
 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 6 43

Max-Average: An Extended Max-Min Scheduling

Algorithm for Grid Computing Environment

J.Y Maipan-uku, A. Muhammed, A. Abdullah, M. Hussin
Department of Communication Technology and Networks,

Faculty of Computer Science and Information Technology,

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia.

jamilu4yahaya@yahoo.co.uk

Abstract—Sharing numerous computational and

communication power from connected heterogeneous systems

over the world are the two key points of Grid computing. Grid

computing can also be referred as a computing platform for users

to utilise the remote heterogeneous resources for solving their

large scale jobs that require a huge amount of processing power

or a huge data storage. Sharing these resources that way

effectively requires a very good scheduling strategy, which is the

focus of this research. This paper presents a new proposed grid

based scheduling algorithm called Max-Average, inspired from

Max-Min algorithm. In order to produce good quality solutions,

the proposed algorithm is designed in two phases; firstly it uses

an initial task queue like the traditional Max-Min for estimating

task completion time for each of resources, and in the second

phase choose the fitting resource for scheduling according to

requirements. The results from our simulation showed that our

proposed algorithm is performing better in producing good

quality solutions, particularly in executing tasks fast and in

balancing the load (resource utilisation) among the resources

more effectively when compared to standard Minimum

Execution Time (MET), Minimum Completion Time (MCT),

Min-Min, and Max-Min heuristic approaches.

Index Terms—Scheduling Algorithm; Grid Computing;

Minimum Execution Time (MET); Minimum Completion Time

(MCT).

I. INTRODUCTION

Grid computing provides medium of using oodles of computers

worldwide, stretching from simple laptops, to a cluster of

computers and supercomputers connected over heterogeneous

network in an effective, secure and dependable manner.

However, the inspiring problem of heterogeneously and

adaptively allocating resources in response to demanding

application requests remain unresolved [1]. The performance

objective for a grid environment is to efficiently utilise the

numerous resources indoors. Most grid systems include some

kind of job scheduling algorithm [2].

Scheduling algorithm in [3] is considered as a significant

subject in Grid computing, especially in utilising shared

resources. The need of having good scheduling algorithms to

obtain high performance computing is increase. It is often hard

to have an ideal resource scheduler that is able to minimise job

completion time (makespan) and to utilise the available

resources efficiently. The three key stages [4] for task

scheduling in grid environment remain resource collection,

resource ability (information) and task execution. Selecting best

resources for tasks/jobs execution has remained NP-complete

problem.

Grid task scheduler (scheduling algorithm) is responsible for

allocating tasks to resources under grid environment for

execution [1]. In computational grid, scheduling problem is

enhanced by minimising makespan and maximising system

utilisation, balancing the loads and fulfils economical system

demand and user constraints [5].

The remainder of the paper is organised as follows. Section

II presents scientific literature. Section III discusses the two

algorithms (Min-Min and Max-Min) and the performance

metrics used in this paper. Our proposed approach named Max-

Average (An Extended Max-Min) scheduling algorithm is

presented in Section IV. Section V describes the methodology

used and experimental results. Finally, Section VI summarises

the research findings and presents the future work.

II. RELATED WORKS

Many researchers have done research on Max-Min algorithm

for heterogeneous computing scheduling due to its capability to

produce good quality solutions. These include; Maheswaran et

al., in [6] reviewed four heuristics for dynamic mapping of a

class of independent tasks onto heterogeneous computing

systems include Max-Min, Braun et al., [7] studied eleven

heuristics for static scheduling in heterogeneous computing

environments, Max-Min inclusive. Also, Fujimota et al., in [8]

compared scheduling algorithms for independent coarse-grain

tasks; among them is Max-Min. Xhafa et al., [9] assessed

numerous static scheduling policies for allocations of jobs on

resources using the batch mode method, including Max-Min.

Similarly, Luo et al., [10] analysed and relate a set of twenty

heuristics under different circumstances.

However, the Max-Min algorithm undergone very few

extensions by researchers due to its capability of reducing idle

time of resources (utilisation). Ming and Li [11] proposed an

improved Max-Min algorithm for cloud task scheduling.

Amalarethinam and Kfatheen [12] proposed Max-Min based

algorithm. In this algorithm, tasks are assembled like Max-Min

at the first phase, for selecting resource, mean of completion

time (meanCT) is compared with resource completion time

(CTj), and then if CTj is less than or equal to meanCT, task with

maximum completion time is scheduled otherwise best

Journal of Telecommunication, Electronic and Computer Engineering

44 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 6

maximum execution time is scheduled. Devipriya and Ramesh

[13] proposed an improved Max-Min algorithm for task

scheduling in cloud computing. In this algorithm, task with

maximum execution time is assigned to resources that produced

its minimum completion rather than assigning task with

maximum completion time, to the resource which provides

minimum task execution time. Similarly, Mao et al. [14]

presented Max–Min task scheduling algorithm for load

balancing in cloud computing, and other related work is Li et

al., as in [15].

Moreover, some researchers hybridised Max-Min with Min-

Min that considers the task with minimum execution time for

mapping at first will yield a reasonable benefit in overcoming

its drawback. Etminani and Naghibzadeh [16] presented

selective algorithm, Wenzheng and Wenyue [17] presented

filter Min-Min that considers the value of average completion

time and standard deviation of all resources and chooses either

Min-Min or Max-Min for mapping. Likewise, Parsa et al. [18]

introduced Resource Aware Scheduling Algorithm (RASA). In

this algorithm Min-Min is applied when the number of available

machines is odd, otherwise Max-Min is applied. Gupta and

Singh [19] proposed Switcher algorithm that chooses between

the two algorithms under a prescribed conditions. Similarly,

Anousha et al. [20] improved total completion time (makespan)

through his proposed algorithm where the algorithm is designed

to select either Max-Min or Min-Min algorithm for the mapping

task to available resource after comparing the summation time

of all jobs except the maximum value. In another work, Panda

et al., in [21] proposed Skewness-based grid task scheduling

that chooses among the two algorithm base on prescribe

condition.

It is obvious that, task selection is a key challenge to this

heuristic. For this reason, a substantial enhancement in the

computational efficiency of the algorithm is necessary.

Table 1

Notations and its definition

Notations Definition

Xmin Minimum execution time

Xmax Maximum execution time
MaxAverage Efficient Max-Min

Meanest Minimum execution, completion time
Ti Meta-task Id of meta-task i

ETi Execution Time

minET Minimum Execution Time
IRj Resource Id of resource j

Ci,j Completion time for meta-task i on resource j

Xi,j Execution time for meta-task i on resource j
Rj Ready time of j

RU Resource Utilisation

Avgru Average resource utilisation
MT Meta-Tasks

III. SCHEDULING ALGORITHMS

A. Min-Min Scheduling Algorithm

Min-Min algorithm discovers task that has a minET and

allocating it to the machine that produces its minimum CT as

shown in Figure 1. Then resource ready time is keeping up to

date. This procedure is iterated until the whole tasks are mapped

[22]. This algorithm has a problem of high makespan

production, low resource utilisation, and load imbalanced when

numbers of tasks that have minimum time to be executed are

much more comparable to the tasks that have maximum time to

be executed.

Standard Min-Min Algorithm

Begin with tasks ti in Mt
 Begin with machines rj in mj

 Calculate Completion Time (CTij = ETij + rj)

 do till the entire tasks in the meat are allocated
 For a separate task ti in Mt

 discover minimum CTij and machine that acquires it.

 discover task tk with least CTij.
 allot tk to resource ml that

 delete tk ϵ mt

 keeps rl up to date

keeps CTij up to date for all i

Figure 1: Steps for Min-Min Algorithm

B. Max-Min Scheduling Algorithm

In [19], Max-Min differs from Min-Min in the second

phase (line 7), this is where tasks with an overall maximum

expected completion time from MT is chosen and assigned

to the corresponding machine as shown in Figure 2. Then

resource ready time is keeping up to date. This procedure is

re-iterated for all available tasks.

Standard Max-Min Algorithm

Begin with tasks ti in MT

 Begin with machines mj
 Calculate Completion Time (CTij = ETij + rj)

 do till the entire tasks in the meat are allocated

 For a separate task ti in Mt
 discover minimum CTij and machine that acquires it.

 discover the task tk with the maximum CTij.

 allot tk to resource m1 that
 delete tk ϵ MT

 keeps rl up to date

 keeps CTij up to date for all i
 end do

Figure 2: Steps for Max-Min Algorithm

C. Performance Metrics

Performance metrics are typically used to determine the

effectiveness and efficiency of a scheduler with respect to grid

users or service provider requirement. Different number of

performance metrics can be used to describe resource

organisation and scheduling system's efficiency in

computational Grid. In this paper, we used two performance

metrics as described below;

i. Makespan

Makespan is the time taken to execute the most recent task.

This parameter shows the quality of assignment of resources

from the executional time perspectives. Makespan is calculated

as in Equation (1).

𝑖𝑓 𝑇 = 𝑡1, 𝑡2, 𝑡3. . . , 𝑡𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑠𝑢𝑏𝑚𝑖𝑡𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟 𝑎𝑛𝑑

𝑅 = 𝑟1, 𝑟2, 𝑟3, . . . , 𝑟𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓
𝑡𝑎𝑠𝑘 𝑎𝑟𝑟𝑖𝑣𝑎𝑙,

Max-Average: An Extended Max-Min Scheduling Algorithm for Grid Computing Environment

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 6 45

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = max{𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (𝐶𝑇𝑗) ∀ 𝑗 𝑖𝑛 𝑅} (1)

𝐴𝑙𝑠𝑜, 𝐶𝑇𝑖𝑗 = (𝐸𝑇𝑖𝑗) + (𝑅𝑗)

where:

ETij = Expected Execution Time of the task ti on machine mj.

Rj = Time when machine mj is ready to execute ti.

ii. Resource Utilisation

Minimising resource idle time implies its utilisation rate

achieved. This parameter shows the efficiency of an algorithm

in keeping the available resources busy throughout the

simulation time. In this research, since we are dealing with

statics jobs, average resource utilisation is considered.

Equations 2 and 3 illustrate the pattern of calculating resource

utilisation and average resource utilisation respectively.

𝑟𝑢 = ∑ ∀𝑗, 𝑅𝑖𝑗=1

(𝑅𝑟𝑡 − 𝑅𝑖𝑡)

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛
∗ 100 (2)

where:

Rrt = Busy time of resource

Rit = Unused time of resource

𝐴𝑣𝑔𝑟𝑢 =
∑ (𝑟𝑢)𝑛

𝑖=1

𝑛
 (3)

where:

{n = number of resources}

IV. PROPOSED ALGORITHM (MAX-AVERAGE)

Satisfying shareholders of computational grid hinge on the

eminence of schedule produced by scheduling algorithm.

Ideologically, it’s possible to obtain a reasonable schedule

policy if we can allocate tasks for execution to resources that

likely produce it minimum processing time. Max-Min

algorithm as argued previously do this, but allocating tasks in

order of Max-Min result in large value of Makespan, and poor

resource utilisation in the computational grid, if longer tasks are

much more than the smaller tasks. This is the major drawback

of Max-Min algorithm. However, the main contributions of this

article are;

 to minimise total completion time (makespan)

 to make sure of uniformity in resource utilisation

However, we present our proposed algorithm in Figure 3.

Firstly, all the tasks will be arranged in increasing order. This

means, tasks with a minimum time of execution are in the

frontage of the train and task with maximum time of execution

at the end of the queue. Secondly, average of completion time

for executing the entire tasks on the available resources is

computed and appropriate resource is chosen based on defined

condition.

Proposed Algorithm (Max-Average)

sort all tasks in MT in non-decreasing order

while there are tasks in MT
 for all submitted tasks in the set; Ti

 for all resources; Rj

 calculate completion time (CTij) = etij + rtj; (for each task in all
resources)

 discover the minimum CTij and resource Rj

 if there is more than one resource that obtains it
 select resource with least usage so far // for stability

 discover AverageCT // and hold it

 compare AverageCT with Xmin
 if AverageCT ≤ Xmin, assign Xmax to the resource with MinECT

 else assign Xmin to the resource with MinECT

 end if

 remove the task from the set

keeps ready time of the selected resource Rj up to date

keeps ctij up to date for all Ti
end while

Figure 3: Pseudo code of the proposed algorithm (Max-Average)

For selecting a task to schedule, we compute the average

completion time of all resources as a display in Equation 4

below:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑇 =
∑ 𝐶𝑖𝑗

𝑚
𝑛=1

𝑛
 (4)

After that, the proposed algorithm compares value of

AverageCT with Xmin, then select task as follows:

1. If AverageCT is less than or equal to Xmin, it means the

length of smaller tasks in MT is more than the heavy

ones, so we will select from the rear of queue to assign

the next task (Xmax).

2. Otherwise, assigned task with minimum completion

time.

A. Proposed Algorithm Time Complexity

From Figure 3, the proposed algorithm order depend on

lines (3) and (4) for-loop, this is also applicable for all tasks in

line (2). Position (3 – 5) hold two nested for-loop with 0(T.R)

time: The inner for-loop goes R times (number of resources)

and outer for-loop goes T times (number of tasks). This

process is carried out for all tasks in MT. Therefore, lines (2-

17) take O (T2R) time. So, our proposed algorithm takes O

(T2R) time.

B. Descriptive Example

We consider a problem with resources R1 and R2 along with

a set of task t1, t2, t3 and t4. The algorithm schedules all the

tasks based on the existing processor R1 and R2 as shown in

Table 1.

Table 1

Execution Time

Task/Resource R1 R2

T1 9 25

T2 7 18
T3 10 41

T4 8 19

Journal of Telecommunication, Electronic and Computer Engineering

46 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 6

From Table 1, Min-Min algorithm assigns all tasks to

resource R1 and leave resource R2 idle achieving a makespan

of 34 seconds. Similarly, Max-Min produces a makespan of 26

seconds with resource utilisation of 100% on R1 and 70% on

R2. However, our proposed algorithm produces a makespan of

25 seconds with evenly tasks distribution among resources,

achieving 100% on R1 and 100% on R2. Hence, the proposed

algorithm has better makespan and resource utilisation rate

when compared with Min-Min and Max-Min algorithms.

V. METHODOLOGY, RESULTS AND DISCUSSION

Due to the difficulties in implementing, testing and

evaluating the performance of the proposed algorithm with an

existing one (Min-Min, Max-Min, MCT and MET) on a real

system (test-bed), a Java based simulation running on Intel (R)

core (TM) i5-3470 CPU @ 3.20GHz, 3.20GHz has been

implemented. To compare our proposed method among the

heuristic algorithms, we use the Expected Time to Compute

(ETC) model of benchmark simulation proposed by Braun et al.

[7]. This model is based on Expected Time to Compute (ETC)

matrix of m tasks and n resources. Four different instances are

used. These instances are based on task heterogeneity and

resource heterogeneity as described below;

ℎ𝑖ℎ𝑖 ∶ 𝒉𝒆𝒂𝒗𝒚 𝑠𝑒𝑡 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑎𝑙𝑜𝑛𝑔 𝑤𝑖𝑡ℎ 𝒉𝒊𝒈𝒉 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠.

ℎ𝑖𝑙𝑜 𝒉𝒆𝒂𝒗𝒚 𝑠𝑒𝑡 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑎𝑙𝑜𝑛𝑔 𝑤𝑖𝑡ℎ 𝒍𝒐𝒘 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠.

𝑙𝑜ℎ𝑖 𝒍𝒊𝒈𝒉𝒕 𝑠𝑒𝑡 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑎𝑙𝑜𝑛𝑔 𝑤𝑖𝑡ℎ 𝒉𝒊𝒈𝒉 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠

𝑙𝑜𝑙𝑜 𝒍𝒊𝒈𝒉𝒕 𝑠𝑒𝑡 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑎𝑙𝑜𝑛𝑔 𝑤𝑖𝑡ℎ 𝒍𝒐𝒘 𝑐𝑎𝑝𝑎𝑐𝑖𝑦 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠

Table 2:

The makespan performance of different algorithms using 512 x 16 (in

seconds)

512 x 16 MET MCT Min-Min Max-Min Max-Average

hihi 89 88 90 85 97

hilo 81 79 83 91 97

lohi 60 80 79 65 95

lolo 47 64 76 80 96

Tables 3: Average resource utilisation comparison with different heuristics (in

percentage)

512 x
16

MET MCT Min-Min Max-Min Max-Average

hihi 151.41 124.95 125.40 133.65 118.48

hilo 207.19 179.93 173.69 162.57 153.47

lohi 59.99 67.99 70.81 84.95 58.76

lolo 56.99 94.71 92.61 90.34 75.48

A. Makespan

Table 2 presents the results of makespan performances,

produced by different scheduling algorithms in this research.

From the experimental results, it showed that the proposed

algorithm is outperforming all the existing algorithms

substantially in three scenarios (hihi, hilo, and lohi) while

approaching the performance of MET with a slight different

when the number of tasks are of more light and low capacity

resources (lolo). Similarly, Max-Min is outperforming Min-

Min, MCT and MET in three the same scenarios as our

proposed algorithm did.

However, MCT outperforms MET in two scenarios (hihi &

hilo) while MET performs worst in two scenarios (hihi) and

better in two cases (lohi & lolo) compared to Max-Min, Min-

Min and MCT. We depict a pictorial chart of the makespan for

Max-Average and Max-Min in Figure 4.

Figure 4: Makespan Comparison of Max-Min and Max-Average for 512 x 16

B. Resource Utilisation

Table 3 presents the values of Avgru for the five mentioned

algorithms. Max-Average is the top performing, able to produce

the maximum resource utilisation for all instances. This is

because, in both cases, our proposed algorithm was able to

effectively engage with all the available resources. Figure 5

shows the effects of using Max-Average algorithm in

comparison with the standard benchmark, Max-Min algorithm.

The results showed that the performance produced by our

proposed algorithm is far better in all scenarios (all above the

value of 94%).

Figure 5: Average resource utilisation of Max-Min and Max-Average using

512 x 16

VI. CONCLUSION AND FUTURE WORK

An efficient scheduling algorithm plays a crucial role,

particularly in minimising the makespan (job completion time)

from the point of view of the grid user and also utilising the grid

resources which is important to the grid providers. Thus, our

proposed algorithm is designed to address these two problems

0

50

100

150

200

HiHi HiLo LoHi LoLo

co
m

p
le

ti
o
n

 t
im

e
in

 s
ec

o
n

d
(s

)

Makespan 512 x 16

Max-Min

MaxAverage

HiHi HiLo LoHi LoLo

A
v
er

ag
e

re
so

u
rc

e
u

ti
li

sa
ti

o
n

in
 p

er
ce

n
ta

g
e

(%
)

Max-Min

MaxAverage

Max-Average: An Extended Max-Min Scheduling Algorithm for Grid Computing Environment

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 6 47

and results of the simulation show that the proposed algorithm

is outperforming standard Max-Min and other traditional

scheduling algorithms. We plan to investigate the effects of

applying “deadline” to the tasks and resources and also priority

among jobs as our future work.

REFERENCES

[1] Xhafa, F. (2008). Metaheuristics for Scheduling in Distributed

Computing Environments. Springer-Verlag, pp. 2-9.

[2] Jacob, B. (2005). Introduction to grid computing. United States: IBM,

International Technical Support Organization. Vol. 1(1), pp. 100.
[3] Kokilavani, T. and Amalarethinam, D.I.G., (2011). Load Balanced Min-

Min Algorithm for Static Meta-Task Scheduling in Grid Computing.

International Journal of Computer Applications. Vol. 20(2), pp. 43-47.

[4] Kokilavani, T., and Amalarethinam, D. I. (2010). Applying

Nontraditional Optimization Techniques to Task Scheduling In Grid

Computing-An Overview. International Journal of Research & Reviews
in Computer Science. Vol. 1(4), pp. 34-38.

[5] Hemamalini, M., (2012). Review of Grid Task Scheduling in Distributed

Heterogeneous Environment. International Journal of Computer
Applications. Vol. 40 (2), pp. 24 – 26.

[6] Maheswaran, M., Ali, Siegel, H. J., Hensgen, D. and Freund, F. R.

(1999). Dynamic Mapping of a Class of Independent Tasks onto
Heterogeneous Computing Systems1. Journal of Parallel and

Distributed Computing. Vol. 59(2), pp.107 – 131.
[7] Braun, T. D., Siegel, H. J. and Beck, N., (2001). A Comparison of Eleven

Static Heuristics for Mapping a Class of Independent Tasks onto

Heterogeneous Distributed Computing Systems. Journal of Parallel and
Distributed Computing. Vol. 61, pp. 823 – 831.

[8] Fujimoto, N., and Hagihara, K. (2004). A Comparison among Grid

Scheduling Algorithms for Independent Coarse-Grained Tasks. Vol.
2(4), pp. 7-7.

[9] Xhafa, F., Barolli, L., and Durresi, A. (2007). Batch mode scheduling in

grid systems. International Journal of Web and Grid Services, Vol. 3(1),
pp. 19-19.

[10] Luo, P., and Shi, Z. (2007). A revisit of fast greedy heuristics for

mapping a class of independent tasks onto heterogeneous computing
systems. Journal of Parallel and Distributed Computing. Vol. 67(6), pp.

695-714.

[11] Ming, G., and Li, H. (2011). An Improved Algorithm Based on Max-

Min for Cloud Task Scheduling. Recent Advances in Computer Science
and Information Engineering Lecture Notes in Electrical Engineering.

Vol. 125, pp. 217-223.

[12] Amalarethinam, G.D.I. and Kfatheen V.S., (2014). Max-min Average
Algorithm for Scheduling Tasks in Grid Computing Systems.

International Journal of Computer Science and Information

Technologies. Vol. 3, pp. 3659-62.
[13] Devipriya, S., and Ramesh, C. (2013). Improved Max-Min Heuristic

Model for Task Scheduling in Cloud. IEEE, pp. 883-888.

[14] Mao, Y., Chen, X., and Li, X. (2014). Max–Min Task Scheduling
Algorithm for Load Balance in Cloud Computing. Proceedings of

International Conference on Computer Science and Information

Technology, Advances in Intelligent Systems and Computing. Vol. 255,
pp. 457-465.

[15] Li, X., Mao, Y., Xiao, X., and Zhuang, Y. (2014). An Improved Max-

Min Task-Scheduling Algorithm for Elastic Cloud. International

Symposium on Computer, Consumer and Control, pp. 340-343.

[16] Etminani, K., Naghibzadeh, M., and Yanehsari, N.R., (2007). A Hybrid

Min-Min Max-Min Algorithm with Improved Performance. Department
of Computer Engineering, Ferdowsi University of Mashad, Iran. Vol.32,

pp. 1 – 3.

[17] Li, W., and Zhang, W. (2009). An improved Scheduling Algorithm for
Grid Tasks. International Symposium on Intelligent Ubiquitous

Computing and Education. Vol. 35, pp. 9-12.

[18] Parsa, S and Reza, E. M., (2009). RASA: A New Task Scheduling
Algorithm in Grid Environment. World Applied Sciences Journal. Vol.

7, pp. 152-155.
[19] Gupta, K., and Singh, M., (2012). Heuristic Based Task Scheduling In

Grid. International Journal of Engineering and Technology (IJET). Vol.

4, pp. 254 – 258.
[20] Anousha, S., Shoeib, A., and Ahmadi, M. (2014). A New Heuristic

Algorithm for Improving Total Completion Time in Grid Computing.

Springer-Verlag Berlin Heidelberg, pp. 17-26.
[21] Panda, S., Agrawal, P., Khilar, P., & Mohapatra, D. (2014). Skewness-

Based Min-Min Max-Min Heuristic for Grid Task Scheduling. In 4th

IEEE International Conference on Advanced Computing and
Communication Technologies. pp. 282-289.

[22] Vijayalakshmi, R., and Vasudevan, V. (2015). Static Batch Mode

Heuristic Algorithm for Mapping Independent Tasks in
Computational Grid. Journal of Computer Science. Vol. 11(1), pp.

224.

