
 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 6 27

An Optimal Mobile Hardware Design for

Inter Motion Estimation in HEVC

Toan Nguyen, Cuong Pham, Canh Dinh, Phong Nguyen, Thang Nguyen
School of Electronics and Telecommunications,

Hanoi University of Science and Technology, Hanoi, Vietnam.

thang.nguyenvu@hust.edu.vn

Abstract—This paper presents a hardware design for the Inte-

ger Motion Estimation (IME) compatible with the High Efficiency

Video Coding (HEVC) standard. The hardware designed was tar-

geted to meet 1080p@30fps real-time video coding. The architec-

tures were described in Verilog HDL and synthesis on Xilinx Vir-

tex VI. The proposed techniques significantly reduce the area and

energy consumption of the proposed hardware on FPGA.

Index Terms—H.265/HEVC; H.264/MPEG-4; FPGA; Motion

Estimation (ME); Inter Motion Estimation (IME).

I. INTRODUCTION

Today, the explosion of mobile device and 3G/4G broadband

technology has grown significantly. In 2014, the number of mo-

bile devices exceeded the number of people on earth and keep

increasing [1]. Following that trend, the demand for infor-

mation exchange, especially video services has been booming.

Therefore, requirements for a new video compression standard

that can support a variety of video resolution and quality.

HEVC is the newest video compression standard that is ex-

pected to meet demands of the new services. However, this

standard required huge computational complexity, which

makes HEVC consume high power and large hardware. More-

over, since these services are used in mobile devices, low power

and small hardware are also required.

Motion estimation (ME) is one of the most important compo-

nent of HEVC. The purpose of ME block is to find the best

matching block to the current block to increase the compression

performance while maintain computational complexity. ME

block is comprised of Integer Motion Estimation (IME) and

Fractional Motion Estimation (FME). While ME makes up 60

– 90% of computation load [2], Integer Motion Estimation

(IME) process account for about 21% - 26% total computational

load of ME [3]. As a result of these observations, aim to reduce

the ME computational effort targeting hardware solutions and

suitable resolution for mobile device are in need of being re-

searched.

Until now, several architectures targeting at IME in HEVC

have been reported, J. Byun et al. proposed architecture only for

4K-Ultra High Definition (UHD) and used full search algo-

rithm, which lead to high complexity in implementation [4]. It

is not compatible with mobile devices because the high compu-

tational complexity and high resolution consumes large power

consumption and waste hardware. Vidyalekshmi et al. show the

sequential FPGA implementation of diamond search motion es-

timation algorithm [5]. It’s a fast search algorithm, but architec-

ture is completely sequential which can be further improved.

Xu Yuan et al. has proposed a VLSI Architecture for Integer

Motion Estimation in HEVC [6]. However, it requires a lot of

hardware resources and not compatible with mobile devices.

This paper proposed a new architecture for IME block based

on the Rotating-W-Diamond algorithm for H.265/HEVC video

coding standard [8]. The Rot-W-Diamond reduces the compu-

tational time of the ME by nearly 69.5% and 72% comparing to

the recommend search and pattern of square pattern respec-

tively while the bitrate and PSNR are virtually unchanged. The

proposed design targets 1080p resolution at 30fps which is the

most efficient for most of mobile devices. The proposed hard-

ware is implemented in Verilog HDL and synthesized with Vir-

tex-6 FPGA. The achievements have met 1080p@30fps at 148

Hz with low hardware resource.

The rest of the paper is organized as follows. In Section II,

we describe the steps of Rotating-W-Diamond algorithm. Sec-

tion III showcase the hardware architecture approach. The im-

plementation results and comparisons are listed in Section IV

and finally, the conclusion is presented in Section V.

II. RELATED WORK

The Rotating-W-Diamond algorithm for H.265/HEVC bases

on the following steps in Figure 1.

Second Search Stage

Finding Starting Position Stage

First Search Stage

Best Motion Vector
Best SAD

dis == 0

Figure 1: Dataflow RWD algorithm

mailto:thang.nguyenvu@hust.edu.vn
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xu%20Yuan.QT.&newsearch=true

Journal of Telecommunication, Electronic and Computer Engineering

28 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 6

In the Finding Starting Position, the best motion vector is

chosen between motion vector of motion vector prediction

(PMV) and zero motion vector by comparing SAD. The block

has the smallest SAD will be chosen to be the initial starting

block of First Search Stage.

In the First Search Stage, Rot-W-Diamond pattern is used in

Figure 2.

Figure 2: Rot-W-Diamond Pattern

1.2

1.13 1.5

1.7

3.2

0

3.3

3.10

3.11

3.15

3.16

3.7

3.8

3.1

3.9

2.4 2.6

1.101.9

1.11 1.12

3.4

3.5

3.6

3.12

3.13

3.14

Figure 3: Neighbor Points

There are 40 points in Rot-W- Diamond Pattern. The process

will compare the SAD of these points in each round of search-

ing gradually to find the best point. If the best point has a dis-

tance (dis) of zero to the starting point, the search will be termi-

nated. If the dis equal 1 or 2, Neighbor Points in Figure 3 of this

point will be checked to find out the best point of First Search

Stage by comparing SAD among these point. If the dis is larger

five, a raster search will be taken with the gird of 20 to find

out the best point of First Search Stage.

The last stage Second Search Stage is a refinement stage. The

Second Search stage has the same behavior as the first search

stage except that there is no raster search. This stage terminates

when best point and the starting point are the same.

III. HARDWARE ARCHITECTURE

In this paper, based on Rotating-W-Diamond algorithm, a

hardware architecture, which can save hardware resource sig-

nificantly, process faster and use search range up to 128x128

and support HD standard 1080p@30fps, is proposed. The block

diagram of our IME unit is shown in Figure 4.

Integer Motion Estimation

Integer Search Motion
Estimation
(Isearch)

Reference
RAM

(Ref_RAM)

Current
RAM

(Cur_RAM)

Sum of Absolute Differennt
(SAD)

Motion Vector
RAM

(MV_RAM)

SAD value

Best MV
&

Min SAD
MV(1,2,3)

Position Points

Ref_Data Cur_Data

Motion Vector
Data

Reference Frame
Data Current PU’s

Data

Read

Figure 4: Top Block Diagram of IME

Reference frame, PU’s of current frame and motion vector

are stored in Ref_RAM Cur_RAM, MV_RAM blocks, respec-

tively. The Ref_RAM and Cur_RAM blocks receive control

signals and search points of the RWD algorithm from the Inte-

ger Search Motion Estimation (ISearch module) for generation

of the reference PU address follow with the current PU address

and generate data to send to SAD. Module SAD receives data

from Ref_RAM and Cur_RAM and then caculates SAD be-

tween reference and current PU to create total SAD value.

Then, the SAD value is sent to the Integer Search Motion Esti-

mation – Isearch which implement point search belongs to Rot-

W-Diamond algorithm. Then, ISearch compares SAD value to

find the smallest SAD value and decides whether the smallest

SAD value to be updated or not. At the end of the algorithm,

the output of IME is smallest SAD value and its corresponding

Motion Vector.

A. Integer search motion estimation (isearch)

The ROT_D_W algorithm is showed by FSM in Figure 5.

State machine starts with IDLE state, when received searching

signal, the next state is START_POINT will search the middle

vector and send the previous point of PU to calculate SAD. After

that, the state will be WAIT_SAD, this state waits the SAD result

done and then moves to the SAD_MV_MEDIAN. In

SAD_MV_MEDIAN state the median point will be sent to calcu-

late SAD. The next state is WAIT_SAD, where the SAD after

calculation, will be compared to choose the smallest SAD value.

This point is chosen to be the starting point of the next search.

The First search will send the pixels similarly in algorithm and

update the best point. Finally, the distance among the best points

will be considered to move to the SEARCH SCAN20 or SEARCH

NEIGHBOR. After that, it returns the 2nd search and complete

searching.

Reading and processing data could be image by timing being

executed by IME in Figure 6 and 7.

An Optimal Mobile Hardware Design for Inter Motion Estimation in HEVC

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 6 29

IDLE

START_POINT

SAD_MV_MEDIAN

FIRST_SEARCH

SEARCH_NEIGHBOR

SEARCH_SCAN20

WAIT_SAD

READ_PU_BEST

ref
2me_

done=
1

flag_enable=1

isad_done=1 &&

prestate=START_POINT

mv_median_done=1

isa
d
_
d
o
n
e
=

1
 &

&

p
re

sta
te

=
(S

A
D

_
M

V
_
M

E
D

IA
N

||

F
IR

S
T

_
S

E
A

R
C

H
)

d
e
te

c
t_

m
v
=

1

detect_mv=1

d
e
te

c
t_

m
v
=

1

iDist>uiSrchRng &&
(uiBestDistance=1 ||

uiBestDistance=2 ||
mvbest_x=0 || mvbest_y=0)

is
a
d
_
d
o
n
e
=

1
 &

&

p
re

s
ta

te
=

S
E

A
R

C
H

_
S

C
A

N
2
0

iD
ist

>uiSrch
Rng &

&

uiB
est

Dist
an

ce
>5

sca
n_done=

1

neighbor_done=1 &&

(uiBestDistance>0 ||
find_point_2=0)

iDist>uiSrchRng &&
uiBestDistance=0 &&

find_point_2=1

isa
d_done=

1 &
&

pres
tat

e=
SEARCH_NEIG

HBOR
neighbor_done=

1 &
&

uiB
estD

istance=
0 &

&

find_point_2=
1

Figure 5: Finite state machine Integer Search

State

Clock

Reset

Enable

(m,n)

START_POINT

(x0,y0)

IDLE

POSITION PU REF (x0,y0)(0,0)

SIZE PU

POSITION PU START

MV(x0+m-1,y0 -1)(0,0)

Request read MV reference

MV from MV_reference MV(x0-1,y0+n-1) MV(x0-1,y0 -1)

(x0+m-1,y0 -1)(0,0)Position of MV_reference (x0-1,y0+n-1) (x0-1,y0 -1)

 MV ready

(0,0)MV median MV_Median(x’,y’)

MV_done

WAIT_SAD SAD_MV_Median

0SAD calculated

SAD_done

A 0

(x’,y’)

WAIT_SAD

B

First_search

0

Figure 6: Reading MV Rom process in Start point state

B. Motion Vector RAM

MV_RAM stores the value of candidates’ motion vector (all

motion vectors are previously searched) to search median vec-

tor in the START_POINT state. The first, median vector M =

median (𝑀𝑉𝐿 , 𝑀𝑉𝐴, 𝑀𝑉𝐿𝐴) is calculated, and then compared

SAD of M with SAD of C in Figure 8. Next, the smaller SAD

is chosen to be the start point search.

C. Current RAM

The Cur_RAM stores current images with 16 pixels being

saved on 128 bits register, so data will be read faster than saving

one by one pixel.

Clock

First_Search WAIT_SAD

POSITION PU REF (x’’’,y’’’)(x’’,y’’)

DATA_reference

DATA_current

ADDR_ROM_current

ADDR_ROM_reference

0SAD calculated

SAD_done

First_Search WAIT SAD

0

First_Search

First_search done

Search neighbor or Scan

Neighbor or Scan_search done

0SAD_min SAD_min

0

0MV_best MV_best

Read_PU_best

0
Address write RAM

best
1 2

Write ram enable

m

0DATA to RAM a b z

1 2 m

a b z

SAD
_min

m+1 m+2

MV_
best

Read reference done

Figure 7: Reading RAM reference and RAM current in wait sad state, SAD
calculating and the input data writing

C

L

LA A

Figure 8: Median Vector

Controller

Cur_RAM block

Reg 1

Reg i

enable

addr

read

Position (x,y)

0127

313263649596
pixel

8kx128

32 bit

PU

Current RAM processing

Block 4 x 4
Reg 0

Figure 9: Current RAM

As shown in Figure 9, Current PU is divided into 4x4 blocks,

then each block stored on the 128 bit register. Therefore, One

4x4 pixels block need only 1 cycle to read data from Cur_RAM,

so one 64x64 PU require 16 x 16 = 256 cycles. Data from

Cur_RAM is sent to SAD module in order to calculate the SAD

value. Controller receives read signal from ISearch and in-

crease address after each cycle.

Journal of Telecommunication, Electronic and Computer Engineering

30 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 6

IV. REFERENCE RAM

The Reference RAM includes Address Generation and four

Ref_Ram blocks. The Ref_Ram block stores the value of the

reference picture with 4 pixels by horizontal reference frame

into a 32 bit register.

Addr 1

Addr 2

Addr 3

Addr 4

Position (x,y)

y0

X0

x

y

Search Area

A
d

d
r

G
e

n
e

ra
ti

o
n

4 Pixels

4 Pixels

4 Pixels

4 Pixels

Processing Reference RAM

Ref_RAM block 1

Ref_RAM block 2

Ref_RAM block 3

Ref_RAM block 4

Figure 10: The Reference RAM

As shown in Figure 10, the ISearch Module sent position of

search point to Reference RAM, thus the Addr Generation work

out 4 addresses. And then, it is sent to 4 RAM blocks to get data

and simultaneously increase address in the next cycle. So the

first 2 cycles are necessary to read 4x4 pixels block from Ref-

erence RAM. After the first 4x4 pixel block is read, it needs

only one cycle to read the next 4x4 pixel block. Totally, it takes

16x16 + 1 = 257 cycles for one 64x64 PU processing. In order

to send data from the Cur_RAM and the Ref_RAM to SAD,

The signal read has to be sent to the Cur_RAM before one cy-

cle.

D. Sum of absolute difference (SAD)

SAD module receives data from Cur_RAM block and four

Ref_RAM block in order to caculate sum of absolute difference

between Ref_RAM and Cur_RAM. The processing unit speci-

fied in Figure 11.

The four SAD_cores simultaneously compute the SAD for

each 16 pixels, generating in parallel 16 absolute differences

(AD) and then summing all SAD_core_outs.

Each the SAD_core, whose architecture is shown in Figure

12, compute 4 absolute differences by processing 4 input pixels

from the Ref_RAM block and the Cur_RAM block. The abso-

lute differences calculation is shown in Equation (1).

|𝐴 − 𝐵| = {
𝐴 + 𝐵′ + 1, 𝑖𝑓 𝑀𝑆𝐵 = 1

𝐴 + 𝐵′1, 𝑖𝑓 𝑀𝑆𝐵 = 1,
 (1)

Ref_RAM block 1 Ref_RAM block 2 Ref_RAM block 3 Ref_RAM block 4 Cur_RAM block

SAD_core
1th

SAD_core
2th

SAD_core
3th

SAD_core
4th

pixel 1pixel pixel pixel

4 Pixels

16 Pixels

Pixel 1-4 Pixel 5-8 Pixel 9-12 Pixel 13-16

SAD_core_out 1

SAD_core_out 2 SAD_core_out 3

SAD_core_out 4

Reg

SAD value

Adder

Adder tree

Adder accumulator

2 3 4

5 6 7 8

9 10

13 14

11 12

15 16

Figure 11: Processing unit

_

DATA_current
32

32

DATA_reference

1

0

1
_

sad0

sad0[8]

_

1

0

1
_

sad1

sad1[8]

_

1

0

1
_

sad2

sad2[8]

_

1

0

1
_

sad3

sad3[8]

8

8

[31:24]

[31:24]

8 [7:0]

8

8

8 [7:0]

8

8 [15:8]

[15:8]

[23:16]

[23:16]

sad5

8

8

8

8

sad4

sad6

sad7

SAD_core_out

SAD_core

clock

Figure 12: Architecture of the SAD_core

Where MSB is the most Significant bit, A’ and B’ are the

complements of X and Y, respectively [9].

By the way of summing all absolute differences, the adder

tree can calculate partial SADs. Hence, a 4x4 sub block is cal-

culated each 4 cycles and final SAD value of a 64x64 PU is

computed after 16x16= 256 cycles. After completing calcula-

tion of 1 PU, the SAD value will be sent to the ISearch to com-

pare with other.

V. RESULT AND COMPARISON

The proposed architecture is designed, implemented and

tested in Verilog HDL. It is synthesized and implemented for a

Xilinx Virtex6. The comparison of the published IME hardware

architectures is presented in Table 1.

Based on the above comparison Table, the proposed design

achieves the smallest hardware resource at the same resolution

and frame rate compared to the others by using a maximum op-

timization in designing architectures combined with fast algo-

rithm.

An Optimal Mobile Hardware Design for Inter Motion Estimation in HEVC

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 6 31

Table 1

Comparison of hardware of IME papers

Features [5] [6] [7] Proposed

Algorithm DS - DS RWDS

Supported PU
sized

- - 16 x 16 All Sizes

Search Range 128 x 128 - 128 x 128 128 x 128

Technology 40nm 40nm 90nm 40nm
Frequency 200 MHz 110 MHz 41.3 MHz 148 MHz

Slice LUTs - 55 K - 12.8K

Slice Register - 19.7 K - 3.6 K

Resolution
1920 x

1080

1920 x

1080

1920 x

1080

1920 x

1080

Frame rate 30 30 30 30

DM: Diamond search

RWDS: Rotating wide diamond search

VI. CONCLUSION

The present paper proposed architectures implement fast

search algorithm for real time HEVC integer motion estimation

engines. The achieved results show that the architecture re-

quires less hardware resource and meet 1080p@30fps real-time

video coding.

Further work will focus on the optimization of this architec-

ture to cable to process videos 4K by made several solution. We

can save over picture reference and current in two array regis-

ters because the read data in register is faster than RAM. To

decrease the number of clocks, we can implement parallel by

calculated many point in advanced search algorithm on same

time, mean fix the hardware for the points. In addition to, to

design pipeline for many PU current input, the proposed archi-

tecture can separate states in old FSM to the modules which

have functions same there states.

VII. REFERENCES

[1] Zachary Davies Boren (2014), There are officially more mobile devices

than people in the world. http://www.independent.co.uk/life-style/gadg-

ets-and-tech/news/there-are-officially-more-mobile-devices-than-peo-

ple-in-the-world-9780518.html. Accessed in 7 Oct 2014.
[2] Z.Zhao and P. Liang (2011), “A Statistical Analysis of H.264/AVC FME

Mode Reduction,” IEEE TCSVT, Vol. 21, No. 1, 53-61.

[3] JarnoVane et al. (2012), “Comparative Rate-Distortion Complexity Anal-

ysis of HEVC and AVC Video Codecs”, IEEE Transactions on circuits

and systems for video Technology, vol.22, No.22.

[4] J. Byun et al. (2013), “Design of integer motion estimator of HEVC for
asymmetric motion-partitioning mode and 4K-UHD”, Electronic Letter,

vol. 49, no. 18.

[5] Vidyalekshmi V.G et al. (2014), “Motion estimation block for HEVC en-
coder On FPGA,” Recent Advances and Innovations in Engineering

(ICRAIE)

[6] Xu Yuan et al. (2013) “A High Performance VLSI Architecture for Inte-
ger Motion Estimation in HEVC” ASIC (ASICON), IEEE 10th Interna-

tional Conference.
[7] Phong Nguyen et al. (2014) "Asymmetric diamond search pattern for mo-

tion estimation in HEVC, "Communications and Electronics (ICCE),

2014 IEEE Fifth International Conference on, vol., no., pp.434,439.
[8] Nalluri, P et al. (2013) "A novel SAD architecture for variable block size

motion estimation in HEVC video coding, " System on Chip (SoC), 2013

International Symposium on , vol., no., pp.1,4.

http://www.independent.co.uk/author/zachary-davies-boren
http://www.independent.co.uk/life-style/gadgets-and-tech/news/there-are-officially-more-mobile-devices-than-people-in-the-world-9780518.html
http://www.independent.co.uk/life-style/gadgets-and-tech/news/there-are-officially-more-mobile-devices-than-people-in-the-world-9780518.html
http://www.independent.co.uk/life-style/gadgets-and-tech/news/there-are-officially-more-mobile-devices-than-people-in-the-world-9780518.html
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Vidyalekshmi,%20V.G..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6898117
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6898117
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xu%20Yuan.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6805351
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6805351

