
 ISSN: 2180 – 1843   e-ISSN: 2289-8131   Vol. 8 No. 4 1 

 

Reverse Engineering Mobile Apps for Model 

Generation Using a Hybrid Approach 
 

 

Ibrahim Anka Salihu, Rosziati Ibrahim 
Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Parit Raja, 

Batu Pahat, Johor, Malaysia. 

rosziati@uthm.edu.my 

 

 
Abstract—The popularity of mobile devices is ever increasing 

which led to rapid increase in the development of mobile 

applications. Model-Based testing can improve the quality of 

mobile application but the models are not always available or are 

of inadequate quality. Reverse engineering approaches are used 

to automatically generate model from the GUI of mobile 

applications for model-based testing. This paper proposes a 

hybrid approach for reverse engineering mobile applications 

which exploit the capabilities of both static and dynamic 

approaches while trying to maximize the quality of the generated 

models. The insight of this approach is to use static analysis on 

app’s source to identify supported events. The generated events 

can be used to dynamically explore an app at run-time to 

generate a state model of the app’s GUI. The preliminary results 

from our approach indicated that the technique can generate 

high quality models from android apps. 

 

Index Terms—GUI Model Generation; Mobile Apps; Model-

based Testing; Reverse Engineering.  

 

I. INTRODUCTION 

 

The growth in the number of computing devices has been 

dominated by smartphones and tablets in recent years [1]. 

Smartphones are used by many people for several 

computational tasks replacing personal and desktop 

computers. A recent study indicated that a total of 352 million 

smartphones (excluding china brands) were sold to users 

worldwide in the third quarter of 2015 and Android OS is 

leading with 84.7% [2]. The popularity of these devices lead 

to a rapid increase in the development of mobile applications 

to deal with different computational needs of their users [3]. 

The development of mobile applications has a significant 

impact from both economic and social perspectives. It has 

generated revenue of $4.5 billion in 2009, and a recent report 

estimated that the global applications business will be worth 

$77 billion by 2017 [4, 5].  

Mobile apps are recently increasing in capacity, 

functionality, structure and behavior [6], hence becoming 

more and more complex [5]. They are now used not only for 

entertainment or social networking but also in safety and 

critical domains, such as payment systems, mobile 

government, m-health initiatives, etc. [7-9]. The widespread 

reliance on mobile apps in everyday life poses significant 

concern on apps quality such as correctness, performance and 

security [10-13]. Furthermore, the increased complexity has 

brought several challenges for the software engineering 

researchers such as understanding apps behavior and testing 

[1, 14, 15]. Therefore, there is a demand for software 

engineering techniques and tools to support program 

understanding, analysis and testing task for mobile apps [8, 

16, 17]. 

Testing can play a significant role in improving the quality 

of software systems. Model-based testing is becoming 

increasingly popular among the software engineering 

community [18]. It is the automation of testing where the test 

execution is automatically derived from the model of a system 

under test (SUT). Model-based testing can enhance the 

creation of test scripts and test coverage of an application [19]. 

In order to benefit from model-based testing, there is a 

demand for techniques/tools to aid automated model 

generation to support analysis and testing tasks. However, 

building these models fully automatically for the Android apps 

remains challenging [20].  

Several techniques have evolved to deal with the challenges 

in automated GUI model generation such as [14, 15, 20, 21]. 

However, the models generated by existing techniques are 

incomplete due inability to explore apps state extensively [17, 

19]. There are numerous challenges which are associated with 

the nature of the Android platform (framework-based) where 

many of the app’s behaviors reside in the Android framework. 

Another challenge is the limitation with the reverse 

engineering approaches (static/dynamic) used in exploring the 

apps state. To deal with these challenges, we proposed a 

hybrid approach that combines static and dynamic analysis to 

improve the exploration of application’s state. Our proposed 

technique leverages the static analysis in GATOR which 

performs a control flow analysis on the source code of an app 

to generate control flow graph (CFG). The CFG will be used 

to extract all supported events which can be used for dynamic 

exploration.   

 

II. RELATED WORK 

 

Automated model generation from software applications is 

specifically a reverse engineering process. Reverse 

engineering is an act of analyzing a software system to extract 

design and implementation information and abstracting the 

information in the form of a model for easy understanding 

[22]. There are two approaches for reverse engineering; Static 

approach and dynamic approach. The static approach performs 

analysis on the application’s source code or binary code to 



Journal of Telecommunication, Electronic and Computer Engineering 

2 ISSN: 2180 – 1843   e-ISSN: 2289-8131   Vol. 8 No. 4  

extract information from an application [19]. It is particularly 

suitable for extracting information about the internal structure 

of a system and dependencies among structural elements [23]. 

Due to the object-oriented nature of GUI applications static 

analysis is not used widely in generating GUI model for 

testing. On the other hand, dynamic approach extracts 

information from an application by executing and analyzing 

its external behavior [19]. It is well suited for extracting the 

behavior of GUI applications [23]. The dynamic approach is 

widely used for reverse engineering GUI applications to 

generate models for testing an app.  

Most techniques for automated model generation for mobile 

apps are based on dynamic approach due to its ability to deal 

with the dynamic behavior of GUI apps. One of the earliest 

technique is GUI ripping [24], an automated GUI model 

exploration technique for test case generation. GUI ripping 

generates model from an app by automatically executing and 

exploring the applications’ GUI by opening all its windows 

and extracting all their widgets (GUI objects), with their 

properties, and values. It extracts both the structure and 

execution behavior of the GUIs as GUI tree and event flow 

graph respectively. The GUI ripper is implemented in 

GUITAR tool [25]. An extension of the tool has been 

proposed for the Android apps known as Android GUITAR 

[26]. GUITAR produces many false event sequences which 

may need to be weeded out later and it is not able to explore 

all the GUIs due to infeasible paths, such as when the 

visibility of some windows depends on other windows. 

Amalfitano et al. [20] proposed GUI Ripper that was 

implemented in AndroidRipper tool for automated testing of 

Android apps. It is based on a crawler that automatically 

crawls an app GUI to generate test cases for regression test 

and crash testing. Due to the challenges of a fully automatic 

analysis to generate models from executing GUI, the Android 

Ripper tool is mainly designed to automatically traverse the 

application’s UI to generate and execute test but not to 

develop a re-usable models of the app. Joorabchi and Mesbah 

[27] proposed ICRAWLER that is much similar to GUI 

Ripper and CRAWLJAX [28], dedicated to iOS applications. 

Some UI elements such as toolbar, slide bar, search bar, and 

advance gestures such as swiping pages and pinching are not 

supported by ICRAWLER. Android Automatic Testing Tool 

(A2T2) [29] is an extension of the crawling technique in [28] 

for the reverse engineering of android apps. The tool 

dynamically reverse engineers an app and automatically builds 

models representing the structure and behavior of the app’s 

GUI. The models generated are GUI tree and state machine 

models respectively. The state machine model can be used for 

model-based testing. The tool can only extract a small set of 

widgets of an Android app. 

ORBIT tool [15] integrated both static and dynamic analysis 

to generate a state model from android applications. It 

performs static analysis on the source code of an app to 

generate set of user actions supported by an app. It identifies 

listener objects and performs a backward slice to track the 

view ids of the GUI associated with the listeners. A dynamic 

crawler (built on top of Robotium) is used to fire actions on 

the GUI objects. This generates a state model that can be used 

for generating test cases. However, creating a list of actions 

that can be fired on the GUIs can lead to exploring merely a 

subset of GUI states. 

Azim and Neamtiu [14] proposed Automatic Android App 

Explorer (A3T), a technique based on hybrid static and 

dynamic analysis that automatically explores an apps running 

on real phone or an emulator. The static analysis on A3E is 

specifically a data flow analysis (taint tracking) on the 

bytecode of an app to construct static activity transition graph 

(SATG) with nodes representing activities and edges showing 

the possible transitions between the activities (UI screens). It 

uses the SATG as input for automatic exploration of an app. 

The automatic explorer rips an app using Troyd tool which is 

based on Robotium to extract GUI elements which are used to 

fire events on an app. A3E is designed to automatically 

generate test cases that can be used to test an application but 

does not store re-usable models. 

 

III. DISCUSSION 

 

The static and dynamic approaches for reverse engineering 

GUI applications have numerous strengths and weaknesses. 

The static approach is capable of retrieving more accurate and 

complete information from an application but the dynamic 

object-oriented nature of GUI applications can sometimes 

complicates the analysis, which makes it very difficult or even 

impossible to retrieve comprehensive information about the 

behavior of GUIs by just analyzing their source code [6, 29]. 

This is because access to some components depends on other 

components and some components are only reachable from a 

particular state. In addition, information about overlapping 

windows is not accessible using static analysis. On the other 

hand, the dynamic approach to reverse engineering could be 

easier in analyzing the dynamic behavior of GUI applications. 

However, the information extracted by pure dynamic 

approaches is incomplete which affects the quality of model 

generated [19, 30, 31]. The most challenging issue with any 

dynamic reverse engineering technique is the difficulty in 

selecting inputs that can be used in controlling the model 

exploration [15, 19, 30]. Another issue is the scalability that is 

associated with large amounts of data collected at run-time.  

Table 1 shows the results of comparative analysis of mobile 

apps reverse engineering tools from our earlier work in [36]. 

This has presented the techniques used by the tools and the 

limitations with the current tools. As shown in the table most 

of the available techniques are based on dynamic approach 

using GUI ripper or crawler for the exploration. Though, 

dynamic approaches have shown good result in reverse 

engineering the behavior of GUI applications, the models 

generated by dynamic approach are incomplete. This 

highlights the limitation of using ripper or crawler to find 

actions/events and dynamically explore/crawl an application. 

On the other hand the hybrid static/dynamic approach can 

provide better result as it eliminates the problem of identifying 

events to fire. Several researchers believed that, using static 

analysis on source code to supply meaningful inputs for the 

dynamic exploration can ensure comprehensive coverage of 

GUI apps for the generation of complete and high quality 

models [1, 19, 32]. 

 



Reverse Engineering Mobile Apps for Model Generation Using a Hybrid Approach 

 ISSN: 2180 – 1843   e-ISSN: 2289-8131   Vol. 8 No. 4 3 

 

Table 1:  Comparative analysis of mobile apps reverse engineering tools 
 

Author Tool Technique Approach Advantage Limitation 

Atif Memon et al. 

(2003) 

Android 

GUITAR 
GUI Ripping 

Dynamic 

analysis 

Facilitates model generation for 

MBT 

Information retrieve is Incomplete with 

several false states 
Domenico 

Amalfitano et al. 

(2011) 

A²T² GUI Crawling 
Dynamic 
analysis 

Ability to recognize when two 
interface are equivalent 

Manages only a subset of the possible 
Widgets 

Amalfitano, D. et 

al. (2012) 

Android 

Ripper 
GUI Ripping 

Dynamic 

analysis 

Emphasis on reducing false 

event sequence in data extracted 

It designed to detect bugs based on event 

traces, does not create re-usable models 

Yang et al. (2013) ORBIT GUI Crawling 
Static and 
Dynamic 

Identify supported actions using 
static analysis 

Order of event sequence is not controlled 
and no support for complex gesture 

Azim, T. and I. 

Neamtiu. (2013) 
A3T 

Systematic  

Exploration using an 
explorer 

Static and 

Dynamic 

Identify all activities and their  

transition using static taint 
analysis 

Some gesture events are not covered and 

it does not generate re-usable models 

 

 

The recent tools based on hybrid approach are ORBIT and 

A3E but these tools are also not optimal. The static analysis in 

ORBIT does not capture the general flow of GUI objects and 

the behavior of callback request. However, the behavior of 

callback request can certainly modify GUI states, therefore it 

is essential to track them.  In A3E the analysis does not 

capture menus/dialogs, it is also unclear how the analysis 

models arbitrary GUI objects and handlers associated with an 

activity. In conclusion, few techniques exist for automated 

model generation from mobile apps. Nonetheless, the quality 

of models generated by the techniques is still inadequate. 

Therefore, there is need to improve the quality of models 

generated by automated techniques for model-based testing of 

mobile apps and this is the goal of our work. 

 

IV. METHODOLOGY 
 

A. Overview of Android Applications 

Android apps are developed in Java and compiled to .dex 

file which run on a special virtual machine called Dalvik 

Virtual Machine. They are distributed as apk files, as such the 

source code is not always available. An app comprises of one 

or several activities and the activity component present the 

visual interface screen (window) which a user can interact 

with. The Activity acts as a container for typical GUI elements 

(test boxes, check boxes etc). An activity instance can 

programmatically start another activity which is usually 

referred to as intent in the android framework. Two types of 

events are supported on android apps. User events that can be 

fired on the user interface objects which are implemented by 

event handlers and system events that are implemented by the 

lifecycle callback methods from the android framework or as a 

result of interrupt message from other system component. 

Android apps also support a wide range of user gestures such 

as long-press, double-taps, swiping, pinching etc. by using the 

Gesture Detector class in the framework. Furthermore, there 

are dialogs and fragments which are added to the view of a 

running app automatically. Their behavior is determined and 

controlled by the parent activity that they are attached to. They 

affect the lifecycle and state of events in Android. As Android 

programming model is based on callback methods, therefore, 

analyzing them will guarantee understanding and exploration 

of more app’s state. 
 

 

 

 

B. Proposed approach 

The aim of this work is to improve the quality of models 

generated from the GUI of Android applications. Our 

approach is based on static analysis of application’s GUI 

source code for the extraction of information and used the 

information for the dynamic exploration of the app at run-time 

to generate a model. Figure 1 presents an overview of the 

propose approach.  
 

 

 

Figure 1:  The proposed framework  
 

In the first stage, we leverage GATOR [33], a static analysis 

tool to analyze the source code of an app. It is suitable for 

control flow analysis of traditional java applications and 

Android apps [13]. This is due the observation that life cycle 

callback define major changes to the visible states of 

activities, dialogues, and menus, and to the possible runtime 

events. The tool constructs callback control flow graph from 

app’s source code. Our event mapping algorithm uses the 

generated graph as input to generate a list of all events (user 

and system events) supported by an application. 

The event mapping algorithm traverse the graph to identify 

all edges in the graph in line 3 and for all edges it will 

backtrack to identify the source of event in line 5 of the 

algorithm. For all the sources (nodes), the algorithm extracts 

GATOR

 Control Flow 
Graph

Intent Passing Logic

Event Mapping 
Algorithm

Events list

Event Tracker

Dynamic Crawler 

Crawling with 
Greedy Algorithm 

Robotium 

Android Run-time

Android APK GUI state 
Model 

AMOGA

S
o

u
rc

e
 C

o
d

e
D

e
p

lo
y

 



Journal of Telecommunication, Electronic and Computer Engineering 

4 ISSN: 2180 – 1843   e-ISSN: 2289-8131   Vol. 8 No. 4  

the triggers of events in line 7 and further extracts the views 

and ids of the views in line 8-9 and adds it to the event list. 

The output (list of events) from the algorithm will be used as 

input for the dynamic exploration in second stage of our 

approach. The second stage involves run-time exploration of 

an app to records it’s states using Robotium framework [34] 

which is specifically designed for the testing of Android 

applications. Robotium uses crawler to identify and fire GUI 

events on a running application. GUI crawlers usually used 

Depth First Search (DFS) or Breadth First Search algorithms. 

However due to the limitation with DFS and BFS algorithms 

in exploring graphs such as selecting which path to explore 

and when the processing time is limited [35], we proposed 

greedy algorithm to improve the exploration. The algorithm 

will read the events list from the event mapping algorithm and 

dynamically exercise all events on the running app to explore 

the states of events. 

 
Algorithm 1. Event mapping  

Input: CCFG g = (N,E) 
Output: eventsList 

1  Procedure EventMapping(g) 
2   EventsList el  ←  EdgesInGraph() 

3   Edge  ←  getAllEdges(g)   

4   for all edges E ∈ EdgeSet do 
5          eventHandler h  ← getSourceOfEdge(E)  

6                  foreach h ∈ evenHanlerSet do 
7              t  ← find trigger(h)  
8  v  ← getwidget(t) 

9  id  ← getParameter(v) 

10  el.add(E, id) 
11   end 

12   end 

13  end  

                             

 

V. RESULTS 
 

Our approach will be validated on a number of different 

mobile applications from the Google play store. Good 

candidates to be assessed by the approach are Android native 

apps. In our experiments, we are using apps that are used by 

previous techniques [14, 15] for the analysis and the result will 

be compared with the results from existing techniques. We 

generated control flow graph of an application using GATOR. 

The event mapping algorithm is implemented on the graph to 

traverse and extract all events with their ids. We have 

generated a comprehensive list of events supported by an 

application which is represented as a queue. This will further 

be used as input for the run-time exploration in the dynamic 

analysis stage. The results from the static analysis stage 

indicated that the approach is promising for the generation 

high quality models.  
 

VI. CONCLUSION 
 

The popularity of model-based testing is ever increasing 

nowadays. In view of this, generation of high quality models 

from apps is necessary to support test automation for mobile 

apps. In this paper we have proposed a static/dynamic hybrid 

approach for the reverse engineering of mobile apps that has 

the potential to explore and app to generate high quality model 

that can be used for model-based testing of mobile apps. At 

this level we have extracted a comprehensive list of events 

from an app using static analysis on the source code. Our next 

state is to dynamically run these events on an app to 

automatically explore its states transition.  
 

ACKNOWLEDGEMENT 
 

We would like to acknowledge the support from UTHM in 

undertaking the research, under the Graduate Research 

Incentive Grants (GIPS), Vote U308, Universiti Tun Hussein 

Onn Malaysia. 
 

REFERENCES 
 
[1] Yang, S., et al. Static control-flow analysis of user-driven callbacks in 

Android applications. in International Conference on Software 

Engineering (ICSE). 2015. 
[2] Gartner, I., "Worldwide Smartphone Sales", June, 2015. 

http://www.gartner.com/newsroom/id/3061917.    

[3] Nayebi, F., J.-M. Desharnais, and A. Abran. The state of the art of 
mobile application usability evaluation. in CCECE. 2012.  

[4] Gartner, I., Mobile Apps Will Be a Vehicle for Cognizant Computing, 

June 2015. http://www.gartner.com/newsroom/id/2654115.  
[5] Minelli, R. and M. Lanza. Software Analytics for Mobile Applications-

Insights & Lessons Learned. in Software Maintenance and 
Reengineering (CSMR), 2013 17th European Conference on Software 

Maintenance and Reengineering. 2013.  

[6] Islam, R., R. Islam, and T. Mazumder, Mobile application and its global 
impact. International Journal of Engineering & Technology (IJEST), 

2010.  

[7] Wasserman, A.I. Software engineering issues for mobile application 
development. in Proceedings of the FSE/SDP workshop on Future of 

software engineering research. 2010. ACM.  

[8] Muccini, H., A. Di Francesco, and P. Esposito. Software testing of 
mobile applications: Challenges and future research directions. in 7th 

International Workshop on  Automation of Software Test (AST),. 2012. 

IEEE. 
[9] Payet, É. and F. Spoto, Static analysis of Android programs. Information 

and Software Technology, 2012. 54(11): p. 1192-1201.  

[10] Hu, C. and I. Neamtiu. Automating GUI testing for Android 
applications. in Proceedings of the 6th International Workshop on 

Automation of Software Test. 2011. ACM.  

[11] Bhattacharya, P., et al. An empirical analysis of bug reports and bug 
fixing in open source android apps. in Software Maintenance and 

Reengineering (CSMR), 2013 17th European Conference on. 2013. 

IEEE. 
[12] Enck, W., et al., TaintDroid: an information-flow tracking system for 

realtime privacy monitoring on smartphones. ACM Transactions on 

Computer Systems (TOCS), 2014. 32(2): p. 5. 
[13] Rountev, A. and D. Yan, Static Reference Analysis for GUI Objects in 

Android Software, in Proceedings of Annual IEEE/ACM International 

Symposium on Code Generation and Optimization. 2014, ACM: 
Orlando, FL, USA. p. 143-153. 

[14] Azim, T. and I. Neamtiu. Targeted and depth-first exploration for 

systematic testing of android apps. in Proceedings of the 2013 ACM 
SIGPLAN international conference on Object oriented programming 

systems languages & applications. 2013. ACM. 

[15] Yang, W., M.R. Prasad, and T. Xie, A grey-box approach for automated 
GUI-model generation of mobile applications, in Fundamental 

Approaches to Software Engineering. 2013, Springer. p. 250-265. 

[16] Dehlinger, J. and J. Dixon. Mobile application software engineering: 
Challenges and research directions. in Workshop on Mobile Software 

Engineering. 2011.  

[17] Janicki, M., M. Katara, and T. Pääkkönen, Obstacles and opportunities 

in deploying model‐based GUI testing of mobile software: a survey. 
Software Testing, Verification and Reliability, 2012. 22(5): p. 313-341.  

[18] Young, M., Software testing and analysis: process, principles, and 

techniques. 2008: John Wiley & Sons.  
[19] Kull, A. Automatic GUI Model Generation: State of the Art. in Software 

Reliability Engineering Workshops (ISSREW), 2012 IEEE 23rd 

International Symposium on. 2012. 



Reverse Engineering Mobile Apps for Model Generation Using a Hybrid Approach 

 ISSN: 2180 – 1843   e-ISSN: 2289-8131   Vol. 8 No. 4 5 

[20] Amalfitano, D., et al., Using GUI ripping for automated testing of 

Android applications, in Proceedings of the 27th IEEE/ACM 
International Conference on Automated Software Engineering. 2012, 

ACM: Essen, Germany. p. 258-261. 

[21] Aho, P., et al. Automated Java GUI Modeling for Model-Based Testing 
Purposes. in Information Technology: New Generations (ITNG), 2011 

Eighth International Conference on. 2011.  

[22] Cipresso, T. and M. Stamp, Software Reverse Engineering, in Handbook 
of Information and Communication Security. 2010, Springer. p. 659-

696.  

[23] Grilo, A.P., A.R. Paiva, and J.P. Faria. Reverse engineering of GUI 
models for testing. in Information Systems and Technologies (CISTI), 

2010 5th Iberian Conference on. 2010.  

[24] Memon, A., I. Banerjee, and A. Nagarajan. GUI ripping: Reverse 
engineering of graphical user interfaces for testing. in 10th Working 

Conference on Reverse Engineering (WCRE 2003). 2003. IEEE 

Computer Society.  
[25] Nguyen, B., et al., GUITAR: an innovative tool for automated testing of 

GUI-driven software. Automated Software Engineering, 2014. 21(1): p. 

65-105. 
[26] Memon, A., AndroidGUITAR. http://sourceforge.net/apps/ mediawiki/  

guitar/index.php?title=Android_GUITAR, 2011.  

[27] Joorabchi, M.E. and A. Mesbah. Reverse engineering iOS mobile 
applications. in Reverse Engineering (WCRE), 2012 19th Working 

Conference on. 2012. IEEE.  

[28] Mesbah, A., A. van Deursen, and S. Lenselink, Crawling Ajax-Based 

Web Applications through Dynamic Analysis of User Interface State 
Changes. ACM Trans. Web, 2012. 6(1): p. 1-30.  

[29] Amalfitano, D., A.R. Fasolino, and P. Tramontana. A gui crawling-

based technique for android mobile application testing. in Software 
Testing, Verification and Validation Workshops (ICSTW), 2011 IEEE 

Fourth International Conference on. 2011. IEEE.  

[30] Silva, C.E. and J.C. Campos, Combining static and dynamic analysis for 
the reverse engineering of web applications, in Proceedings of the 5th 

ACM SIGCHI symposium on Engineering interactive computing 

systems. 2013, ACM: London, United Kingdom. p. 107-112.  
[31] Coimbra Morgado, I., A.C. Paiva, and J. Pascoal Faria, Dynamic 

Reverse Engineering of Graphical User Interfaces. International Journal 

On Advances in Software, 2012. 5(3 and 4): p. 224-236.  
[32] Aho, P., T. Raty, and N. Menz. Dynamic reverse engineering of GUI 

models for testing. in Control, Decision and Information Technologies 

(CoDIT), 2013 International Conference on. 2013.  
[33] GATOR: Program Analysis Toolkit For Android. 

web.cse.ohiostate.edu/presto/software/gator.  

[34] GoogleCode, Robotium. http://code.google.com/p/robotium.  
[35] Salva, S. and S.R. Zafimiharisoa, Model Reverse-engineering of Mobile 

Applications with Exploration Strategies. In Proceedings of the 9th 

International Conference on Software Engineering Advances (ICSEA), 
October 12-16, 2014, Nice, France., 2014. 

[36] Salihu, I.A. and R. Ibrahim, Comparative Analysis of GUI Reverse 

Engineering Techniques, in Advanced Computer and Communication 
Engineering Technology. 2016, Springer. p. 295-305. 

 

 


