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Abstract— Edge detection is a fundamental tool in image 

processing, machine vision and computer vision, particularly in 

the areas of feature detection and feature extraction. The same 

problem of finding discontinuities in 1D signals is known 

as step detection and the problem of finding signal 

discontinuities over time is known as change detection. In this 

paper, a new set of wavelet basis functions for the edge 

detection issue is introduced in 1D space. First, we develop the 

Gaussian wavelet and present new bases by the derivation of 

Gaussian smoothing filter. It is proven that these filters have 

the necessities of the wavelet basis. After that, for proposed 

wavelet functions, three Canny criteria (signal-to-noise ratio, 

localization and low spurious response) and spatial and 

frequency width, which are surveys for edge detectors are 

discussed and formulated. For the better understanding the 

behavior of bases, the formulas are presented in the parametric 

form and compared with each other in relevant tables. The 

unit step and line edge are modeled as two particular types of 

edges and detected in the wavelet domain via introduced 

wavelet functions. Moreover, the effect of smooth filtering as a 

denoising preprocessing stage in the edge detection is 

discussed, and relevant formulas are derived. 

 

Index Terms— Canny Criteria; Edge Detection; Gaussian 

Filter; Multiscale Analysis; Step Response; Wavelet 

Transform.  

 

I. INTRODUCTION 

 

In many cases, when a signal summarized by its edges, the 

complexity of the problem would be reduced and a general 

form obtained with fewer amounts of data. There are two 

main criteria for edge detectors. Edge detection should be 

implemented easily and have low cost computing. Edges can 

be detected by finding local maxima of the first derivation 

of the function or zero-crossing of second derivation, which 

named inflection points. Zero-crossing of the function has a 

drawback too. As definition, we want to find maximum 

points of the first derivation and note it as the edge. In this 

process, minimum points left as the ordinary point and 

should not be considered; because they indicate the slow 

variation of the function. However, zero-crossing responds 

to both maximum and minimum points, i.e. an inflection 

point could be a maximum or minimum. So, extra 

computation is imposed to the scheme to distinguish local 

maxima’s.   

A technique to derived edges is filtering method. 

Choosing the size of filter, sensitivity to noise and fine 

localization have been considered as critical problems in 

edge detectors. A wide filter is less sensitive to random 

noise, but its localization response is not good [1]. A low 

size filter could exploit edges with admissible displacement. 

However, its effect is poor in noisy conditions and yields 

broken and twisted edges. So, filter-based edge detection 

suffers from two major problems: localization and accuracy. 

In the wavelet domain, selecting a large scale misses 

weak edges, but reduces noise influence and with selecting a 

low scale, details would be achieved, but with error edge 

displacement. For example, in high scale, line edges 

detected with greater localization error.  It is very difficult to 

select a single scale to have the lowest localization error and 

the highest noise suppression [2]. Hence, multiresolution 

analysis has been introduced to present signals in the coarse-

to-fine levels. In this procedure, the combination of various 

levels is used to present edge’s information. The significant 

challenge is methods of the combination which can retain 

most real edges and stop spurious responses. Multiresolution 

analysis has a wide range of applications in image 

segmentation and edge tracking [3-8]. 

Another way to refine the random noise is the use of 

smooth filter as a pre-processing stage. This method has a 

drawback too. The localization of detected edges is 

degraded by increasing the degree of blurring signals. On 

the other hands, the sharpen filters improve the spatial 

resolution, but reinforce the noise ability too.  

These trade-offs have been led to introduce optimal edge 

detectors, which compromise between displacement and true 

detection. There are many works that have been performed 

in the optimum edge detection [9-12]. One of the most 

bolded research is the work of Canny [13]. He introduced 

Gaussian filter as optimal edge detectors and presented three 

optimal criteria for designing edge filters based on local 

maxima, which have been used until now. Recently, various 

edge detections have been proposed, including statistical 

method [14], gradient-differentiation methods [15-17] and 

fuzzy-based method [18]. 

This paper is organized as follows: Section 2 describes 

new wavelet functions based on Gaussian wavelet 

derivations. It is shown that proposed bases have the 

necessities of wavelet functions. Section 3 is dedicated to 

the study of three Canny edge detector criteria and 

evaluation of proposed wavelet bases. The signal-to-noise 

ratio, localization and low spurious response, which defined 

by canny as useful tools to compare edge detectors’ 

performance, are presented and relevant formulas of 

proposed bases are studied and compared with each other. In 

this part, the formulas are derived parametrically. In section 

4, two basic edge types (step and line) are modeled. After 

that, the evolution across bases is studied. In this section, the 

effect of pre-smoothing stage is discussed and relevant 

relationship for so-call edge models, are derived. Finally, the 

conclusion and discussion of paper are devoted in section 5. 
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II. PROPOSED WAVELET BASES 

 

Gaussian filter has some special characteristics, which has 

been widely considered in the edge detection issue. In this 

paper, we use it as smoothing function. Gaussian filter has a 

symmetric shape in the time and frequency domain. 

Furthermore, it can be separated in x, y direction in 

Cartesian coordination, which can reduce the amount of 

calculations.  Assume 𝑔(𝑥) be a Gaussian filter with 

variance 𝜎2 and zero mean and 𝑔𝑠(𝑥) be a Gaussian filter at 

the scale s. 

 

𝑔(𝑥) =
1

√2𝜋𝜎
𝑒

−
𝑥2

2𝜎2 (1 − 𝑎) 

𝑔𝑠(𝑥) =
1

𝑠
𝑔(

𝑥

𝑠
) (1 − 𝑏) 

 

The Gaussian filter is a smooth or primitive function. 

Because it’s integral over R is 1 and reaches to zero in 

infinity. Canny used the first derivative of the Gaussian 

filter for edge detecting and introduced it as the optimal 

edge detector [13]. We develop this idea to the higher-order 

derivation of the Gaussian filter. Let wavelet 𝜓𝑛(𝑥) be the 

nth order derivative of 𝑔(𝑥) and 𝜓𝑠(𝑥) be the scaled 

function of  𝜓(𝑥) . With these assumptions, we have 

 

𝜓𝑛(𝑥) =
𝑑𝑛𝑔(𝑥)

𝑑𝑥𝑛         𝑛 = 1,2, … (2 − 𝑎) 

𝜓𝑠
𝑛(𝑥) = 𝑠𝑛

𝑑𝑛𝑔𝑠(𝑥)

𝑑𝑥𝑛
 (2 − 𝑏) 

 

A function 𝑓(𝑥) would be a wavelet basis if it has two 

properties. First, its average over Hilbert space is equal to 0 

i.e. 

 

∫ 𝑓(𝑥)𝑑𝑥 = 0   𝑜𝑟  𝐹(𝜔 = 0) = 0
+∞

−∞

 (3) 

  

Where the 𝐹(𝜔) is the Fourier transform of 𝑓(𝑥). 

Proposed wavelet functions satisfy this condition. The 

Fourier Transform of  𝑔(𝑥) would be driven as  

 

𝐺(𝜔) = 𝑒−
𝜎2𝜔2

2  (4) 

 

According to the relationship between the smooth 

function and wavelet functions, the Fourier Transform of 

𝜓𝑛(𝑥) would be obtained as 

 
Ψ𝑛(𝜔) = (𝑗𝜔)𝑛𝐺(𝜔), Ψ𝑛(𝜔)|𝜔=0 = 0 (5) 

 

Second, the wavelet basis should satisfy following 

admissibility condition: 

 

∫
|Ψ(ω)|2

|𝜔|

+∞

−∞

𝑑𝜔 < ∞ (6 − 𝑎) 

 

𝜓𝑛(𝑥) has this necessity too. It can be written 

  

∫
|Ψ𝑛(ω)|2

|𝜔|

+∞

−∞

𝑑𝜔 = ∫
𝜔2𝑛𝑒−𝜎2𝜔2

|𝜔|

+∞

−∞

𝑑𝜔 < ∞       (6 − 𝑏) 

 

Canny indicated that an edge detector must be 

antisymmetric to find local maxima in edge detection 

applications [13]. i.e. 𝜓(−𝑥) = −𝜓(𝑥) .𝜓𝑛(𝑥) would be 

symmetric with even n and antisymmetric with odd n.  So, 

all of the derivations of Gaussian smooth filter can be 

regarded as wavelet bases and odd derivations can be used 

as edge detectors. Figure 1 shows first six derivations of 

Gaussian filter. 

 

 

 

Figure 1: First six Gaussian derivations as wavelet bases 

 

Another name of 𝜓2(𝑥) is Mexican hat wavelet. As n 

increases, the vibration of the function increases. It means 

that there are more peaks in the higher order of derivation. 

These tips are classified as follows: 

According to this Figure, 𝜓1(𝑥) has 2 local extrema and 1 

cross-zero point. 𝜓2(𝑥) has 3 local extrema and 2 cross-zero 

points. This manner continues to higher order of n. In 

general form, 𝜓𝑛(𝑥) has 𝑛 + 1 local extrema (
𝑛+1

2
 minimum 

and 
𝑛+1

2
 maximum for odd n and 

𝑛

2
 minimum and 

𝑛+2

2
 

maximum for even n) and 𝑛 cross-zero. 𝜓𝑛(𝑥) with even n, 

has a dominant peak in the center. 𝜓𝑛(𝑥) with odd n, has 

two dominant peaks with the same amplitude, which are 

antisymmetric into zero-crossing points. In continue, edge 

detector criteria studied and proposed wavelet bases are 

compared with each other across the n. 

 

III. CANNY PERFORMANCE MEASURES 

 

In the previous section, we defined new wavelet bases by 

using Gaussian derivations. In this section, Canny criteria 

are discussed for new wavelet bases. Canny focused on the 

step edge detection with and without the noise presence. He 

assumed that the noise has a model of AGWN. He assumed 

the edge detector filter to be antisymmetric and has been 

achieved by the derivation of a smooth function 𝑔(𝑥). An 

edge occurs in a signal where there would be a local 

maximum in first-order derivation or equivalently a zero-

crossing in the second derivation [19].  

Canny criteria are good candidates to compare the filters’ 

performances. Hence, they have been considered in much 
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research. McIlhagga [20] and Jeong [21] revised his idea, 

and Demigny [22] developed it to the discrete space domain. 

There are three criteria which Canny introduced for 

designing an optimal edge filter: 

A. Good Detection. Canny attempted to maximize the 

signal to noise ratio in the edge detection process and 

introduced “good detection” criterion by selecting proper 

filter f(x), which could maximize the SNR. According to the 

good detection criterion, increasing the SNR, would reduce 

the number of wrong detected edges. Signal to noise ratio is 

defined as 

 

𝑆𝑁𝑅 =
|∫ 𝑔(𝑥)𝑓(𝑥)𝑑𝑥

+∞

−∞
|

𝜎√∫ 𝑓2(𝑥)𝑑𝑥
+∞

−∞

 (7) 

 

Where 𝑔(𝑥) is the edge function, and 𝜎 is the noise 

standard deviation in the normal distribution. Assume the 

edge function be a unit step ( 𝑔(𝑥) = 𝑢−1 (𝑥)). For 

n=1,3,5,7 SNR can be calculated as the first column of 

Table 1. This Table shows that the SNR has a direct 

relationship with the square root of the scale √𝑠 and an 

inverse relationship with the noise standard deviation 𝜎. 

This means that we have a better signal-to-noise ratio in 

coarser scales.  

 
Table 1 

 The SNR and the Localization of 𝜓𝑠
𝑛(𝑥) 

 

n SNR Localization 

1 
√8𝜋

3
2

2𝜋

√𝑠

𝜎
 

√16
3

𝜋
3
2

2𝜋

1

𝜎√𝑠
 

3 
√32

15
𝜋

3
2

2𝜋

√𝑠

𝜎
 

3√ 64
105

𝜋
3
2

2𝜋

1

𝜎√𝑠
 

5 3√128
945

𝜋
3
2

2𝜋

√𝑠

𝜎
 

15√ 256
10395

𝜋
3
2

2𝜋

1

𝜎√𝑠
 

7 15√ 512
135135

𝜋
3
2

2𝜋

√𝑠

𝜎
 

105√ 1024
2027025

𝜋
3
2

2𝜋

1

𝜎√𝑠
 

 
B. Good Localization. Another Canny criterion in the 

edge detector is the good localization. It means that detected 

edges should be as near as possible to the true edges. One of 

the parameters which leads to make the error and edge 

displacement, is the interference of the noise in signals and 

images. He proved that localization L has an inverse 

relationship with the mean distance of the detected edge and 

the actual one. He has defined this criterion as  

 

𝐿 =
|∫ 𝑔′(−𝑥)𝑓′(𝑥)𝑑𝑥

+∞

−∞
|

𝜎√∫ 𝑓′2(𝑥)𝑑𝑥
+∞

−∞

 (8) 

 

And attempt to find the filter impulse response f(x) that 

maximizes L as the best edge detector. This formula has 

been derived by assuming the impulse response be odd and 

derivable. Localization can be calculated for different 𝜓𝑠
𝑛(𝑥) 

as the second column of the Table 1. The results indicate 

that Localization of 𝜓𝑠
𝑛(𝑥) has an inverse relationship with 

the scale and noise standard deviation 𝜎. Refer to the Table 

1, we find out Localization is approximately constant over 

𝑛. 

C. Low Spurious Response. Third Canny edge detector 

survey is “one responding to one edge”. When the edge 

detector is applied to a single edge, it is clear that there 

should not be more than one response as the result. It can be 

defined the measure for the suppression of false edge 

detection to be proportional to the mean distance between 

the neighbored maxima of the filter responding to AWGN 

noise. This criterion expresses as 

 

𝑥𝑚𝑎𝑥 = 𝑘𝑤 = 2𝜋√
∫ 𝑓′2(𝑥)𝑑𝑥

+∞

−∞

∫ 𝑓′′2(𝑥)𝑑𝑥
+∞

−∞

 (9) 

 

Where, w is the operator width, and k is a fraction factor. 

Canny has made an estimate of k named multiple response 

criterion for probability of spurious edges. This parameter is 

calculated for wavelet basis 𝜓𝑠
𝑛(𝑥) as 

 

𝑥𝑚𝑎𝑥
𝑛 = 2𝜋𝑠√

2

2𝑛 + 3
 (10) 

 

Where n refers to the notation of 𝜓𝑠
𝑛(𝑥) and nth order 

derivative of the Gaussian scaling function.  The first 

column of the Table 2 shows calculations of 𝑥𝑚𝑎𝑥
𝑛   . Sarkar 

and Boyer [9] modified the multiple response criterion as 

follows: 

 

𝑀𝑅𝐶 = 𝑘 = 2𝜋√
∫ 𝑓′2(𝑥)𝑑𝑥

+∞

−∞

∫ 𝑓′′2(𝑥)𝑑𝑥
+∞

−∞

√
∫ 𝑓2(𝑥)𝑑𝑥

+∞

−∞

∫ 𝑥2𝑓2(𝑥)𝑑𝑥
+∞

−∞

 (11) 

 

Calculations of the MRC for Gaussian bases are listed in 

the last column of the Table 2. Clearly, the MRC is 

independent of scale, i.e. MRC is identical for a basis 

function in a specified scale. As a desire, MRC should be as 

great as possible. It guarantees the distance between the fake 

maxima.  

 
Table 2 

 Summary of 𝜓𝑠
𝑛 characteristics 

 

n 𝑥𝑚𝑎𝑥 𝑠
𝑛 Spatial width 𝑊𝑠

𝑛 𝑘 = 𝑀𝑅𝐶𝑛 

1 2𝜋𝑠√
2

5
 √

3

2
𝑠 2𝜋√

4

15
 

2 2𝜋𝑠√
2

7
 √

7

6
𝑠 2𝜋√

12

49
 

3 2𝜋𝑠√
2

9
 √

11

10
𝑠 2𝜋√

20

99
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n 2𝜋𝑠√
2

2𝑛 + 3
 √

4𝑛 − 1

4𝑛 − 2
𝑠 2𝜋√

𝑛 −
1
2

(𝑛 +
3
2

)(𝑛 −
1
4

)
 

 

Another parameter is a measure of the spread function in 

the frequency domain which noted by Ω and identified as 

[23] 

 

Ω = √
∫ (𝜔 − 𝜔̅)2|Ψ𝑠

𝑛(𝜔)|2𝑑𝜔
+∞

−∞

∫ |Ψ𝑠
𝑛(𝜔)|2𝑑𝜔

+∞

−∞

 (12) 

 

Where 𝜔̅ is 

 

𝜔̅ = ∫ 𝜔|Ψ𝑠
𝑛(𝜔)|2𝑑𝜔

+∞

−∞

 (13) 

 

The frequency filter bandwidth is calculated for proposed 

wavelet basis functions as 

 

Ω𝑠
𝑛 = √

∫ 𝜔2(𝑠𝑛𝜔𝑛𝐺𝑠(𝜔))2𝑑𝜔
+∞

−∞

∫ (𝑠𝑛𝜔𝑛𝐺𝑠(𝜔))2𝑑𝜔
+∞

−∞

= √
2𝑛 + 1

2𝑠2  (14) 

 

Similarly, the spatial width of the edge detector filter 𝑓(𝑥) 

is defined as [23] 

 

𝑊 = √
∫ (𝑥 − 𝑥̅)2𝑓2(𝑥)𝑑𝑥

+∞

−∞

∫ 𝑓2(𝑥)𝑑𝑥
+∞

−∞

 (15) 

 

Where 𝑥̅ is 

 

𝑥̅ = ∫ 𝑥𝑓2(𝑥)𝑑𝑥
+∞

−∞

 (16) 

 

For every 𝜓𝑠
𝑛 ,𝑊 will be obtained as follows 

 

𝑊𝑠
𝑛 = √

4𝑛 − 1

4𝑛 − 2
𝑠 (17) 

 

Second column of Table 2, shows numerical calculated 

𝑊𝑠
𝑛 for first six bases. If the filter has a large width in the 

spatial domain, it is not clear whether the output would be 

due to a single edge or multiple edges. This means that we 

should extend the filter frequency width to overcome this 

problem; but in the frequency domain, it is better to reduce 

the filter bandwidth to restrict the noise ability. So it is a 

tradeoff between the width of the spatial and the width of 

the frequency domain. In the other words, we cannot reduce 

the spatial filter width (to have a unique response) and the 

frequency filter width (to inhibit the noise bandwidth) 

simultaneously. Hence, the width of the filter becomes a 

criterion to evaluate edge detectors’ performance. The 

smaller the spatial width, the better the detector. We denote 

Ω𝑊 as production of frequency and spatial widths. Ω𝑊 is 

independent of the scale and is calculated for 𝜓𝑠
𝑛(𝑥)  as 

 

Ω𝑊 = √
(2𝑛 + 1)(4𝑛 − 1)

4(2𝑛 − 1)
 (18) 

 

Figure 2 illustrates the spatial and the frequency of 𝜓𝑠
𝑛 

bandwidth. If these diagrams are multiplied together (blue 

diagram in Figure 2), the result will be more than 1 that 

shows uncertainly spatial-frequency relationship. Minimum 

of  Ω𝑊 occurs in 𝑛 = 1 as shown in Figure 2. This means 

that the first-order derivation of the Gaussian filter has the 

best spatial-frequency condition. 

 

 

 

Figure 2: Width of  𝜓𝑠
𝑛 as a function of 𝑛 in the spatial and frequency 

domain 

 

Another trade-off in edge detector filters is between SNR 

and the width of the filter. The larger filter results the better 

SNR, because of noise diluting; and the smaller filter results 

the better edge localization performance. 

IV. EDGE DETECTION 

 

In the previous section, the details of Canny criteria for 

new wavelet basis functions were illustrated. The next step 

is to find out wavelet functions’ behavior to the basic edges. 

In this section, the step and line function as two significant 

edge shapes are modeled and relevant wavelet coefficients 

calculated. The contents of this section divided into two 

main parts. In the first part, the defined wavelet bases 𝜓𝑠
𝑛(𝑥) 

will be used to derive corresponding wavelet transform of 

the unit step function. In the second part, the response of the 

line edge is described. The effect of the smoothing function 

as a preprocessing stage is obtained from each edge type. To 

reach multiresolution edge detection of these two types of 

edge, the behavior of wavelet maxima across n (degree of 

the wavelet basis) and s (scale) is studied.  
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A. Step Response 

When the two regions with different amplitudes meet 

each other, a broken edge occurs in their boundary region.  

Step function is a basic shape which has been considered in 

much research [10, 24-28]. We consider the uniform 

Heaviside 𝑢−1(𝑥) as a basic edge and formulate its wavelet 

coefficients with and without a smooth function. For the unit 

step the coefficients are calculated as 

 

𝑊𝑠
𝑛𝑓(𝑥) = 𝑓(𝑥) ∗ 𝜓𝑠

𝑛(𝑥) = 𝑠𝑛
𝑑𝑛−1𝑔𝑠(𝑥)

𝑑𝑥𝑛−1  (19) 

 

𝑊𝑠
𝑛 is symmetric for odd 𝑛 and antisymmetric for even 𝑛. 

Also it has a peak in odd 𝑛 and a zero-crossing in even 𝑛 in 

𝑥 = 0. So, for the edge detection theory, it can be used to 

find the peak in 𝑊𝑠
𝑛 with odd n or the zero-crossing with 

even n in zero point (break point). Figure 3 shows the step 

edge wavelet coefficient response for odd n in scale s=1. As 

focus on this Figure, we find out 𝜓𝑠
𝑛 has sharper peaks and 

higher attenuation with the increase of 𝑛.  

 

 

 
Figure 3: The step edge response in the scale s=1 

 

Smooth filter is used as a preprocessing unit to reduce the 

noise influence in the filter-based edge detection. One of the 

motives that makes smoothing as an essential preprocessing 

stage is band-limiting of signals and images. Thus, the noise 

ability is inhibited in high frequency. It has a drawback too. 

Noise and details have both high-frequency characteristics. 

The blurring process dilutes the details of signals and 

images. This means that we lose some information. Indeed, 

it is not possible to eliminate noise without any damage to 

data. Gaussian function is known as a smoothing filter. Let 

𝑔𝜎(𝑥) be a Gaussian function with variance 𝜎2 as a 

smoothing filter.  

 

𝑔𝜎(𝑥) =
1

√2𝜋𝜎
𝑒

−
𝑥2

2𝜎2  (20) 

 

Therefore, the coefficient of the blurred step function will 

be 

 
𝑊𝑠

𝑛𝑓(𝑥) = 𝑓(𝑥) ∗ 𝑔𝜎(𝑥) ∗ 𝜓𝑠
𝑛(𝑥)

= 𝑠𝑛
𝜕𝑛−1𝐺√𝑠2+𝜎2(𝑥)

𝜕𝑥𝑛−1  
(21) 

 

The results with n=1 is similar to Ducottet work [26]. The 

response of the edge is related with the degree of smoothing 

𝜎 and scaling parameter s. The effect of pre-smoothing is 

agreed with the effect on the scale in wavelet coefficients. 

i.e. Both s and 𝜎 increase the degree of blurring signals. 

 

B. Line Edge Response 

In many cases, pulse shapes exist in signals. In the 

previous section, step response with and without smoothing 

function as a preprocessing method was discussed. In this 

section, the line edge response to proposed wavelet bases is 

presented. For beginning, let Π (
𝑥

∆𝑆
) be a pulse shape with 

zero center and width of  ∆𝑆. It can be introduced by 

shifting step function as follows 

 

Π (
𝑥

∆𝑆
) = 𝑢−1 (𝑥 +

∆𝑆

2
) − 𝑢−1 (𝑥 −

∆𝑆

2
) (22) 

 

Figure 4 shows a principle line edge shape with width of 

∆𝑆 [29, 30]. 

 

 

 

Figure 4: A line edge shape with width of ∆𝑆 

 

For defined new Gaussian wavelet functions, we have 

 

𝑊𝑠
𝑛𝑓(𝑥) = Π (

𝑥

∆𝑆
) ∗ 𝜓𝑠

𝑛(𝑥)

= 𝑠𝑛 (
𝑑𝑛−1𝑔𝑠 (𝑥 +

∆𝑆
2

)

𝑑𝑥𝑛−1

−
𝑑𝑛−1𝑔𝑠 (𝑥 −

∆𝑆
2

)

𝑑𝑥𝑛−1 ) 

(23) 

 

𝑊𝑠
𝑛 consists of two Gaussian derivations with the distance 

of ∆𝑆 from each other. Two Gaussian functions with the 

similar variance and the centric distance 𝑑 have a 𝑒
−

d2

4𝜎2 

percent surface overlap. 

 

𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
∫ 𝑔1(𝑥)𝑔2(𝑥)𝑑𝑥

+∞

−∞

∫ 𝑔1
2(𝑥)𝑑𝑥

+∞

−∞

= 𝑒
−

d2

4𝜎2 

(24) 

 

With increasing 𝑛, the width of 𝜓𝑠
𝑛(𝑥) will decrease and 

the overlap of two shifted Gaussian derivations are reduced. 

S
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Figure 5 illustrates the wavelet coefficients of the line edge 

for s=1,  ∆S =5s. 

 

 
Figure 5: Wavelet coefficients of line edge for s=1,  ∆S =5s 

 

The vibration in responses, increases with higher 𝑛. But in 

all of them, a zero-crossing occurs in the center point 𝑥 = 0. 

 

V. CONCLUSION 

 

In this paper, we developed the Canny edge detector and 

introduce new wavelet functions by derivations of the 

Gaussian smoothing filter. We proved that these new 

functions could be wavelet bases and have necessities of the 

wavelet functions. New wavelet bases are evaluated by 

Canny criteria (signal-to-noise ratio, localization and low 

spurious response) and results are given in relevant figures 

and tables. There are trade-off between the special and 

frequency filter width. To understand performance of 

introduced basis functions, the responses of two main edges, 

step and line are presented and effects of smoothing pre-

filter on the edge detection are formulated and discussed. 
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