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Abstract—Heterogeneous Long Term Evolution-Advanced 

(LTE-A) network (HetNet) utilizes small cells to enhance its 

capacity and coverage. The intensive deployment of small cells 

such as pico- and femto-cells to complement macro-cells 

resulted in unbalanced distribution of traffic-load among cells. 

Machine learning techniques are employed in cooperation with 

Self-Organizing Network (SON) features to achieve load 

balancing between highly loaded Macro cells and underlay 

small cells such as Femto cells. In this paper, two algorithms 

have been proposed to balance the traffic load between Macro 

and Femto cells. The two proposed algorithms are named as 

Load Balancing based on Reinforcement Learning of end-user 

SINR (LBRL-SINR) and Load Balancing based on 

Reinforcement Learning of Macro cell-throughput (LBRL-T). 

Both of the proposed algorithms utilize Reinforcement 

Learning (RL) technique to control the reference signal power 

of each Femto cell that underlays a highly loaded Macro cell. 

At the same time, the algorithm monitors any degradation in 

the performance metrics of both Macro and its neighbor Femto 

cells and reacts to troubleshoot the degradation in real time. 

The simulation results showed that both of the proposed 

algorithms are able to off-load end-users from highly loaded 

Macro cell and redistribute the traffic load fairly with its 

neighbor Femto cells. As a result, both of call drop rate and 

call block rate of a highly loaded Macro cell are decreased. 

 

Index Terms—Load Balancing; LTE-A HetNet; Small Cells; 

Reinforcement Learning. 

 

I. INTRODUCTION 

 

One of the 3GPP technologies that meets the high demand 

for new services is LTE-A HetNet. It integrates various 

network structures and various cell types. This is for the 

purpose of offering new data and voice services, improved 

latencies and higher throughput for end-users. The main 

nodes of HetNets include High Power Nodes (HPNs) such 

as Macro eNodeBs, and Low Power Nodes (LPNs) such as 

Pico and Femto cells. LPNs are defined in 3GPP as small 

cells. They become important elements of LTE-A HetNet, 

and they contribute to improve the performance of the whole 

network in terms of increasing both of the link and system 

capacity, as well extending the network coverage in both 

outdoor and indoor networks [1]. The deployment of open-

access Femto cells enables Macro cells to reduce the 

opportunity of being overloaded or congested with a high 

number of end-users. Moreover, the cost of deploying 

Macro sites to solve the problems of network capacity and 

coverage is reduced. 

A Femto cell is a low power node. It becomes compulsory 

that many processes including the installation and 

troubleshooting of Femto cells need to be automated. This is 

for the reason that the end-user is not expected to have the 

enough technical knowledge to be able to install Femto cells 

or to troubleshoot them. As a result, the Self-Organizing 

Network (SON) for LTE-A is a new technology that consists 

of new concepts and functionalities to automate the 

operation of LTE-A HetNets towards better performance 

and higher quality of service [1]. Specifically, the operations 

of self-tuning and self-optimization are defined in SON-

enabled LTE-A networks [2]. SON is a recent development, 

and it is part of 3GPP standard for LTE-A [3]. Recently, 

diverse challenges related to SON-enabled HetNets have 

been widely researched in various international research 

projects including 3GPP projects [4],[5]. Various efforts that 

have been taken to develop advanced Radio Resources 

Management (RRM) algorithms to decrease the effect of 

interference in a dense LTE-A HetNets [6].  

The traffic load balancing is one of the most demanding 

topics for both the automation and self-optimization 

processes in the context of LTE-A networks [7]. The high 

traffic volumes, as well the unbalanced traffic volumes 

which are generated from end-users are the motivation for 

load balancing techniques to be researched. The traffic load 

balancing is targeting to achieve the balance between LTE-

A radio resources and end-users traffic. The process of load 

balancing affects the Grade of Service (GoS), which is 

specifically related to call maintainability. Parameters such 

as radiation pattern power [8], Handover power-margins [9] 

and reference signal power are optimized to cope with end-

users traffic. There have been a few studies researched in the 

field of load balancing for Macro and small cells in HetNets 

[10, 11]. Unbalanced traffic is a prominent issue that should 

be investigated in-depth for indoor and outdoor HetNet 

deployment scenarios. 

Reinforcement Learning (RL) is a technique that is 

specifically used for interactive learning [12]. It is based on 

Q-Learning (QL) technique which does not need a system 

defined by a formula or transfer function. As a result, it 

becomes an attractive technique to be used to optimize the 

operations of LTE-A radio access network in real time [13-

16]. 

In this paper, two emerging load balancing techniques 

have been proposed to overcome the high traffic-load 

problem of Macro cells in LTE-A HetNet. Both of the 
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proposed techniques, named as LBRL-SINR and LBRL-T, 

are mainly employing Q-Learning method to process the 

degraded performance metrics of Macro cells and to deliver 

higher link quality for end-users. 

 

II. RELATED WORK 

 

Most researches, which are related to traffic load 

balancing in LTE and LTE-A are based on making 

adjustments to the handover or cell selection process in 

order to manage the traffic distribution between the 

neighbor cells [17]. The approaches in this field can be 

classified into Handover-based control and coverage control 

of a given cell. In the case of Handover-based control, the 

UEs are steered into specific cells by adjusting the handover 

offsets of each cell. In coverage control approach, eNodeB 

will either extend its coverage to reach more UEs or reduce 

its coverage in case of overloading so that more UEs will 

handover to its neighbor eNodeBs. The author in [18] 

explained a method for monitoring the usage of Resource 

Blocks (RBs) in eNodeB. Whenever the RBs utilization 

ratio crosses specific limit, it triggers high load status which 

will initiate optimizing eNodeB’s Reference-signal power. 

This will reduce the high load at the eNodeB and enable 

neighbor cells to collaborate in the offloading process.  

The author in [19] presented a technique to optimize 

Jain’s Fairness Index. The proposed technique reallocates 

UEs towards underlay small cells, which are the Pico, Relay 

and Femto cells. Both of  the Pico and Femto cells use wire-

based backhaul to connect to the closest eNodeB. On the 

other hand, Relay nodes use completely wireless connection 

to connect to its neighbor eNodeBs. In [20], the author 

proposed an algorithm that monitors eNodeB load based on 

the Handover process and the capacity of neighbor 

eNodeBs. The algorithm triggers an offloading process 

whenever neighbor eNodeBs are found to have an adequate 

capacity. The technique could achieve noticeable 

performance improvements, especially on UE throughput 

and BLER.  

In [21], the author proposed an algorithm to fairly 

distribute the eNodeBs load by making reductions in the 

Handover-overhead, which is necessary for initiating any 

Handover process. The algorithm is designed based on 

solving Multi-objective Optimization Problem. There are 

two conflicting targets to be controlled by the optimizer, 

signaling overhead and traffic load. A Higher weight is 

given by the optimizer to the desired target. 

 

III. FORMULATION OF REINFORCEMENT LEARNING 

TECHNIQUE 

 

An LTE-A HetNet is designed as a Multi-Agent 

Reinforcement Learning system, in which each Femto cell is 

defined as an agent [12]. Reinforcement learning deals with 

the issue of finding strategy for an autonomous agent to 

perceive and react in its environment to select optimal 

actions to reach its objective. For every action that the agent 

takes in its environment, a trainer sets a reward or penalty to 

trigger the agent to decide about a new state. The states are 

defined in this paper as a range of possible reference signal 

power values. An action is defined as the optimal reference 

signal power value. The agent is learning from the delayed 

reward in order to select actions that result in the highest 

possible value of cumulative reward. A Q-learning 

algorithm is able to achieve the most effective Q-value, 

based on delayed rewards. This is true regardless of the 

awareness of the agent about the impact of its actions on the 

system where actions are applied. Reinforcement learning 

techniques are associated with dynamic programming 

techniques, which are used to solve problems related to 

optimization. The agents collaborate together during the 

learning process to converge to an optimal policy faster. 

Meanwhile, each agent during this stage puts the learned 

policy into action separately, increasing the capability of the 

designed self-optimization algorithm to run in distributed 

manner. The nature of LTE-A HetNet is rapidly changing 

due to the dynamic change in parameters and values related 

to the mobility of User Equipment (UEs), multipath fading, 

changing traffic distributions, etc. 

Each agent learns through the well-known Markov 

Decision Process (MDP), in which the agent is aware about 

a set 𝑆 of discrete states. Additionally, there is a set 𝐴 of 

actions for the agent to implement. At every time interval t 

of the optimization epoch, the agent acquires the current 

state 𝑠𝑡 before it selects a current action 𝑎𝑡 and executes it. 

The agent receives a reward 𝑟(𝑠𝑡 , 𝑎𝑡) and the environment 

turns to the next state 𝑠𝑡+1 = 𝛿(𝑠𝑡 , 𝑎𝑡). Both of the 𝛿 and 𝑟 

are the main functions in the environment, and the agent 

might be unaware of them. In MDP, both of the functions 

𝛿(𝑠𝑡 , 𝑎𝑡) and 𝑟(𝑠𝑡 , 𝑎𝑡) have a direct correlation with the 

current state and action, rather than on previous states or 

actions. 

The agent learns a policy 𝜋 to decide about the next action 

𝑎𝑡+1, depending on the current acquired state 𝑠𝑡 which is, 

𝜋(𝑠𝑡) = 𝑎𝑡. A precise way to specify which policy 𝜋 that 

the agent will learn is the policy that results in the greatest 

cumulative reward for the agent. In order to make this 

requirement specific and more accurate, we set the 

cumulative value 𝑉𝜋(𝑠𝑡) which is resulted from a random 

policy 𝜋 from random first state 𝑠𝑡 as follows: 

 

𝑉𝜋(𝑠𝑡) = 𝑟𝑡 + 𝛾𝑟𝑓
𝑡 + 𝛾2𝑟𝑓

𝑡+1 + 𝛾3𝑟𝑓
𝑡+2 + ⋯ 

= ∑ 𝛾𝑘𝑟𝑓
𝑡+𝑘∞

𝑘=0                                  (1) 

 

where the order of reward values 𝑟𝑡+𝑘 is produced by 

starting from state 𝑠𝑡, and iteratively utilizing the policy 𝜋 to 

choose actions as mentioned above (i.e., 𝑎𝑡 = 𝜋(𝑠𝑡), 𝑎𝑡+1 =
𝜋(𝑠𝑡+1) etc,.) .  

Each Femto cell is defined as an agent, whereby it 

interacts in real time with the environment and selects an 

action in response to the changing system states. The agent 

depends on the current Q-values to have the highest possible 

reward. Meanwhile, it has to identify the actions that 

produce the highest reward in the long term. 

Here 0 ≤ 𝛾 < 1 is a constant value that shows the relative 

value of future reward compared to current reward. 

Specifically, the future reward which is yet to be received 

are discounted by 𝛾𝑘. If 𝛾𝑘 has the value of 0, then only the 

instant reward is considered. When 𝛾 value closes to 1, the 

priority is given to the future rewards than the instant 

reward. 

The discounted cumulative reward is defined as 𝑉𝜋(𝑠𝑡), it 

acquires the policy 𝜋 from the first state 𝑠. Logically, further 

rewards should be discounted relative to immediate rewards 

because, generally, the agent would prefer to acquire the 

reward in the shortest possible time steps. We require that 

each Femto cell learns a policy 𝜋 that produces the 
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maximum value of 𝑉𝜋(𝑠) for the total number of states 𝑠, 

which will be referred to as an optimal policy, denoted 𝜋∗. 

 

𝜋∗ = argmax
𝜋

𝑉𝜋(𝑠)                                   (2) 

 

𝑉𝜋∗(𝑠) is defined as the highest discounted cumulative 

reward that the agent can gain starting from the initial state 

𝑠. In other words, it is the discounted cumulative reward 

achieved through executing the optimal policy that is started 

from state 𝑠. 

It is a challenge for the agent to achieve the optimal policy 

𝜋∗ because of the lack of training data which does not offer 

training examples in the form of (𝑠, 𝑎). However, the learner 

is informed about one thing, which is the sequence of the 

instant reward 𝑟(𝑠𝑘 , 𝑎𝑘) for 𝑘 = 0, 1, 2, … This data 

facilitates the process to learn a numerical evaluation 

function which can be represented by states and actions, 

then get the optimal policy in terms of this evaluation 

function. 

One selection for evaluation function is 𝑉𝜋∗(𝑠). The 

proposed LBRL algorithms in this paper should give 

preference to state 𝑠1 over state 𝑠2 each time when 𝑉𝜋∗(𝑠1) 

is higher than 𝑉𝜋∗(𝑠2), as the cumulative future reward is 

higher than 𝑠1. The algorithm policy makes a selection from 

the states space, and not from the actions space. However, 

in some cases 𝑉𝜋∗(𝑠) can be used to select from the actions 

space as well. The optimal action to be selected in state 𝑠 is 

the action 𝑎 that produces the highest instant reward 𝑟(𝑠, 𝑎) 

added to the amount 𝑉𝜋∗(𝑠) of the next state after it is 

discounted by 𝛾 as shown in Equation 3. 

 

𝜋∗(𝑠) = argmax
𝑎

 [𝑟(𝑠, 𝑎) +  𝛾𝑉𝜋∗(𝛿(𝑠, 𝑎))]           (3) 

 

Recall that the variable 𝛿(𝑠, 𝑎) identifies the achieved 

state from applying action 𝑎 to state 𝑠. Further, an agent is 

defined in this paper as a Femto cell that underlays a Macro 

cell. The agent that runs LBRL algorithms adopts an optimal 

policy by learning 𝑉𝜋∗(𝑠), then the agent will be equipped 

with complete knowledge of the instant reward function 𝑟 

and the state transition function 𝛿. As the agent has gained 

knowledge about the variables 𝑟 and 𝛿 which are employed 

by the environment to react to its actions, then the optimal 

action, a, for any state 𝑠 can be determined. Even though 

learning 𝑉𝜋∗(𝑠) is an efficient way to get the optimal policy, 

it can be used only when the agent has a complete 

knowledge of 𝛿 and 𝑟. This needs the capability to expect 

the instant result of both of  the instant reward and future 

reward for each state-action pair. Practically, the agent will 

not be able to expect an accurate result of applying random 

action to a random state. Whenever the value of 𝛿 or 𝑟 is 

undefined, then the process of learning 𝑉𝜋∗(𝑠) is useless for 

choosing the optimal policy. As well, the agent will not be 

able to estimate Equation 2 in this case. So another 

evaluation function should be used by the agent for this 

framework. 

The evaluation function 𝑄(𝑠, 𝑎) can be determined as 

shown in Equation 4, so that its value is the highest 

discounted cumulative reward to be gained by starting from 

state, s, initially and executing action a. 

 

𝑄(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) +  𝛾𝑉𝜋∗(𝛿(𝑠, 𝑎))                (4) 

 

Note that 𝑄(𝑠, 𝑎) is exactly the quantity that is maximized 

in Equation 2 to choose the optimal action 𝑎 in state 𝑠. 

Therefore, we can rewrite Equation 2 in terms of 𝑄(𝑠, 𝑎) as 

 

𝜋∗(𝑠) = argmax
𝑎

𝑄(𝑠, 𝑎)                        (5) 

which indicates that learning Q-function instead of learning 

𝑉𝜋∗(𝑠) will make the agent able to choose an optimal action 

even though the variables 𝑟 and 𝛿 are unknown for the 

agent. 

Learning the 𝑄-function is similar as learning the optimal 

policy. The main issue is about figuring out a trustworthy 

method to estimate 𝑄 values from the instant values of 

reward, 𝑟. Such a method is possible to be achieved by 

iterative approximation. This conclusion is coming after 

noticing the very close relationship between 𝑉𝜋∗ and Q in 

Equations 6 and 7 as follows: 

 

𝑉𝜋∗(𝑠) = max
�́�

𝑄(𝑠, �́�)                           (6) 

 

That allows rewriting as: 

 

𝑄(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) +  𝛾 max
�́�

𝑄(𝛿(𝑠, 𝑎), �́�)             (7) 

 

which is an iterative equation that provides us the 

foundation for an algorithm that iteratively approximate 𝑄. 

A Q-learning algorithm learns by repeatedly decreasing 

the differences between the Q values of the succeeding 

states. It is able to solve optimization problems that deal 

with systems which are undefined in closed form 

expression, and it depends on the Temporal Difference (TD) 

method during the learning process. To estimate the Q-value 

in Equation 7, an agent has the target to choose the action 

that produces the highest value of long term reward, r.  

In Section III of this paper, there are two formulas that 

have been proposed to calculate the reward, r, for each of 

the proposed algorithms. The proposed LBRL algorithms 

are specified by firstly, controlling the transmitted power of 

the Reference Signal (RS) at each Femto cell. Secondly, the 

Reinforcement Learning (RL) as one of the machine 

learning techniques, which will convert each Femto cell to a 

smart node that is able to take a decision and auto-tune itself 

for an optimal state. 

 

IV. MACRO-FEMTO SELF ORGANIZING NETWORK MODEL 

 

The Self Organizing Network (SON) features are 

considered powerful development in the 4th generation (4G) 

of mobile networks that are pertaining to the next stage of 

development which includes 4G and beyond 4G networks 

[3]. SON features are used when there is rapidly changing 

traffic, highly fluctuating RF channel or to automate the 

operator policies which are specifically related to the mobile 

radio access network. Its main features are categorized into 

four categories, which are self-optimization, self-

configuration, self-diagnosis and self-healing [18]. SON 

functions have been identified and used by multiple mobile 

service operators, as it leads to simplified operations and 

increasing profitability 

Our proposed algorithms utilize SON functions, which 

include self-diagnosis, self-healing, and self-optimization of 

Macro and Femto cells in LTE-A HetNet. In order to 

achieve fair distribution of end-users between highly loaded 
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Macro cell and its neighbor Femto cells, both of the 

proposed algorithms are mainly based on the self-

optimization concept for SON-enabled LTE-A HetNet, 

which is mainly employing Reinforcement Learning (RL) 

and Q-learning techniques to offload end-users from the 

Macro cell into its neighbor Femto cells. 

A set of three performance metrics for highly loaded 

Macro cell are the main inputs for each of the proposed 

algorithms, LBRL-SINR and LBRL-T. The three 

performance metrics are call block rate (B), call drop rate 

(D), and average SINR, which are specific inputs of LBRL-

SINR algorithm. However, B, D, and cell throughput (T) are 

the specific inputs of LBRL-T algorithm. The SON module 

at each Femto cell is triggered only when a Macro eNodeB 

declares a high load state or an overload indicator (OI) is 

activated, then a Macro cell will trigger the LBRL algorithm 

to be executed at its neighbor Femto cells, as shown in 

Figure 1. The signaling between each Femto and Macro cell 

is carried over X2 or S1 interface. Each Femto cell will 

independently increase the reference signal (RS) power to 

increase its coverage region. As a result, the traffic in hot 

areas is redirected to lightly loaded areas under Femto 

cells, and thus load balancing is achieved.  

 

Macro cell OI Status

Normal operation for both 

of Macro and Femto cells

Macro cell triggers its neighbor underlay Femto 

cells over X2 or S1 interface to run an Off-

loading algorithm (LBRL-SINR or LBRL-T)

0 (Normal Load)

1 (High Load)

Start

 
Figure 1: Macro-Femto SON model 

 

The proposed SON architecture is distributed architecture 

and not centralized. In other words, both of LBRL 

algorithms do not need to connect to a database to exchange 

the performance metrics data, while the algorithm is running 

on live network. The normal signaling over X2 or S1 

interface will be enough for each Femto cell to acquire the 

required performance metrics from its neighbor Macro cell. 

 

V. LOAD BALANCING BASED ON REINFORCEMENT 

LEARNING OF END-USER SINR (LBRL-SINR) 

 

It is normal for the CQI of each User Equipment (UE) to 

decrease on the Macro cell side, and it implies that the 

Signal-to-Interference-plus-Noise Ratio (SINR) of the 

PDSCH channel is not sufficient. As a result, the cell 

throughput of the Macro cell will decrease. By triggering the 

LBRL-SINR algorithm at each underlay Femto cell, the 

algorithm will react by adjusting the reference signal power 

either through adding more power or decrease the power to 

adjust the coverage region size of each Femto cell. The 

algorithm decides about suitable power level at each Femto 

cell, which in turn, it balances the traffic load among Macro 

and its surrounding Femto cells.  

The LBRL-SINR algorithm utilizes Q-learning technique 

to learn the optimal policy (Q-Value) that will determine the 

best power level for Femto cell, mainly based on the 

degraded performance metrics of an overlay Macro cell. The 

state (s), action (a) and reward (r) are the integral parts that 

need to be defined at each Femto cell, i.e. Femto cell-i, as 

shown in Figure 2. The state is defined as the Reference 

Signal (RS) power of Femto cell-i at t. The action of Femto 

cell-i is the optimal reference signal power level that will be 

selected from a range of pre-defined power levels for Femto 

cell-i at time t. 

Reward,         , is calculated at Femto        

cell-i

Action is applied at Femto cell-i to select 

the best RS Power state, s, that maximizes 

the received Reward,         .

Q-Table is updated after estimating Q(s,a) at 

Femto cell-i

Three performance metrics are acquired 

from an overloaded Macro cell and 

exchanged with the neighbor Femto cell-i : 

average SINR, Call Drop Rate (D), Call 

Block Rate (B)

LBRL-SINR Algorithm is triggered at 

Femto cell-i

𝑟𝑡+1
𝑓(𝑖)

 

𝑟𝑡+1
𝑓(𝑖)

 

 
Figure 2: The main modules and execution sequence of LBRL-SINR 

algorithm 

 

As soon as the selected action, a, is applied, the reward 

(𝑟𝑓
𝑡) at Femto cell-i is estimated as proposed in Equation 8. 

The value of  𝑟𝑓
𝑡 is an indicator of the current performance 

of both Macro and its neighbor Femto cell-i. An overlay 

Macro cell and Femto cell-i collaborate in each optimization 

cycle and exchange the load information and performance 

metrics through X2 interface or S1 interface as an 

alternative. The three performance metrics which will be 

used to calculate the reward at Femto cell-i are: the average 

SINR of all end-users at both Macro cell and Femto cell-i at 

time t (𝑆𝐼𝑁𝑅𝑚
𝑡  and 𝑆𝐼𝑁𝑅𝑓

𝑡), Call Drop Rate at Macro cell 

and Femto cell-i at time t (𝐷𝑚
𝑡 +𝐷𝑓

𝑡), Call Block Rate at 

Macro cell and Femto Cell-i at time t (𝐵𝑚
𝑡 + 𝐵𝑓

𝑡). The 

proposed reward function is defined as follows: 

 

𝑟𝑓
𝑡 = (𝑤1(𝑆𝐼𝑁𝑅𝑚

𝑡 + 𝑆𝐼𝑁𝑅𝑓
𝑡) + 𝑤2(𝐷𝑚

𝑡 +𝐷𝑓
𝑡) 

+𝑤3(𝐵𝑚
𝑡 + 𝐵𝑓

𝑡))* 1/c                              (8) 

 

where w1, w2 and w3 are the weights. 𝑆𝐼𝑁𝑅𝑚
𝑡  is the average 

of 𝑆𝐼𝑁𝑅𝑚,𝑘
𝑡  for all end-users at time t. 𝑆𝐼𝑁𝑅𝑚,𝑘

𝑡  is defined as 

the SINR of UE (k) at Macro cell (m) as defined in Equation 

9. The constant c is to keep the reward (𝑟𝑓
𝑡) value between 0 

and 1. 

 

𝑆𝐼𝑁𝑅𝑚,𝑘
𝑡 (𝑑𝐵) = 𝑃𝑚+ 𝐺𝑚 − 𝑃𝐿𝑚,𝑘(𝐼𝑚,𝑘 + 𝑛2)         (9) 

 

where: 𝑃𝑚  = downlink transmitted power from Macro  

                              cell (m) to end-user (k) 

 𝐺𝑚  = downlink antenna gain of Macro cell (m) 

𝑃𝐿𝑚,𝑘  = Path loss between Macro cell (m) and  

end-user (k) 
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             𝐼𝑚,𝑘   = The received downlink interference at  

                                   end-user (k) who connects to Macro cell     

                              (m) 

             n  = Thermal noise 

  

The downlink inter-cell interference model is simulated 

for LTE-A downlink. LTE-A employs Orthogonal 

Frequency Division Multiple Access (OFDMA) technique 

for its physical layer, which contributes in achieving higher 

spectral efficiency for LTE-A in comparison with the 

previous versions of mobile technologies. The smallest unit 

of bandwidth to be assigned for each end-user is the 

Physical Resource Block (PRBs). Each PRB serves a single 

end-user at a time. Hence, the risk of having intracell-

interference is mitigated by the mentioned assignment 

scheme of PRBs. 

As much as the value of the reward, 𝑟𝑓
𝑡, is high, as much 

as the Femto cell-i coverage becomes wider. As a result, the 

optimized reference signal power level will force more end-

users to camp on the Femto cell instead of camping on the 

overlay Macro cell. 

 

VI. LOAD BALANCING BASED ON REINFORCEMENT 

LEARNING OF MACRO CELL THROUGHPUT (LBRL-T) 

 

This algorithm considers mainly the cell-throughput (T) 

for all UEs instead of the average SINR in the case of 

LBRL-SINR, to dynamically control the RS power at each 

Femto cell. It is assumed that the reference signal power of 

the Macro cell remains the same and is not subject to be 

changed by the algorithm. This is to ensure full network 

coverage and to minimize the chance of creating coverage 

holes. As at some instant, Macro cell and its neighbor Femto 

cell may reduce their coverage together at the same time, 

which will create coverage hole. 

In this algorithm, the reward is estimated based on the 

cell throughput (T) of Macro cell. The T value is one of the 

main components that constructs the reward function (𝑟𝑓
𝑡) as 

shown in Equation 10. The state and action of Femto cell-i 

are modeled in the same way as LBRL-SINR in Section IV, 

while the process of estimating the reward is different from 

LBRL-SINR algorithm. 

There are three performance metrics, which are required 

in order to estimate 𝑟𝑓
𝑡 in LBRL-T, three of the metrics are 

acquired from the Macro cell and its neighbor Femto cell-i 

simultaneously. The first metric is the average cell 

throughput at time t (𝑇𝑚
𝑡 + 𝑇𝑓

𝑡), the second metric is the Call 

Drop Rate at time t (𝐷𝑚
𝑡 +𝐷𝑓

𝑡) and the third metric is the Call 

Block Rate at time t (𝐵𝑚
𝑡 + 𝐵𝑓

𝑡). The mentioned metrics 

construct the reward function which is defined as follows: 

 
𝑟𝑓

𝑡 = (𝑤1(𝑇𝑚
𝑡 + 𝑇𝑓

𝑡) + 𝑤2(𝐷𝑚
𝑡 +𝐷𝑓

𝑡) 

+𝑤3(𝐵𝑚
𝑡 + 𝐵𝑓

𝑡))* 1/c                     (10) 

 

The LBRL-T algorithm keeps monitoring the cell 

throughput (T) to not degrade at any time instance after the 

new action, a, is applied. The immediate response of the 

algorithm after an action, a, is to estimate the new reward 

value, 𝑟𝑓
𝑡+1. The higher 𝑟𝑓

𝑡+1, the higher RS power value to 

be assigned to Femto cell-i, which means increasing the 

chance of Femto cell-i to off-load more end-users from its 

neighbor Macro Cell. As a result, an improved performance 

will be achieved by decreasing the chance for a Macro cell 

with high number of end-users to have high rates of dropped 

or blocked calls (D or B). 

However, if the increment in the refernce signal power at 

Femto cell-i was unnecessary or led to unstable performance 

in terms of causing higher Drop Calls Rate (D) or higher 

Block Calls Rate (B) at Macro cell side, the algorithm will 

detect the degraded B or D, and estimates new reward 

value, 𝑟𝑓
𝑡+1, in the next optimization epoch which should be 

lower than the previous reward, 𝑟𝑓
𝑡 . As a result, an 

optimized action, a, will be applied to reduce the RS power 

to lower level. 

 

VII. SIMULATION ENVIRONMENT 

 

An LTE-A Heterogeneous Network (HetNet) consists of 

two types of cells, Macro cells and underlying Femto cells. 

In 3GPP [22], dense LTE-A HetNet is defined as a 

heterogeneous network that consists of underlay small cells 

varies from 4 to 10 cells which are defined as neighbors to 

their overlay Macro cell. Our simulation scenarios are 

conducted on system-level simulation which is comprising 7 

Macro cells and 42 underlay Femto cells as shown in Figure 

3. A number of 6 Femto cells is distributed randomly within 

the coverage area of their neighbor Macro cell. As well, 

each Femto cell is defined as neighbor to its nearest overlay 

Macro cell. The underlay Femto cells are able to 

communicate with the Macro cell through X2 or S1 

interface to exchange performance metrics and load 

information. 

The system topology as shown in Figure 3 consists of 7 

Macro cells. The center Macro cell is simulated with high 

traffic load that is originated from a maximum of 100 end-

users. The rest of 6 Macro cells is simulated with normal 

traffic load that is originated from a maximum of 20 end-

users. The system bandwidth varies according to the cell 

type. Each Macro cell has total bandwidth of 100 MHz 

which is the total available bandwidth from deploying 5 

Component Carriers (CCs), each CC provides a channel 

bandwidth of 20 MHz. Each Femto cell provides a channel 

bandwidth of 10 MHz. The traffic load of the center Macro 

cell in the 3 simulation scenarios is simulated to utilize 70% 

to 99% of the Macro cell bandwidth. Meanwhile, normal 

traffic load is simulated to utilize a maximum of 25% of the 

available bandwidth at each cell of the total 6 surrounding 

Macro cells. 

 

 
 

Figure 3: System topology of dense LTE-A HetNet 
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Three simulation scenarios have been executed. They are: 

Fixed reference signal power allocation, dynamic reference 

signal power allocation by LBRL-SINR algorithm, and the 

third scenario is a dynamic reference signal power allocation 

by LBRL-T algorithm. In each of the three scenarios, each 

UE admits to either Macro cell or its neighbor Femto cell 

depending on which cell has higher reference signal power 

value, as shown in Figure 4. If the cell Overload Indicator 

(OI) is not active, this means that the cell is still able to 

provide RBs to any new end-user that requests a connection 

or call. Otherwise, the call/connection request from the end-

user will be blocked. A dropped call is recorded if the 

received signal power of an end-user that has established 

connection with either Macro or Femto cell is lower than 

pre-determined threshold value of -110 dBm. 

 

Select Macro or Femto cell with Maximum RSRP

Macro cell RSRP > 

Femto cell RSRP
Yes

Is Serving-Cell RSRP 

< Threshold-RSRP

Blocked Call: If UE(k) is in IDLE 

Mode

Dropped Call: if UE(k) is in 

CONNECTED Mode

No

UE(k) request a service

Macro is selected as 

a Serving-Cell

Femto cell is 

selected as a 

Serving-Cell

No

Allocate RBs to UE(k)

Serving-Cell

Overload Indicator

 (OI) Status

1

Yes

0

 
 

Figure 4: Basic procedures for estimating Call Block Rate (B) and Call 

Drop Rate (D) 

 

VIII. RESULTS AND DISCUSSION 

 

To assess the performance of the proposed algorithms, the 

same performance metrics used in the input stage to estimate 

the reward values were used again in the output stage to 

assess the performance of the algorithms. Both of Call Drop 

Rate (D) and Call Block Rate (B) have been estimated for 

each simulation scenario and represented graphically in 

Figures 5 and 6. In the first simulation scenario, fixed RS 

power level of 19 dBm was set for each Femto cell. This 

scenario led to degraded performance at Macro cell and 

generated considerable percentage of dropped calls, D, and 

blocked calls, B. The y-axis in both figures represents the 

percentage of B and D respectively. In particular, B is the 

most metric that was affected by the congestion situation. 

In Figure 5, lower Call Block Rate (B) for both algorithms 

is shown in comparison with the fixed RS power assignment 

scheme, which indicates that the available bandwidth is 

managed fairly among Macro and its neighbor Femto cells. 

As a result, the chance for Macro cell to recover from 

congestion becomes higher by utilizing LBRL algorithms, 

and both of LBRL-SINR and LBRL-T algorithms showed a 

reduced rate of blocked calls over the normal scheme of 

fixed RS power assignment. 

In Figure 6, the improved performance of Macro cell is 

shown through the reduced rate of dropped calls (D). In 

other words, the low Call Drop Rate (D) is an indicator for 

higher percentage of successful handovers (HO) among 

cells. When LBRL-SINR algorithm is triggered at an 

underlay Femto cell, it could show the lowest Call Drop 

Rate (D), as well it showed the lowest Call Block Rate (B) 

in comparison with both of the reference case and LBRL-T 

algorithm. This confirms that acquiring the average SINR of 

end-users instead of the average Cell-Throughput (T) 

contributes in making more accurate decisions by the QL 

optimizer to select the best RS power level at each Femto 

cell. More accurate reward values (𝑟𝑓
𝑡) were fed to the QL 

optimizer when LBRL-SINR is triggered. As a result, the 

LBRL-T algorithm showed sub-optimal performance in 

comparison with LBRL-SINR, as shown in the Figures 5 

and 6.  

 
Figure 5: The output Call Block Rate (B) for highly loaded Macro cell 

 
Figure 6: The output Call Drop Rate (D) for highly loaded Macro cell 

 

In the second and third simulation scenarios, both of 

LBRL-SINR and LBRL-T evolved to new values for 

reference signal power that fluctuated in the range of 19 ± 3 

dBm at each underlay Femto cell. In Figure 7, a comparison 

is shown for the average reference signal power of the 6 

Femto cells that underlay Macro cell 1 (Central Macro), 

where the LBRL algorithms were triggered and executed 

during one optimization cycle for each simulation scenario. 

At each Femto cell, the minimum RS power level was set to 

10 dBm, which is the lowest RS power level where neither 

LBRL-SINR nor LBRL-T will go lower than this threshold 
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value. Further, a maximum value of 22 dBm was set for the 

RS power at each Femto cell. 

As shown in Figure 7, in order to achieve the prospective 

load balancing among Macro and its neighbor Femto cells, 

the LBRL-SINR algorithm applied an increment of 1 to 3 

dBm of RS power at Femto cells 1, 2, and 4. In the third 

simulation scenario, LBRL-T applied the same increment of 

1 to 3 dBm for Femto cells 1, 5, and 6. The increment in 

reference signal power means that Femto cells 1, 2, 4, 5, and 

6 are extending their coverage, and more end-users will be 

able to camp on the those 5 Femto cells instead of camping 

on their overlay Macro cell. However, if a degraded 

performance is discovered by the algorithm which could be 

either from Macro cell side or from its neighbor Femto cells 

side, the algorithm will react and decrease the Femto cell RS 

power. A decrement of 1 to 3 dBm was applied by the 

LBRL-SINR for Femto cells 3, 5, 6. As well, the same 

decrement was applied for Femto cells 2, 3, and 4 by LBRL-

T algorithm as shown in Figure 7. As mentioned in the 

previous sections of this paper, there are four types of 

performance metrics that the algorithm could detect for 

highly loaded Macro cell, those are high Call Drop Rate (D), 

high Call Block Rate (B), low cell-throughput (T) and low 

average SINR. The degradation of any of those metrics will 

affect the reward values as stated previously in Equations 8 

and 10. As a result, the algorithm will reduce the RS power 

level at the Femto cell where the reward is estimated in 

order to keep an optimal values of B, D, and SINR if LBRL-

SINR algorithm is triggered, or B, D, T, if LBRL-T 

algorithm is triggered.  

The LBRL-T algorithm is recommended to be used where 

the mobile operater could discover throughput-related 

issues, such as low End-user throughput or low cell 

throughput. Since LBRL-T makes the decision to offload a 

cell based on the cell throughput as shown previously in 

Equation 10. On the other hand, LBRL-SINR utilizing the 

End-user SINR as a part of its reward formula (Equation 8) 

makes this algorithm more suitable to be used in areas 

where clear indication of high interference spots is available. 

 
 

Figure 7:  RS Power allocation for 6 Femto cells that underlay Macro cell 

with high load 

 

The complexity and computational cost of LBRL-SINR 

and LBRL-T are negligible since the proposed algorithms 

take a few minutes for computing an output with all the 

needed calculations during each optimization epoch. In 

addition, the memory requirement is limited. The needed 

size of the look-up table is considered small, as it contains a 

set of 4 performance metrics (B, D, SINR and T) to be 

exchanged between Macro cell and its neighbor Femto cell 

once an LBRL algorithm is triggered to run. 

 

IX. CONCLUSION 

 

This paper proposed two algorithms that optimize the 

degraded performance of LTE-A Macro cells due to high 

traffic load. The proposed algorithms utilize Reinforcement 

Learning (RL) techniques to auto-tune the reference signal 

power of Femto cells, this results in offloading end-users 

from a congested overlay Macro cell. Both of LBRL-SINR 

and LBRL-T algorithms optimize the RS power level of 

Femto cells in real time during every optimization epoch of 

an On-air Macro cell. As a result, the distribution of traffic 

load among Macro and Femto cells is improved, and lower 

rates of dropped calls and blocked calls is achieved for 

highly loaded Macro cell. 
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