 6.43 0.56 1.91 0.96 12.87

400 24.63 12.40 0.18 1.99 0.99 24.81

600 36.95 18.80 0.65 1.97 0.98 37.60

Table 6

Performance analysis of PON 16 on Quad-Core Machine

Parallel Omega Network Hash Construction – 16 (4 Threads)

Sizes

(MB)
Ts (sec) Tp(sec) To S E

Running

cost

200 11.06 3.00 0.95 3.68 0.92 12.01

400 22.11 6.02 1.95 3.68 0.92 24.06

600 33.17 9.01 2.85 3.68 0.92 36.03

Journal of Telecommunication, Electronic and Computer Engineering

90 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 6

Table 7

Performance analysis of PON 16 on Eight-Core Machine

Parallel Omega Network Hash Construction – 16 (8 Threads)

Sizes

(MB)
Ts (sec) Tp(sec) To S E

Running

cost

200 9.52 2.68 11.94 3.55 0.44 21.46
400 19.04 5.34 23.71 3.56 0.45 42.75

600 28.54 8.00 35.48 3.57 0.45 64.03

Table 8

Performance analysis of PON 32 on Dual-Core Machine

Parallel Omega Network Hash Construction – 32 (2 Threads)

Sizes

(MB)
Ts (sec) Tp(sec) To S E

Running

cost

200 11.91 6.02 0.13 1.98 0.99 12.04

400 23.82 12.05 0.28 1.98 0.99 24.11

600 36.44 18.52 0.61 1.97 0.98 37.05

Table 9

Performance analysis of PON 32 on Quad-Core Machine

Parallel Omega Network Hash Construction – 32 (4 Threads)

Sizes

(MB)
Ts (sec) Tp(sec) To S E

Running

cost

200 11.16 2.97 0.70 3.76 0.94 11.86

400 22.18 5.95 1.60 3.73 0.93 23.78

600 33.29 8.91 2.35 3.74 0.93 35.63

Table 10

Performance analysis of PON 32 on Eight-Core Machine

Parallel Omega Network Hash Construction – 32 (8 Threads)

Sizes
(MB)

Ts (sec) Tp(sec) To S E
Running

cost

200 9.37 2.64 11.78 3.54 0.44 21.14

400 19.08 5.26 23.02 3.63 0.45 42.10

600 28.61 7.89 34.53 3.63 0.45 63.14

Figure 3: Execution time comparison between PONs and MD Construction,

simulated on dual-core, quad-core and eight-core machine

All sizes of PON and traditional MD construction are

simulated at dual-core, quad-core and eight-core machine

respectively. Three sizes of message file are used to measure

the performance in term of execution time for these all hash

constructions. The sizes are 200MB, 400MB and 600MB.

Overall, the execution time for all sizes of PON execute faster

compare with the traditional MD construction in dual-core,

quad-core and eight-core machines (Figure 3).

Figure 4: Speed up comparison between three sizes of PON, simulated on

dual-core, quad-core and eight-core machine

PON 8, 16 and 32 are simulated at three different types of

machine. The performance in term of execution time in

hashing the same size of message file is similar at the same

machine (Table 2-10, Figure 3). This happen because the job

of hashing the message is distributed evenly to threads to

execute simultaneously. The number of threads depend to the

core machine. For example, dual-core machine generates two

threads, quad-core machine generate four threads and eight-

core machine generate eight threads. The execution time of

hashing 200MB, 400MB and 600MB message files in dual-

core processor, all sizes of PON take roughly 6 seconds, 12

seconds and 18 seconds respectively to generate the hash

value (Table 2, Table 5, Table 8, Figure 3). In quad-core

processor, all sizes of PON take approximately 3 seconds, 6

seconds and 9 seconds to hash 200MB, 400MB and 600MB

message files respectively (Table 3, Table 6, Table 9, Figure

3). In eight-core processor, all sizes of PON take

approximately 2.5 seconds, 5 seconds and 8 seconds to hash

200MB, 400MB and 600MB message files respectively (Table

4, Table 7, Table 10, Figure 3).

Three types of speed up calculation are presented. There are

speed up based on calculation (Ts/Tp), the speed up based on

Amdahl’s law and the speed up based of Gustafson Barsis’s

law (Table 12). The fastest speed up is achieved by the PON 8

with four threads, 3.769 seconds, for input size of 400MB (Fig

4) and the average speed up is 3.75 seconds (Table 11). Based

on Amdahl’s law and Gustafson Barsis’s law, the speed up for

PON 8 still the higher one as this design only 10% of serial

execution time. The lowest speed up in average it PON 32 for

executing in all types of machines. This is because the serial

execution time for this design is the highest consists of 30% of

execution time.

Efficiency based on calculation ((Ts/Tp)/p), efficiency based

on Amdahl’s law and efficiency based of Gustafson Barsis’s

law are three efficiency calculation are presented. In generally,

the PON 8 execute more efficiency in all machines based on

three efficiency calculation. The lowest efficiency is where the

designs execute at quad-core machine (Table 13, Table 14).

Based on running cost calculation, the higher processors or

threads, the higher cost is required to execute the proposed

designs. Hence, the simulation in eight threads at eight core

machine has higher running cost. The lowest running cost is

simulation at dual-core machine with two threads.

Parallel Omega Network Hash Construction

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 6 91

Table 11

Comparison of speed up among all Parallel Omega Network Hash Construction

 2 Threads 4 Threads 8 Threads

Sizes (MB) 8 16 32 8 16 32 8 16 32

200 1.96 1.91 1.98 3.74 3.68 3.76 3.46 3.55 3.54

400 1.97 1.99 1.98 3.77 3.68 3.73 3.46 3.56 3.63

600 1.97 1.97 1.97 3.76 3.68 3.74 3.47 3.57 3.63

Average 1.97 1.95 1.97 3.76 3.68 3.74 3.46 3.56 3.60

Table 12

Comparison of speed up among all Parallel Omega Network Hash Construction based on Amdahl’s law and Gustafson Barsis’s law

Average speed up

S=Ts/Tp

Amdahl’s law speed
up

S=N/[βN+1-β]

Gustafson Barsis’s law
speed up

S=N-(N-1)β

PON
Serial

Code (β)
Parallel
Code

2T 4T 8T 2T 4T 8T 2T 4T 8T

8 0.1 0.9 1.97 3.76 3.46 1.82 3.08 4.71 1.9 3.7 7.3

16 0.2 0.8 1.95 3.68 3.56 1.67 2.50 3.33 1.8 3.4 6.6

32 0.3 0.7 1.97 3.74 3.60 1.54 2.11 2.58 1.7 3.1 5.9

Table 13
Comparison of efficiency among all Parallel Omega Network Hash Construction

Sizes

(MB)

2 Threads 4 Threads 8 Threads

8 16 32 8 16 32 8 16 32

200 0.98 0.96 0.99 0.94 0.92 0.94 0.43 0.44 0.44

400 0.99 0.99 0.99 0.94 0.92 0.93 0.43 0.45 0.45

600 0.99 0.98 0.98 0.94 0.92 0.93 0.43 0.45 0.45
Average 0.98 0.98 0.99 0.94 0.92 0.94 0.43 0.44 0.45

Table 14

Comparison of efficiency among all Parallel Omega Network Hash Construction based on Amdahl’s law and Gustafson Barsis’s law

Efficiency

S=(Ts/Tp)p

Amdahl’s law speed up

S=(N/[βN+1-β])/p

Gustafson Barsis’s law speed up

S=(N-(N-1)β)/p

PON 2T 4T 8T 2T 4T 8T 2T 4T 8T

8 0.98 0.94 0.43 0.91 0.77 0.59 0.95 0.93 0.91

16 0.98 0.92 0.44 0.83 0.63 0.42 0.90 0.85 0.83

32 0.99 0.94 0.45 0.77 0.53 0.32 0.85 0.78 0.74

VI. CONCLUSION

The main objective of designing PON is achieved as the

performance in term of execution time is faster compare with

MD construction. While remaining the security level in term

of randomness, the proposed design has overcome the

limitation in ONHC [2]. Three sizes of PON are designed (size

of 8, 16, 32) and are tested on dual-core, quad-core and eight-

core machines which allowed the process of hashing execute

parallel which maintaining the security of hash function in

term of randomness. Overall, PON 8, 16, and 32 when hash

the same size of message file at the same machine take the

similar execution time, speed up, overhead and efficiency.

Therefore, it is hard to justify which size of PON is optimal to

provide better performance. However, by considering the

performance for hashing small size of message. PON 8 will

execute faster as to complete one round of omega network,

PON 8 just required go through 12 blocks of function compare

with PON 16, 32 blocks of function and PON 32, 80 blocks of

function (Table 1). The serial code of PON 8 is the lesser

compare with other size of PON design (Table 12). In

conclusion, PON 8 is chosen as the main design among other

sizes of PONs.

ACKNOWLEDGMENT

This research was supported by STG U130, ORICC UTHM.

REFERENCES

[1] Atighehchi, K., and Muntean, T., “Generatic Parallel Cryptographic for

Hashing Schemes” IEEE 12th International Symposium on Parallel and

Distributed Computing, 2013, pp.201 – 208.
[2] Chuah, C. W., and Samsudin, A., “Omega Network Hash Construction”,

Journal of Computer Sciences, 5(12), 2009, pp.962-973.

[3] Chum, C. S., Jun, C.H., and Zhang, X. W., “Implementation of
Randomize-then-Combine Constructed Hash Function”, IEEE, 2014.

[4] Das, S., and Chaudhuri, A., “Analysis of the Effect of Size of Omega

Network on its Fault Tolerance Bahaviour in Presence of Multiple
Faults”, IEEE, 1990, pp. 628-631.

[5] Grama, A., Gupta, A., Karypis, G., and Kumar, A., “Introduction to

Parallel Computing”, USA: Addison Wesley Inc, 2003.

Journal of Telecommunication, Electronic and Computer Engineering

92 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 6

[6] Gurjar, S., Baggili, I., Breitinger, F., and Fischer, A., “An Empirical

Comparison of Widely Adopted Hash Functions in Digital Forensics:

Does the Programming Language and Operating System Make a

Difference?”, Proceedings of the Conference on Digital Forensics,

Security and Law , 2015, pp. 57 – 68.
[7] Li, P. Y., Shi, Y. X., and Yang, H. J., “The Parallel Computation in

One-Way Hash Function Designing”, International Conference on

Computer, Mechatronics, Control and Electronic Engineering (CMCE),
2010, pp. 189 – 192.

[8] Lin, C., and Snyder, L., “Principles of Parallel Programming”, USA:

Pearson Addison Wesley Inc., 2009.

[9] Menezes, A. J., Van, O., Paul, C., and Vanstone, S. A., “Handbook of

Applied Cryptography”, CRC Press, 1996.

[10] Olivar, G., FIPS 180-2 SHA-224/256/384/512 implementation, 2007.
[11] Stallings, W., “Cryptography and Network Security Principles and

Practice”, Sixth Edition. Person, 2014.

