

 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 9 No. 2 53

Implementation of Turbo Code with Early Iteration

Termination in GNU Radio

Salija P, Yamuna B
Department of Electronics and Communication Engineering,

Amrita School of Engineering, Coimbatore,

Amrita Vishwa Vidyapeetham,

Amrita University, India.

p_salija@cb.amrita.edu

Abstract—Wireless communication systems demand energy

efficient and performance optimized error correction scheme.

Turbo code, an iterative error correction code, shows strong

error correction capability. Many wireless communication

systems use Turbo code in their standards due to its near ideal

performance. The iterative nature of Turbo decoder introduces

additional computations, decoding delay, and power

consumption. The number of iterations required to obtain the

desired output varies with the channel conditions. Early

iteration termination at appropriate time reduces the

computational complexity without performance degradation.

An early iteration termination based on the absolute value of

the mean of extrinsic information has been proposed recently.

This technique efficiently terminates the iteration at low and

high SNR conditions and also minimizes the half iterations.

Software Defined Radio (SDR), a communication system

technology, is a common platform that supports various

standards. GNU Radio is the software part of SDR that allows

implementing various features of communication systems. A

low complex Turbo decoder in GNU Radio along with

Universal Software Radio Peripheral (USRP) helps to

implement real time applications with low decoding delay and

reduced complexity. In this paper, Turbo CODEC with early

iteration termination has been implemented in GNU Radio

platform.

Index Terms—Early Iteration Termination; Turbo Codes;

GNU Radio.

I. INTRODUCTION

Turbo code is an attractive error correction code with wide

applications in communication systems because of its near

Shannon’s limit performance [1]. The strong error

correcting performance of Turbo code is due to the

Recursive Systematic Convolutional (RSC) encoders

separated by an interleaver and the iterative Turbo decoding

operation [2], [3], [4]. Iterative nature of Turbo code

introduces additional computational complexity and leads to

decoding delay and power consumption [5]. This is because

the decoder needs to perform a certain number of iterations

to obtain a tolerable error rate; the number of iterations

required depends upon the channel conditions and the block

size [6]. In a standard Turbo decoder, the process of

decoding is iteratively carried out for a fixed number of

iterations. As the number of iterations increases, the error

correction performance also increases, but with a

corresponding increase in computational complexity. The

selection of the number of iterations involves a tradeoff

between performance and complexity. The necessity of

early iteration termination arises when the desired

performance is reached well before the final iteration or

when there is no scope of performance improvement even

with infinite iterations [7]. Early iteration termination in

such scenario reduces decoding delay and power

consumption.

The importance of SDR in wireless communication has

been realized in recent years. SDR implements significant

aspects of physical layer functionality in software rather

than hardware [8]. It is easier to modify and upgrade the

functionality in software than hardware. SDR supports

multiple modes, multiple bands and different standards in a

single platform and allows the dynamic selection of

parameters for the modules such as channel coding,

modulator/demodulator, multiplexing/de-multiplexing and

signal generation. The wireless communication applications

demand an integration of various features and a reduction in

power consumption. Many wireless communication

standards include Turbo codes are used in real time and for

broad band communication applications [9],[10],[11]. Turbo

decoder consumes most of the power and is responsible for

the decoding delay due to the iterative nature of decoding

operation. Functionality in most of the devices is limited by

the available power especially in resource constrained

networks [12]. A suitable iteration termination technique

reduces the computational complexity, and hence power

consumption and decoding delay. Early iteration termination

based on the absolute value of the mean of extrinsic

information is a simple and efficient method to reduce the

additional complexity without performance degradation.

This technique is applicable at low and high SNR conditions

and minimizes the half iteration computations. There is a

clear need for Turbo decoder block with reduced complexity

and acceptable performance level in GNU Radio, which can

be used for real time application [13].

In this paper, we focus on the creation and

implementation of a Turbo CODEC block with early

iteration termination in GNU Radio platform. The paper is

organized as follows: Section II presents the overview of the

Software Defined Radio (SDR) Platform. Section III deals

with the Turbo code operation and MAP algorithm. The

concept of early iteration termination in Turbo code and the

early iteration termination based on the absolute value of the

mean of extrinsic information is presented in section IV.

Section V shows the results and discussion followed by

conclusion in section V.

Journal of Telecommunication, Electronic and Computer Engineering

54 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 9 No. 2

II. SOFTWARE DEFINED RADIO PLATFORM

In wireless communication systems, the size, cost, and

competitions introduce limitations in implementing new

systems on hardware in order to support various standards.

The proliferation of wireless communication standards

requires more flexible designs [5]. SDR implements most of

the physical layer functionality in software, and hence helps

to upgrade the system by software modifications. SDR is a

communication system technology that supports various

standards, different functionalities like modulation/

demodulation, encoding/decoding, multiplexing/

demultiplexing etc., all with great implementation flexibility

[14]. System upgradation with reduced cost, reduced

hardware dependency and compatibility issue, and

implementation of different functionalities are the facilities

of SDR. Hardware and software co-designs are necessary to

implement SDR applications [15]. The block diagram of

SDR is shown in Figure 1.

Figure 1: SDR Block diagram [5]

The Radio Frequency (RF) section is responsible for two

tasks namely, the transmission and reception of radio signals

and the conversion of the RF signals to the Intermediate

Frequency (IF) at the receiver side and IF signals to RF

signals at the transmitter side. IF section performs the

Digital Up Conversion (DUC) and Digital to Analog

Conversion (DAC) at the transmitter side and the Digital

Down conversion (DDC) and Analog to the Digital

conversion(ADC) at the receiver side. Base band section

incorporates the features of blocks on software and performs

according to the demand of the applications.

GNU Radio is an open source and free software package

consisting of various blocks and allows the creation of new

blocks. Various signal processing blocks can be built and

modified on GNU Radio platform depending on the

application. GNU Radio consists of different signal

processing blocks, and flow graph connects the different

signal processing blocks to implement different features

according to the demand [16]. Blocks are interconnected

using Python flow. It can be interfaced with the external

hardware component in order to transmit/receive signal.

USRP - the hardware component - used in SDR allows the

real time implementation of any communication system

[13].

III. TURBO CODE

Turbo code is a practical Forward Error Correction Code

(FEC) with strong error correction capability. Turbo code

forms a class of iterative channel codes with wide

applications in communication systems despite its

computational complexity.

The major applications of Turbo codes are in mobile

communication, deep space communication, wireless sensor

networks, video conferencing [17], Orthogonal Frequency

Division Multiplexing (OFDM), and Wireless Metropolitan

Area Networks (WMAN) [18],[19],[11]. Turbo code has

improved channel quality interaction in satellite

communication and is adapted in Mars Reconnaissance

Orbiter [20]. Digital Video Broadcast (DVB-T) standard,

telemetry coding standard by the CCSDS, High-Speed

Downlink Packet Access (HSDPA), WiMax, and IEEE

802.11n are the key associated standards. W-CDMA (3rd

Generation Partnership Project (3GPP)), and Universal

Mobile Telecommunications System (UMTS), Long Term

Evolution (LTE) and CDMA2000 ([21], [22]) standards also

incorporate Turbo code.

A. Turbo Encoder

Turbo encoder requires at least two RSC encoders with an

interleaver separation [23]. The Turbo encoder produces

systematic output and parity outputs. If necessary, data rate

can be changed by applying puncturing at the output of the

encoder. Since the probability of the two RSC encoders

producing a low weight codeword is low, the concatenated

codeword would be a high weight codeword [24]. This

contributes to the superior performance of Turbo code.

B. Turbo Decoder

Soft Input Soft Output (SISO) algorithms like Maximum

A Posteriori (MAP) or Soft Output Viterbi Algorithm

(SOVA) of the Turbo decoder computes the Log Likelihood

Ratios (LLR) of each of the received bits. The generic block

diagram of Turbo decoder is shown in Figure 2.

Figure 2: Turbo Decoder [24]

The inputs to the SISO decoders are the received

systematic information, received parity information and

apriori information from the other component decoder [25].

SISO decoders generate extrinsic aposteriori information

from the received information and apriori information.

During the first iteration, apriori information for SISO

Decoder-1 was set to zero. The first SISO decoder generates

extrinsic aposteriori information from the received

systematic and parity information and passes this extrinsic

information to the next component decoder as apriori

General

purpose

PC

DAC

AD

C

DDC

DU

C

RF Section IF Section Baseband

Section

T
ra

n
sm

it
te

r/
 R

ec
ei

v
er

General

purpose

PC

La
2 (uk)

𝑦𝑠

La
1 (uk)

Le
1 (uk) 𝑦𝑝1

𝑦𝑝2

SISO

Decoder-1
Interleaver

Le
2 (uk)

Interleaver

SISO

Decoder-2

De interleaver

Final Estimate

Hard Decision

De interleaver

Implementation of Turbo Code with Early Iteration Termination in GNU Radio

 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 9 No. 2 55

information after interleaving. Similarly, the aposteriori

information from the second SISO decoder is passed to the

first SISO decoder after de-interleaving. This process

continues till the maximum number of iteration is reached

[23].

C. MAP Algorithm

MAP algorithm also known as BCJR algorithm [23],

outperforms SOVA under low noise conditions and has

excellent error correction capability with reasonable

complexity. Log Likelihood Ratio (LLR) for each of the

received information bit was calculated using MAP

algorithm.

 The procedure for calculating the LLR values is given in

Table 1. Let 𝑢 = [𝑢1, 𝑢2 … 𝑢𝑛] be the data sequence encoded

and transmitted through the noisy channel. Let 𝑦 =
[𝑦1 , 𝑦2 … 𝑦𝑛] be the corresponding received information

from the channel at the receiver. The procedure includes the

calculation of branch metric, forward metric and backward

metric.
Table 1.

MAP Algorithm [23]

1. Initialize the forward metric value and backward metric value as
follows,

 𝛼0(𝑠) = {
1 , 𝑠′ = 0
0, 𝑠′ ≠ 0

 𝛽𝑛(𝑠) = {
1 , 𝑠′ = 0
0, 𝑠′ ≠ 0

2. The branch metric from one state to next state transition is calculated as

follows:

γ
k

(s′, s) = e
ukLa(uk)

2 e
(

Lc
2

)yk.xk (1)

 Where: Lc =
4Ec

N0
, is the channel reliability factor

 s′ and s represent the previous state and present state
respectively.

3. The forward metric for the kth node is calculated as given below,

αk+1(s) = ∑ γ
k

(s′, s)αk

s∈ωk

(s′) (2)

4. The backward metric for the kth node is calculated as given below:

β
k

(s′) = ∑ γ
k

(s′, s)β
k+1

(s)

s′ϵωk+1

 (3)

5. Aposteriori Probability LLR values related to each received information

bit can now be calculated as:

 𝐿𝑢𝑘 = 𝑙𝑛 (
∑ 𝛼𝑘(𝑠′)𝛾𝑘(𝑠′, 𝑠)𝛽𝑘+1(𝑠)(𝑠′,𝑠)∈∑ .+

𝑘

∑ 𝛼𝑘(𝑠′)𝛾𝑘(𝑠′, 𝑠)𝛽𝑘+1(𝑠)(𝑠′,𝑠)∈∑ .−
𝑘

) (4)

MAP algorithm is associated with several computations;

one variant of MAP algorithm to reduce the intensive

mathematical calculations is the LOG-MAP algorithm. This

uses the following approximation function to perform the

decoding operation.

max∗(x, y) = ln(ex + ey) = max(x, y) + ln(1 + e−|x−y|) (5)

Another popular variant of MAP algorithm is the MAX-

LOG-MAP algorithm which uses the approximations;

max∗(x, y) = ln(ex + ey) = max(x, y) (6)

MAX-LOG-MAP algorithm reduces the computational

complexity with performance degradation when compared

to the MAP and LOG-MAP algorithm.

IV. EARLY ITERATION TERMINATION

Turbo decoding algorithm is associated with the large

computational complexity and each iteration introduces

additional decoding complexity, decoding delay and power

consumption ([5],[26]). One of the major challenges in

wireless communication is to establish energy efficient

transmission without performance degradation. In resource-

constrained networks, functionality is limited by the

available power. Real time applications and multimedia

applications require Turbo decoding with reduced latency.

One efficient and simple technique to reduce the

computational complexity is to terminate the iteration at the

appropriate time, when further iteration provides little or no

improvement. MAP or LOG-MAP algorithm itself is

computationally complex and each iteration introduces

additional computational complexity to Turbo decoder. The

iteration number required to attain the desirable result

depends on the channel conditions. If the channel conditions

are good, only a few iterations are required for the decoding

to converge, but if the channel conditions are bad further

improvement is negligible even after infinite iterations.

Sometimes errors will reduce to an acceptable level and

again appear to increase with additional iterations. If the

iteration is terminated at appropriate time, reduction in

computational complexity can be achieved without

performance degradation [27]. An efficient early iteration

termination technique reduces the decoding delay, power

consumption, error accumulation, computation complexity

associated with the decoding and improves the throughput

by decoding more number of data blocks [6].

The objective of the early termination is to reduce the

unnecessary computations which does not contribute to

further improvement in error correction performance.

Standard Turbo code performs fixed number of iterations at

any channel conditions. Under low noise conditions error

correction performance improvement between successive

iterations is negligible. At high SNR conditions, only a few

iterations are required to obtain the desired output and

further iterations provide no improvement in error

correction. An efficient early termination technique capable

of terminating iterations at low and high SNR conditions

would be optimum in terms of performance and complexity.

Figure 3 shows the plot of average number of iterations for

different SNRs [28].
The horizontal line in Figure 3(a) shows that the decoder

goes through fixed number of iteration as in a standard

Turbo code irrespective of channel conditions. Whereas

curved line shows the actual number of iterations required to

obtain desired output depending on the channel conditions.

However, at low SNR the desired output is never reached

even after infinite iterations; at high SNR less number of

iterations are required than the fixed number to obtain the

desired output. Figure 3(b) shows the iteration termination at

high SNR conditions, without going up to the maximum

number of iterations. Figure 3(c) shows the iteration

termination at low and high SNR conditions. At low SNR

conditions, decoding is terminated after a few iterations

since the desired output is never reached even after the fixed

number of iterations. As SNR increases, the iterations stop

at proper time because the desired output is reached early.

Iteration termination at low and high SNR conditions

reduces the computational complexity without performance

degradation.

Appropriate iteration termination leads to reduction in half

iteration computations. An early iteration termination

technique for Turbo code at proper time, which saves the

half iteration computation at low and high SNR conditions

without degrading the performance remains a challenge. An

Journal of Telecommunication, Electronic and Computer Engineering

56 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 9 No. 2

efficient and simple early iteration termination technique

based on absolute value of the mean of extrinsic information

[27] is implemented in GNU Radio.

Figure 3: Average iterations required for, a) Fixed number of iteration,

b) high SNR conditions, c) high and low SNR conditions.[28]

A. Absolute value of the Mean of Extrinsic Information

Based Iteration Termination in GNU Radio

An efficient early iteration termination technique reduces

additional decoding delay and computational complexity.

This paper focuses on implementing an efficient early

iteration termination in GNU Radio. An efficient early

iteration termination technique, which is capable of

terminating at low and high SNR conditions and also save

half iteration is an important requirement in GNU Radio to

minimize the decoding delay and computational complexity

in real time implementations using USRP. Existing Turbo

decoder block in GNU Radio does not incorporate early

iteration termination. Early iteration termination technique

based on absolute mean value of extrinsic information is

implemented in GNU Radio. The early iteration termination

technique uses the extrinsic information output from both

component decoders to stop the iteration at appropriate time.

The early iteration termination based on absolute value of

the mean of extrinsic information terminates when further

iteration provides no improvement or when the desired

output is obtained from any of the component decoders.

The Turbo CODEC with early iteration termination

implemented in GNU Radio will reduce the decoding delay

as well as computational complexity and can integrate with

USRP for real time applications.

The early iteration termination implemented in GNU

Radio is based on the extrinsic information [27]. Extrinsic

information greatly influences the final decoding decision.

At low SNR conditions, the extrinsic information at both

component decoders does not vary between iterations and

for high SNR conditions, the extrinsic information at both

component decoder output increases with iterations. The

mean value of the extrinsic information also varies

according to that of extrinsic information. Mean value of the

extrinsic information is calculated at the output of both

component decoders and decision on early iteration

termination is made based on the absolute value of the

calculated mean.

Absolute value of the mean is calculated at the output of

both the component decoders at ith iteration and compared

with a predefined threshold Th1 as in Equation (7):

𝑎𝑏𝑠(𝑀𝐸𝐴𝑁(𝑖)) ≥ 𝑇ℎ1 (7)

If the condition in Equation 7 is satisfied, iteration stops;

otherwise, it compares the calculated mean value at ith

iteration with the previous one as in Equation (8):

𝑎𝑏𝑠 (𝑀𝐸𝐴𝑁(𝑖) − 𝑀𝐸𝐴𝑁(𝑖 − 1)) ≤ 𝑇ℎ2 (8)

If the condition in Equation 8 is satisfied, the iteration

stops. There is a tradeoff between performance and

complexity in choosing these threshold values. As Th1 value

increases, complexity increases correspondingly with the

improvement in performance. Similarly, as Th2 reduces,

complexity increases and performance improves. The

algorithm for early iteration termination based on absolute

value of the mean of extrinsic information is given in Table

2 [27].

Table 2.

Algorithm [27]

Initialization: i=1; STOP=1; Set imax

WHILE (STOP OR i ≤ imax)

Perform the ith iteration for component decoder 1
Calculate, MEAN1, mean of extrinsic information at the output of

component decoder-1;

IF abs(MEAN1)(i) ≥ Th1
STOP = 0;

END IF

IF i >1 && abs(MEAN1(i) - MEAN1(i-1)) ≤ Th2
STOP = 0;

END IF

Perform the ith iteration for Turbo decoder 2
Calculate, MEAN2, mean of extrinsic information at the output of

component decoder-2;

IF abs(MEAN2(i)) ≥ Th1
STOP = 0;

END IF

IF abs(MEAN2(i) - MEAN2(i-1)) ≤ Th2
STOP = 0;

END IF

i=i+1;
END WHILE

Final Output

Figure 4: Early iteration termination block for Turbo code in GNU Radio

Implementation of Turbo Code with Early Iteration Termination in GNU Radio

 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 9 No. 2 57

V. RESULTS AND DISCUSSIONS

Turbo CODEC with early iteration termination technique

based on absolute value of the mean of extrinsic information

has been created as a block in GNU Radio. Turbo code with

generator polynomial [1,
1+𝐷+𝐷3

1+𝐷2+𝐷3] and overall coding rate

of 1/3 is considered. The experimental setup for the Turbo

code with early iteration termination is shown in Figure 4.

Trbenc and Turbdec1 in Figure 4 are the newly created

blocks. ‘Trbenc’ block is a Turbo encoder with Binary

Phase Shift Keying (BPSK) modulation. ‘Turbdec1’ block is

a Turbo decoder with early iteration termination based on

absolute value of the mean of extrinsic information. The

algorithm is capable of reducing the average number of

iterations of Turbo decoder, and hence the computational

complexity [27]. This technique calculates the mean of the

extrinsic information at the output of the component decoder

after each half iteration. Then, if the absolute of mean value

is greater than a predefined threshold or the difference in the

mean value between iterations lies within a predefined

threshold, the iteration stops. Reduction in iteration number

achieved with the technique is as shown in Figure 5 [27].

LOG-MAP algorithm has been considered for implementing

Turbo decoder. Vector Source block generates binary data

continuously; File Sink saves the input and output

information and Scope sink is used to observe the decoded

output. The Noise Source block is used to add noise to the

encoded data.

Figure 5: Number of iterations as a function of SNR [27]

Details of parameters of Turbo CODEC with early

iteration termination technique based on absolute value of

the mean of extrinsic information implemented in GNU

Radio are given in Table 3.

Figure 6 shows the WX-GUI Scope Sink output of Turbo

decoder at SNR of 10 dB and Figure 7 shows the binary

inputs that have been generated using vector source. Figure

8 shows the corresponding expected output from Turbo

decoder that has been written on text editor using file sink at

SNR of 10 dB. Both Figure 7 and Figure 8 clearly indicate

that the decoder has correctly decoded at 10dB. Early

iteration termination based on the absolute value of the

mean of extrinsic information reduces the average number

of iterations at low and high SNRs [27].

Table 3

Parameters related to Turbo CODEC with early termination

Parameter Details

'Snr' Signal to Noise Ratio value used to calculate channel
reliability.

'Iteration' Maximum iteration number.

'N' Number of message bits.

'Seed' Interleaving and de-interleaving operation based on the

'Seed' provided.

'Th1' & Th2' Threshold values for early iteration termination of

Turbo code corresponding to the Equations (7) and (8)

respectively.

Figure 6: WX-GUI Scope Sink output of Turbo decoder

Figure 7: Binary input from the vector source.

Figure 8: Decoder output from file sink at SNR of 10dB.

Journal of Telecommunication, Electronic and Computer Engineering

58 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 9 No. 2

Figure 9: Binary input and output at SNR of -1dB.

At high SNR conditions, the desired output may be

reached at any of the component decoders. The CODEC

block created with early iteration termination technique

based on absolute value of the mean of extrinsic information

in GNU Radio stops the iteration in any of the component

decoder, after the desired output is reached. Similarly, at

low SNR conditions, the block terminates early in order to

reduce the unnecessary computations. The ‘Turbdec1’ block

in GNU Radio is capable of terminating the iteration at low

and high SNR conditions and saves half iteration without

performance degradation. Figure 9 shows the binary input

and corresponding decoder output at SNR of -1dB.

Figure 10 shows the transmission of a single word ‘hello

world’ repeatedly. File source transmits the text repeatedly

and ‘Packed to Unpacked’ block converts the text into

binary form. After decoding, ‘Unpacked to Packed’ block

converts the binary data back to text. The decoded text

output is saved using file sink and verified to be correct.

Figure 11 shows the decoded output at SNR of 10 dB.

Figure 12 and 13 show the decoder output of the single text

input of ‘hello world’ repeatedly at SNR of -1dB and 5dB.

From these figures, it is clear that the decoder decodes

correctly at high SNR conditions, and it is not able to make

correct decoding decisions at low SNR conditions. If the

SNR is low, output is never reached even after infinite

iterations, and if the SNR is high the desired output may be

reached after a few iterations either at output of SISO

decoder 1 or SISO decoder-2. The implemented early

iteration termination algorithm in GNU Radio is capable of

stopping the iteration at low and high SNR and also save the

half iteration.

Figure 11: Text output from the Turbo code at SNR of 10dB.

Figure 12: Text output from the Turbo code at SNR of -1dB.

Figure 10: Transmission of text using Turbo code with early iteration termination technique based on absolute value of the mean of extrinsic information in
GNU Radio.

Implementation of Turbo Code with Early Iteration Termination in GNU Radio

 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 9 No. 2 59

Turbo CODEC with early iteration termination is

implemented on LINUX 14.04 operating system and with

GNU Radio version number 3.7.7.

Figure 13: Text output from the Turbo code at SNR of 5dB.

VI. CONCLUSION

A simple method to reduce the computational complexity

and decoding delay in Turbo code is to terminate the

iteration at the proper time. Early iteration termination

technique based on absolute value of the mean of extrinsic

information is an efficient termination method in terms of

error correction, iteration number and processing time [27].

The technique is applicable at any channel conditions to

terminate iteration at the proper time and also capable of

reducing half iteration computations. The technique is a

simple and useful technique for applications requiring

reduced decoding delay, low computational complexity and

error correction. There is no Turbo decoder block with early

iteration termination in GNU Radio. In this paper, we have

implemented Turbo CODEC with early iteration termination

technique based on absolute value of the mean of extrinsic

information in GNU Radio platform. Integration of USRP

with newly created CODEC block in GNU Radio allows the

real-time implementations.

REFERENCES
[1] C. E. Shannon, “A mathematical theory of communication,” Bell

Syst. Tech. J., vol. 27, no. 1, pp. 379–423, 1948.
[2] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit

Error - Correcting Coding and Decoding : Turbo-Codes ,” in IEEE

Int.Conf. Commun, . ICC ’93 Geneva. Technical Program, 1993,
vol. 2, no. 1, pp. 1064–1070.

[3] C. Berrou and a Glavieux, “Near optimum error correcting coding

and decoding: Turbo-codes,” IEEE Trans. Commun., vol. 44, no. 10,
pp. 1261–1271, 1996.

[4] L. A. Perisoara and R. Stoian, “The Decision Reliability of MAP ,

Log-MAP , Max-Log-MAP and SOVA Algorithms for Turbo
Codes,” Int. J. Commun., vol. 2, no. 1, pp. 65–74, 2008.

[5] A. Imran, “Software Implementation and Performance of UMTS

Turbo Code,” Tampere University of Technology, 2012.
[6] F. Gilbert, F. Kienle, and N. Wehn, “Low Complexity Stopping

Criteria for UMTS Turbo-Decoders,” 57th IEEE Semiannual conf.

in Vehicular Technlo -VTC 2003-Spring., 2003, pp. 2376–2380.

[7] M. Moher, “Decoding via cross-entropy minimization,” in
Proceedings of GLOBECOM ’93. IEEE Global Telecommun.. Conf.,

1993, pp. 809–813.

[8] Harold A. Haldren, “Studies in Software-Defined Radio System
Implementationitle,” Spring, 2014.

[9] C. Condo, M. R. Roch, M. Martina, and G. Masera, “Computation

reduction for turbo decoding through window skipping,” Electron.
Lett., vol. 52, no. 3, pp. 202–204, 2016.

[10] M. Martina, G. Masera, S. Papaharalabos, P. T. Mathiopoulos, and

F. Gioulekas, “On practical implementation and generalizations of
max * Operator for turbo and LDPC decoders,” IEEE Trans.

Instrum. Meas., vol. 61, no. 4, pp. 888–895, 2012.

[11] P. Chhabra and V. Nath, “An efficient high performance turbo code
implementation in Rayleigh fading channel,” in IEEE Symp. on

Wireless Technol. and Applications, ISWTA, 2014, pp. 47–52.

[12] P. Salija and B. Yamuna, “Optimum energy efficient error control
techniques in wireless systems: a survey,” J. Commun. Technol.

Electron., vol. 60, no. 11, pp. 1257–1263, 2015.

[13] Y. Ren, D. Yao, and X. Zhang, “The implementation of TETRA
using GNU Radio and USRP,” in Proceedings - 2011 4th IEEE Int.

Symp. Microwave. Antenna. Propagation. EMC. Technol.Wireless.

Commu., 2011, pp. 363–366.
[14] A. M. Lalge, M. S. Karpe, and S. U. Bhandari, “Software Defined

Radio Principles and Platforms,” Int. J. Adv. Comput. Res., vol. 3,

no. 11, pp. 133–138, 2013.
[15] M. Talasila, “Implementation of Turbo codes on GNU Radiotle,”

2010.
[16] “Guided Tutorials - GNU Radio - gnuradio.org.” [Online].

Available:

http://gnuradio.org/redmine/projects/gnuradio/wiki/Guided_Tutorial
s.

[17] A. Burr, “Turbo-codes: the ultimate error control codes?,” Electron.

Commun. Eng. J., vol. 13, no. 4, pp. 155–165, 2001.
[18] I. Kaur and Y. K. Mathur, “Improving BER using turbo codes in

OFDM systems,” Int. J. Sci. Eng. Res., vol. 3, no. 7, pp. 1–5, 2012.

[19] P. Ituero and M. López-Vallejo, “Further specialization of clustered
VLIW processors: A MAP decoder for software defined radio,”

ETRI J., vol. 30, no. 1, pp. 113–128, 2008.

[20] R. Mohamad, H. Harun, M. Mokhtar, W. A. W. Adnan, and K.
Dimyati, “Performance analysis of stopping turbo decoder iteration

criteria,” in Proc. IEEE. Int. Colloq. Signal Process. Its. Appl, 2014,

no. 1, pp. 5–9.
[21] V. P. Patil, “Implementation of efficient Turbo Code Encoder-

Decoder with MAX- Log-MAP Algorithm,” in proc. Int. e-Conf.

Emerging. Trends. Technol. 2014, pp. 73–77.
[22] J. Kaza and C. Chakrabarti, “Design and implementation of low-

energy turbo decoders,” IEEE Trans. Very Large Scale Integr. Syst.,

vol. 12, no. 9, pp. 968–977, 2004.
[23] S. Lin and D. J. Costello, Error control coding : fundamentals and

applications. Pearson-Prentice Hall, 2004.

[24] Ranjan Bose, Information Theory, Coding and Cryptography,
Second edi. New Delhi: Tata McGraw Hill, 2008.

[25] H. Wang, H. Yang, and D. Yang, “Improved Log-MAP decoding

algorithm for turbo-like codes,” IEEE Commun. Lett., vol. 10, no. 3,
pp. 186–188, 2006.

[26] P. Reddy, F. Clermidy, R. A. Khayat, A. Baghdadi, and M. Jezequel,

“Power Consumption Analysis and Energy Efficient Optimization
for Turbo Decoder Implementation,” Proc. Int.l Symp. Syst.on. Chip.

(SoC), 2010, p. 12.

[27] P. Salija and B. Yamuna, “An Efficient Early Iteration Termination
for Turbo Decoder,” J. Telecommun. Inf. Technol., no. 2, pp. 1–10,

2016.

[28] J. Geldmacher, K. Hueske, J. Götze, and M. Kosakowski, “Hard
decision based low SNR early termination for LTE Turbo

decoding,” Proc. Int. Symp. Wireless. Commun. Syst., 2011, pp. 26–

30.

