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Abstract—This paper proposes a novel methodology to mitigate 

the effect of unbalanced known nodes’ positions for location ap-

proximation in wireless sensor networks. In a practical deploy-

ment, some nodes may not properly be in uniform places, and per-

haps, due to unequal power consumption of large-scale networks 

while performing sensing, computing, and transmitting tasks. K-

means clustering is applied to select a representative of the known 

nodes where their positions are close together, and each of which 

will be then fed into fuzzy logic systems to determine a proper 

weight to finally use in the actual location determination process 

with weighted Centroid. The effectiveness of our methodology is 

evaluated via a large scale simulation with regard to node density, 

coverage, and topology, against a traditional Centroid, its fuzzy 

systems, and DV-Hop.  
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I. INTRODUCTION 

 

Recently, Internet of Things (IoT) has become widely used and 

implemented in many areas, such as smart home, smart city, 

and even smart grid. Many applications include monitoring, 

tracking, tracing, and controlling, with respect to smart and au-

tomatic schemes [1-2]. The feasible of this IoT is caused by the 

advance in micro-electro-mechanical systems with regard to 

the use of tiny sensors equipped with computing, storage, and 

transmission units, integrating with dedicated power. This sen-

sor can perform multi-functions and interact with each other to 

form the sensor networks, and wireless sensor networks 

(WSNs) while considering the communication wirelessly [3-

4].  

For decades, there have been researches for enhancing 

WSNs’ usages, especially with awareness of power constraint. 

Several issues have been brought, such as reliability, scalabil-

ity, routing, and quality of services, one of its challenge in-

cludes localization, especially with the absent of GPS signals 

[4-5], or if equipped, additional costs in terms of hardware 

logic, size, and budget, are put in the design consideration. 

A range-free based localization scheme is promising with its 

key advantage on low cost [6-7] but with (high) location esti-

mation error trade-off, some of which include Centroid, Ap-

proximate Point-In-Triangulation Test (APIT), Distance Vec-

tor Hop (DV-Hop), and Amorphous [8]. Generally, the first 

one, Centroid [9], has been used with its key benefit on sim-

plicity while using a triangulation method over the information 

of known nodes’ positions (anchor). Similarly, however, to-

gether with center of gravity (CoG), APIT can consume more 

energy even with precision gain [10]. 

 

 
 

 
 

(a) Grid Distribution (b) Non-Uniform Distribution (five 

holes) 

 
Figure 1: Node Distribution Deployment (cross = anchor nodes) 

 

Instead of the only position information, other approaches 

can also use various information like number of hops (DV-Hop 

and Amorphous). DV-Hop can yield better estimation preci-

sion in low density deployments of anchor nodes [11]. The es-

timation can be derived from the average hop size over the 

number of hops. Amorphous only considers the nodes with less 

hop size to reduce the complexity [12]. Note that both could 

present high estimation error in high density of the reference 

nodes. 

For years, there are several approaches proposed to enhance 

the location estimation performance; however, one of the pio-

neers, i.e., Centroid, is commonly used for precision improve-

ment, especially with an additional weight. One of its deriva-

tions is based on fuzzy logic systems (FLS) because it can yield 

higher accuracy without high computational complexity trade-

off [13]. 

Although there exists some optimized techniques to deal 

with this adjustable weight, most proposals do not consider the 

diversity of topology where it is norm for practical deploy-

ments. Some of the examples include the deployed area where 

is close to the border or where the position of anchor nodes is 

unbalance due to a specific characteristic of the actual environ-

ment or even with the unequal power consumption of nodes 

leading to a non-uniform distribution of dead nodes. Figure 1 

shows examples of such scenarios, i.e., grid and non-uniform 

deployments.  
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Thus, this research investigates the behavior of unbalanced 

structure of anchor nodes, especially when more numbers of 

anchor nodes are close to each other; but in the actual compu-

tation, these nodes can deviate the estimation precision on un-

known node position. We then apply K-means as a clustering 

technique to determine one such representative of these nodes 

so as to be used further for weight calculation. Due to the sim-

plicity suitable for distributed sensor networks, FLS is also our 

selection to generate a proper weight given a proper set of an-

chor nodes before applying the weight into the approximation 

process of weighted Centroid. 

This paper is organized as follows: Section 2 provides a lit-

erature survey of wireless sensor network localizations, espe-

cially with respect to Centroid and its weight derived from 

FLSs. Then, Sections 3 presents our methodology including a 

detailed description. In Section 4, the performance evaluation 

of our proposal is then evaluated against some existing tech-

niques, such as Centroid, its fuzzy weights, and DV-Hop. Fi-

nally, Section 5 contains our conclusion and possible future 

work. 

 

II. RELATED WORK 

 

As briefly discussed, for decades, there are several tech-

niques to enhance WSN localization approximation [6-8]. 

Again, Centroid is one of the pioneers with its key advantage 

on simplicity but with (high) location estimation error trade-

off [13]. Several techniques have been proposed to enhance its 

performance, especially with weight adjustments. One of 

which, recently, is based on soft-computing [14], such as Neu-

ral Networks (NNs), Fuzzy Logic (FL), and Evolutional Com-

puting (EC), Support Vector Machine (SVM) [14]. However, 

here, we focus on FL due to its key advantage on simplicity – 

low computational complexity [14]. 

In 2005, Yun, S., et al. [13] investigated how to adjust the 

weight of Centroid given received signal strength indication 

(RSSI) as inputs using Takagi-Sugeno-Kang FL; however, ge-

netic algorithm, one traditional class of the EC, was also used 

to adjust the shape of membership function to explicitly differ-

entiate the inputs but with high computational complexity 

trade-off.  

In addition, in 2009, the same research group [15] evaluated 

the estimation performance in comparisons between FL and 

NN, and then reported that although NN’s precision is better, 

the computational time is high, perhaps, not properly used for 

the sensor node with limited power as constraint. The evalua-

tion is at the centralized base station. 

Two year later, Kumar, V. et al. [16] performed the perfor-

mance comparison of FL types, i.e., between Mamdani and 

Sugeno; and with their average - there was an improvement of 

the precision but with computational complexity trade-off. The 

use of each type is typically based on the complexity of the 

problem. For example, Sugeno is suitable for mathematical op-

timization but if simplified problem for Mamdani [17]. 

In addition, in 2012, Larios, D.F. et al. [18] investigated var-

ious inputs including the RSSIs from each anchor nodes’ cov-

erage as another computational step. There are two fuzzy logic 

classes (2 input groups). The first class consists of three mem-

bership functions (for RSSIs) and the other is nine functions 

for each anchor node within its coverage. With this additional 

step induces higher computational complexity.  

From all techniques, FL derivations, considered only grid 

deployments which these may require more investigation in 

practical field like non-uniform deployments or unbalanced 

structure of node distribution. Thus, considering the probable 

approach for meeting this requirement, Shang, Y. et al. [19] 

investigated a mathematical model using cosine and linear al-

gebra to approximate the unknown node position for random 

deployment, called Multidimensional Scaling; however, the 

complexity of this algorithm is very high, not suitable for dis-

tributed computing for WSNs. 

The other promising type of soft-computing is based on 

SVM for WSN localization. Tran, D. A. et al. [20] applied a 

binary SVM to segment the deployment area into sub-area. 

Then, the unknown node position will be determined in which 

sub-area will be covered based on the number of hops. The au-

thors reported that the algorithm is robust to the irregularity of 

the topology; however, the computation is centralized at the 

base station, not practical for distributed sensor networks.  

 

III. FUZZY CENTROID OPTIMIZATIONS FOR WIRELESS 

SENSOR NETWORK LOCALIZATIONS 

 

There are four main steps of our protocol optimization as 

follows: 

1. Broadcasting: given the unknown node coverage, this 

node listens for broadcasting beacons from anchor 

nodes. Typically, the beacon is periodic and contains the 

position of the anchor node including its RSSI.  

2. Clustering: once there is a set of known position of dif-

ferent anchor nodes corresponding to the signal 

strength, the unknown node will perform K-means clus-

tering such that the representative of each cluster will be 

selected based on its RSSIs. In this research, K is 3 

(maximum) so as to have enough nodes for location ap-

proximation.  

3. Fuzzy Centroid: based on the selected RSSIs among 

each group, the unknown node will then compute the 

weight to adjust the Centroid.  

4. Location Estimation: at this step, the node will actually 

perform the location approximation resulting into the 

predicted location in (x, y) coordinates.  

 

A. K-means Clustering 

One of the pioneer clustering methods is K-means with its 

key advantage of its simplicity [21]. This technique can be con-

sidered as a partition method which makes advantage of the 

data averaging into the same group or cluster. This average can 

be used as a representative of each cluster. There are three main 

steps of K-means as follows: 

1. Base on a predefined K as the maximum number of 

groups, it starts from randomly select the data K sets, 

each of which will be initially used as a center of each 

cluster.  

2. Then, subsequently, more data sets will be fed into the 

computation process based on the similarity or the dis-

tance to the center.  
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3. With more data sets, the averaging will be recomputed 

until no more data left and the data within the network 

has not changed to different clusters.  

Suppose there is a set of X= (x1, x2, …, xn), each of which 

represents the vector (in real values) in d dimensions. To clus-

ter the data in K-means, the set of X will be grouped into K 

clusters such that K≤n. The member of each cluster denotes Si 

| 1≤i≤K. The selection criterion is based on the minimization 

within the cluster sum of squares as stated in equation below. 

Here, 𝜇𝑖  is the average of each point within the same group. 

 

𝑚𝑖𝑛
𝑠

∑ ∑‖𝑥 − 𝜇𝑖‖2

𝑥∈𝑆𝑖

𝑘

𝑖=1

 (1) 

 

Once applying K-means to cluster the anchor nodes, there 

are three main steps as follows. Note that after the completion 

of clustering process, the representative (anchor node) of each 

group will be selected based on the maximum signal strength, 

i.e., perhaps, this node will be close to the particular unknown 

node.  

1. Given a predefined K clusters, here is three because it is 

probably required to have the predicted location within 

the triangular shape of the anchor nodes. 

2. The unknown node randomly selects K (3) anchor nodes 

as the cluster centers.  

3. Subsequently, each known position of each anchor node 

will be arranged to the group which has the center close 

to the node using the minimum distance.  

4. The center of K positions will be recomputed based on 

the averaging of all locations of the anchor nodes within 

the same group.  

5. All three steps will be repeated until no change in the 

center.  

It should be noted that we also run various simulations - var-

ying the values of K. While ranging the number of nodes and 

coverages, K=2 is the worst; with K larger than 4 is also worse. 

With high density of nodes, although K=4 is higher in accu-

racy, the precision improvement is not significant compared to 

K=3 but with higher complexity.        

 

B. Fuzzy Weight Derivation 

After RSSIs are ready selected from the proper anchor 

nodes, before performing the actual location approximation us-

ing Centroid computation, this research also apply an addi-

tional weight derived from FLS [17]. Those represented RSSIs 

will be used as fuzzy inputs to derive the output weights in 

range of 0 to 1, and finally generate the output from the fuzzy 

process. Note that the input RSSIs are also normalized in range 

between -1 and 1 before feeding into the computational pro-

cess. 

In this research, we used the fuzzy inference systems with 

Sugeno since it is suitable for optimization and mathematical 

analysis [17]. Moreover, the selection of membership function 

is based on our intensive evaluation; that is Triangular function 

[22]. With the recommendation provided by Yun, S. et al. [15], 

there are five membership functions, i.e., Very low, Low, Me-

dium, High and Very high, as inputs (See Figure 2) and five 

rules as shown in Table 1. 

 

 
 

Figure 2: Fuzzy Logic - Triangular Function of Input (RSSI) 

 
Table 1 

Fuzzy Rule: Example 

 
Rule IF: State of RSSI THEN: State of Weight 

1 Very low Very low 

2 Low Low 

3 Medium Medium 

4 High High 

5 Very high Very high 

 

C. Fuzzy Weighted Centroid 

With the weights (aka output as fuzzy definition) derived 

from the fuzzy process, the actual node approximation will be 

computed over the weighted Centroid, as shown in equation 

(2). Here, the anchor nodes (xi, yi) with corresponding weights 

(wi) are used to derive the estimated location (xest, yest) [15]. 

 

(𝑥𝑒𝑠𝑡 , 𝑦𝑒𝑠𝑡) = (
∑ 𝑤𝑖 × 𝑥𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

,
∑ 𝑤𝑖 × 𝑦𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

) (2) 

 

D. Performance Evaluation 

This section discusses the performance of our proposal, K-

means Fuzzy Centroid, (for the sake of paper length limitation, 

more investigation and simulation are for future work) in com-

parisons with a traditional Centroid, its fuzzy system, and DV-

Hop. 

 

i. Simulation Configurations 

The performance evaluation is based on a standard testbed. 

To evaluate and justify the correctness, Matlab framework was 

used with standard libraries including recommendations pro-

vided by Gu, S. et al. [23]. Our simulated machine is Windows 

7 64-bit with Intel Core Q8400 2.66 GHz, 4 GB DDR-

SDRAM, and 320GB 7200 rpm hard disk. 

To consider the effect of large-scale networks including in 

our intensive simulation, a simulation parameter includes a 

variation of anchor nodes in range of 121, 196, and 441, corre-

sponding to the grid deployment requirement of 100×100, 

75×75, and 50×50 m2, over 1000×1000 m2. Here, there are two 

main topologies, i.e., grid or non-uniform (with five holes) [20] 

as examples shown in Figure 3. Note that the number of un-

known nodes is fixed at 100 nodes. 

In addition, each of the topology will be simulated with the 

reflection of signal coverage (radius), i.e., 100 and 200 meters. 

Once deployed, there is no mobility involved. Note that the 

signal propagation model follows a log-distance path loss 

model [23]. Here, the energy consumption of the computing 

node and transmission logic is not considered in this localiza-

tion model evaluation [24-25]. There is also assumption that 
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the routing cost is not on our focus, i.e., no limitation of routing 

protocol selection. Here, the location estimation is within the 

node coverage in distributed manners. 

 

 
 

 
 

(a) Grid Distribution (b) Non-Uniform Distribution 
(Five Holes) 

 
Figure 3: Node Distribution Deployment (cross = anchor; circle = unknown; 

line = absolute error) 

 

In this evaluation, Average Location Error (ALE) (meters) is 

mainly used as a metric to measure the location approximation 

error [22] as shown in equation (3). Here, (xsensor, ysensor) repre-

sents the actual position of unknown nodes and (xest, yest) for 

their estimations. This computation is over ten trials resulting 

the approximation average. Again, our proposal was evaluated 

against a traditional Centroid, its fuzzy, and DV-hop. 

 

𝐴𝐿𝐸 =
∑ √(𝑥𝑒𝑠𝑡 − 𝑥𝑠𝑒𝑛𝑠𝑜𝑟)2 + (𝑦𝑒𝑠𝑡 − 𝑦𝑠𝑒𝑛𝑠𝑜𝑟)2

#𝑆𝑒𝑛𝑠𝑜𝑟 𝑁𝑜𝑑𝑒𝑠
 (3) 

 

ii. Simulation Results 

Figure 4 shows the estimation performance in terms of ALE 

in grid distribution deployments with 100 and 200 m signal ra-

dius. In general, conceptually, with an unrealistic grid distribu-

tion, the performance of Centroid should be outstanding, i.e., 

the unknown will be placed in the square of anchor nodes. 

However, once the radius is higher, the estimation error should 

be also higher since more numbers of (non-significant) anchors 

will be included in the computation process. In the opposite, 

the error of DV-Hop cannot beat the Centroid. Note that with 

higher numbers of anchor nodes can bring less location estima-

tion errors.   

Specifically considering small coverage (100 m radius),   

Figure 4a shows that in general, the estimation error of DV-

Hop is very high, i.e., around 60 m but with only less than 20 

m for the rest (Centroid derivations). In particular, at 121 

nodes, the performance of Centroid is superior (16.5 m vs. 

17.4, 19.7, and 54.8 m for Centroid, Fuzzy Centroid, K-means 

Fuzzy Centroid, and DV-Hop, respectively). However, once 

the number of anchor nodes is higher, its fuzzy system be-

comes better. For example, at 441 nodes, ALEs are in order of 

8.3, 2.4, 6.1, and 50, respectively. This is the fact that the fuzzy 

takes an effect with additional weights.   

Figure 4b also shows the other scenario – larger coverage (200 

m radius). Similar trends as in 100 m radius are applied; how-

ever, with higher estimation errors since the unnecessary an-

chor nodes are included in the computation. Here, ALEs are in 

order of Fuzzy Centroid, K-means Fuzzy Centroid, Centroid, 

and DV-Hop, i.e., in average around 8, 14, 22, and 60 m re-

spectively. This is also justifiable due to the fuzzy process ef-

fect (proper additional weights). Note that our scheme outper-

form the others except Fuzzy Centroid since the grid deploy-

ment may not require another step of unbalanced structure con-

sideration. 

 

  

(a) signal radius = 100 meters (b) signal radius = 200 meters 

 
Figure 4: Average Location Error with Grid Distribution 

 

Figure 5 shows the evaluation results of non-uniform distri-

bution deployment, i.e., with 100 and 200 m radius. Similar to 

those of Figure 4, the trends follow the grid deployment. How-

ever, with unbalanced structure effects, the errors are higher. 

The performance of our proposal is superior in both coverages, 

and in order of Fuzzy Centroid, Centroid, and DV-Hop, respec-

tively. In addition, increasing numbers of anchor nodes main-

tains higher accuracy and with higher radius lowers the estima-

tion precision.  

In particular, considering a small radius (100 m), Figure 5a, 

again, similar trends will be applied. At 441 anchor nodes, the 

precision of each technique is in order of 10.5, 12, 18.6, and 35 

m and 23, 25, 28, and 55 m, with 121 anchor nodes for K-

means Fuzzy Centroid, Fuzzy Centroid, Centroid, and DV-

Hop, respectively. The errors tend to be higher than those of 

the grid distribution (Figure 4a) which is in fact justifiable.  

 

 
 

(a) signal radius = 100 meters (b) signal radius = 200 meters 

 

Figure 5: Average Location Error with different topology: Non-Uniform Dis-
tribution 

 

With 200 m radius, Figure 5b shows a similar trend of that 

of Figure 4b. Increasing numbers of anchor nodes may not sig-

nificantly affect the error. It is noticeable that, here, DV-Hop 

can mitigate the error effects in non-uniform distribution, i.e., 

around 50 m. The impact of unbalanced structure is important, 

and so the estimation errors of the other techniques except our 

proposal tend to be high, i.e., in average, 25, 42, and 50, re-

spectively, compared to the only 19 m for our proposal. 
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V. CONCLUSIONS 

 

To improve the performance of Centroid, in particular, with 

adjustable weights, we investigated the use of weights derived 

from fuzzy logic systems. We also enhanced its weighted Cen-

troid by applying K-means clustering to figure out a repre-

sentative of a close-together known nodes, especially when the 

actual deployment is non-uniform, and all of these is called K-

means Fuzzy Centroid. The superior performance is due to the 

effect of unstructured deployment, e.g., some unnecessary an-

chor nodes may be included in the fuzzy computation process. 

Based on our intensive simulation evaluation in large-scale 

networks and while ranging the signal radius and node density, 

the performance of our scheme is outstanding, i.e., 44.92%, 

16.80%, and 61.72%, better against a traditional Centroid, its 

fuzzy system, and DV-Hop, respectively. However, although 

our proposal can confirm the effectiveness, i.e., low location 

estimation error, more investigation is still needed in other sce-

narios and constraints. Comprehensive simulation and analysis 

can be intensively investigated, such as a scalability consider-

ation, network density and diversity, network dimension, di-

verse irregular topologies, and various signal propagation 

models considering additional transmission protocol over-

heads. It is also noted that the effective routing protocol with 

awareness of node location can be further studied. Another di-

mension of the study can be also investigated such as the effect 

of node mobility, and all of these are for possible future work.  
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