
 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 3 175

 An Approach for Simplified Subsystem Replacement

and Reconfiguration in Multimodal VR, AR and

Other Simulation Frameworks

Thomas D. Lepich, Reinhard Möller, Christian John, Thomas Pursche
Faculty of Electrical, Information and Media Engineering,

Bergische Universität Wuppertal, Germany.

Lepich@uni-wuppertal.de

Abstract— Nowadays, modern software for the development of

augmented and virtual reality applications is designed with the

aim to simplify its usability in order to provide services to a wider

user base. In this context, our paper presents a novel approach to

make the replacement and reconfiguration of a simulation

framework's subsystems possible, without being bound by the

restrictions, current plug-in strategies incur, or the need of

manipulating its source code. Code manipulation requires a deep

understanding of software engineering and the framework's

software design, including all dependencies among the

subsystems. For this purpose, common simulation systems were

examined and their restrictions identified. Solutions of different

problems in this context were elaborated and are discussed in this

paper.

Index Terms— Augmented reality; Virtual reality; Simulation

framework; Metaprotocol.

I. INTRODUCTION

Since the first appearance of so-called game engines in the

mid nineties [1], not only the capability of the technology is

being advanced. Today, modern software for the development

of augmented and virtual reality applications is designed with

the aim to simplify its usability in order to provide its services

to a wider user base. But the extension and reconfiguration of

such framework's subsystems is still restricted to the use of

mostly naive plug-in architectures with all their limitations, or

to the manipulation of the software's source code. The latter is

a subject only for highly trained software engineers with

profound knowledge of the software's architecture and

implementation, especially of the dependencies among all its

subsystems.

Figure 1 shows fundamental parts of a simulation

application and the distribution of responsibilities in the

development process of this kind of software. Simulation

software usually consists of a reusable part called engine, or in

case of games also game engine [1, 2]. The engine is normally

developed by separate teams of highly specialized software

engineers and then licensed to simulation developers like

game development studios or individuals. Moreover the

application consists of a set of data and some application

specific code, with the data being the major part. Further,

current engines allow manipulation of this data directly from

the engine's user interface. The application specific code itself

is reduced to a minimum, often being no more than some sort

of short scripts. This approach fosters the simplified use of

such frameworks. It is called data-driven architecture [1].

One significant drawback that still remains is the missing

ability to reconfigure the engine itself by adding, removing

and exchanging its subsystems in a way the application

developers know and can manage. With this in mind, we

present a possibility to reconfigure a framework for

augmented and virtual reality applications using a vocabulary

known and mainly used by the developers of simulations,

rather than by the software engineers of the framework.

In the context of our research, several simulation

frameworks like Unity3D, Unreal Engine or CryENGINE [3-

5] were studied to identify commonly used types and their

restrictions related to reconfiguration and subsystem

replacement. Related standards like OpenGL [6, 7] and other

frameworks like the Open Dynamics Engine [8],

OpenSceneGraph [9] and the Robot Operating System (ROS)

[16] were taken into account. ROS was taken into account

because of its completely decoupled subsystem integration

where each subsystem is a separate process. It turned out that

this constellation can be treated as a collection of different

simulations, each bound by the same restrictions discussed in

the following sections.

Besides this, related work in the context of modular

programming was considered, like OSGi [18], Plux [19, 20] or

the Eclipse Platform [17]. Those technologies make heavy use

of language specific features like reflection, which isn't

provided in languages like C++, which are commonly used for

implementation of simulation frameworks. PAL and OPAL

[13] use a simple adapter-based concept. An example is given

in the next section.

II. ARCHITECTURE OF A TYPICAL SIMULATION

ENVIRONMENT AND THE ACCESS TO ITS SUBSYSTEMS

A simulation environment or game engine consists of a

quite large number of subsystems. Not all of these subsystems

can be adjusted or completely exchanged by the user of the

environment. Figure 2 shows typical layers of a simulation

environment, each containing a set of subsystems.

Journal of Telecommunication, Electronic and Computer Engineering

176 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 3

A. Runtime Layer

The runtime layer contains software components designated

for the playback of the simulation. Most modern simulation

environments are data-driven [1]. This means that a simulation

is not being defined by the manipulation of code, instead it is

defined by a set of data.

Data is in this context every type of media, like images,

audio files or animations and others, but also short scripts that

are used to describe the simulation logic. This data is then

used by interpreter software like different players or the

simulation environment's integrated development environment

(IDE). Consider Unity3D [3] as a good example for this

approach.

Generally, this layer does not need profound access and

reconfiguration by the user, except for some minor

adjustments, like amongst others the selection of rendering

quality. The interpreter software is normally exchanged as a

whole part. Often interpreters are capable of using only

actually needed subsystems in order to maintain a smaller size

of the resulting simulation application. Figure 3 shows this in

a simplified diagram.

B. Composition Layer

Direct access is given to the composition layer of the

simulation framework. It contains all the necessary types

needed to define the entire structure and the behavior of a

simulation. These types are generalized versions of the

fundamental types found in lower subsystems, or sometimes

combined types providing frequently used functionality [3, 4].

They are used to construct simulation objects, to define their

functionality and to set up connections and references among

the simulation entities. This is normally done in editors with

graphical user interfaces instead of being coded by using

complex programming languages.

Popular simulation frameworks like Unreal Engine and

Unity3D utilize hierarchical data structures for the definition

of simulation scenarios, like AActor or GameObject.

Functionality is then added by the use of composition. In those

cases functional components are added to the hierarchical

structure like AActorComponent or Component. Those are

the abstract interfaces to the underlying subsystems of the

simulation framework.

Especially in the case of AActor and

AActorComponent this concept can be bypassed by the

implementation of subclasses. In the first place this seems to

be a simplification in terms of implementing a simulation

application but it makes an automated evaluation of

subsystems along with their communication channels and their

purpose nearly impossible.

It is also common practice to define completely specialized

data structures for the use in special purpose simulation

frameworks, like the ones we presented earlier [10, 11]. See

also [12] for further examples. Such concepts are working

well in special cases but are not suitable for a general

simulation environment.

The vocabulary used in this layer, the utilization of

hierarchical data structures for the definition of the simulation

layout and composition for the definition of the functionality

of simulation objects, works very well in a general purpose

simulation framework, and thus is being used in our approach.

Besides this it is not only well known from popular

environments like Unity3D and Unreal Engine but also from

other concepts like file systems with folders and files.

As a consequence this vocabulary needs to be used for the

underlying subsystems layer, in order to allow its

reconfiguration and manipulation in the same way as with

types in the composition layer.

	

AR/VR Application

Data

Interpreter

Part of Engine

Subsystem A Subsystem B Subsystem C

Figure 3: Interpreter using only needed subsystems of the engine and the data

defining the simulation

C. Subsystems Layer

In current frameworks, this layer is in most parts not

editable by the user. In many cases it is possible to adjust

some values but the subsystems are not a subject to be

replaced or included as completely new to the entire system.

This layer contains software modules like physics engines,

renderers or frameworks for the calculation of artificial

intelligence. All those subsystems provide types, which are

utilized by the composition layer, e.g. rigid bodies, colliders or

renderables. Many other types are not propagated to the upper

layers; instead they are used for internal calculations only.

Figure 4 shows an example of such a constellation.

D. Foundation Layer

The responsibility of this layer is to implement the most

fundamental management of the upper layers, namely the

loading and unloading of the modules in the subsystems layer.

This layer does not need any reconfiguration by the user.

	

Collider

Collision Solver

Subsystem Layer
(Physics Subsystem)

Composition Layer

Abstract Rigid

Body

Rigid Body

Abstract Collider

Dynamics Solver

Figure 4: Propagation of different subsystem entities to the composition layer

E. Subsystem Dependencies

Dependencies among subsystems are quite complex. A

standardized way for an automated evaluation and description

of the communication does not exist. Commonly, subsystems

of software are connected directly in the source code or they

are implemented in the form of plug-in modules, mostly

dynamic libraries, sometimes just scripts using already

existing functionality. The implementation of plug-in modules

is generally done by coding against interfaces or by

implementing subclasses of existing types. Access to

An Approach for Simplified Subsystem Replacement and Reconfiguration in Multimodal VR, AR and Other Simulation Frameworks

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 3 177

subsystems can be achieved only through interfaces on source

code basis. The main disadvantage here is that this approach

does not allow automatic evaluation of the communication and

the conversion of the results into any human readable form.

Also, undesirable direct dependencies to particular subsystems

may occur if no adapters are used instead of direct access to

types of subsystems.

F. Audio Subsystem Replacement Example

In this example an audio subsystem based on simple

OpenAL [14] is going to be replaced with an audio-raycaster

like RAYAV [15]. See figure 5. Both subsystems generate the

same kind of output but the latter one has additional

requirements regarding its input. The raycaster uses world

geometry to calculate the resulting audio signal. In a typical

simulation world geometry is already present, so that this

dependency may be solved without further problems. What is

missing is a material description for that geometry, defining

the characteristics of the reflections of the audio signal on its

surface. In the case of this subsystem replacement a simulation

environment should be able to report the missing dependency

for each object in the simulation. The proposed approach

makes this possible.

G. Physics Subsystem Replacement Example

During simulation development it may become necessary to

exchange the physics subsystem. The reasons for this can be a

change of requirements on quality, efficiency or functionality.

For this reason software frameworks like PAL and OPAL

were developed [13]. This kind of software works as an

adapter providing a generalized set of functionality. The

drawbacks are that these systems are restricted to physics

engines only, and that they are reducing the functional range

of the implemented subsystems. Further they are still not

capable of any automated evaluation of connections or

dependencies.

III. RESULTING FRAMEWORK

Our proposed framework defines four fundamental types to

be used to implement a simulation environment, System,

Scenario, Node and Component.

One of the main types of the proposed framework is

System. It is used for the lowest level of resource

management, mainly for the allocation and storage of further

subsystems. Besides this, its main area of responsibility is the

management of Scenario instances, as stated in fig. 6. This

type belongs to the lowest layer, the foundation layer.

The type Scenario is also contained in the foundation layer.

Its area of responsibility is to maintain a single simulation per

instance, each composed of Node hierarchies. See figure 6.

This is based on similar concepts like the one used by

Unity3D.

Instances of the type Node are responsible for the logical

composition of a simulation. Every entity contained in a

simulation must be defined using a hierarchy of this type. This

concept is well known and widely used so it fits our

requirements. It can be found e.g. in a file system in the form

of folders. Besides this, in the context of computer graphics, it

is used in most scene graphs for the purpose of hierarchical

spatial transformations, mostly as specialized and rigid

implementations. This concept is also used in other simulation

environments, like the AActor type in Unreal Engine,

GameObject in Unity3D or even in other form often as

inheritance hierarchies like the types GameObject,

MovableObject, or the type RenderableObject and

others [1]. Node is integrated into the composition layer.

The type Component is used for the encapsulation of data

and services within a simulation. It is used being included into

any instance of Node. See figure 7. Similar to Node,

Component is defined as a type belonging to the composition

layer of the framework.

OS

System

Scenario 1 Scenario 2 Scenario X...

Figure 6: The operating system, system and scenario layers

Subsystem Implementation

The main types in the concept presented so far omit the

subsystems layer. But this approach is capable of being used

for the implementation of subsystems of a simulation

framework exactly in the same way as the simulation itself is

being defined within the composition layer of the engine. It is

possible to implement all the simulation framework's

subsystems using the main data types presented in the

previous section. The only difference is that the subsystems

now have to be treated as ordinary simulation objects, namely

nodes and components. Thus the subsystem layer of the

simulation framework can be transferred into, or combined

with the composition layer. Parts of subsystems like the

examples in figure 4, e.g. the dynamics and collision solver,

can be implemented using the Component type.

IV. COMMUNICATION

An important criterion is the communication between

components. Especially the possibility must be implemented

to automatically interpret and examine component interfaces

and dependencies among each other. For this purpose it is

necessary to describe the communication and some of its

details. This is done with the use of interfaces and protocols.

A. Interfaces and Interface Types

Conceptually, we define an interface as a connection

between a single output and a single input of two components,

as shown in figure 8. At the current stage of our work we

defined a set of different interface types, each working

differently in terms of its implementation. Specifically this

means, how the interface delivers the data from the source to

its destination.

B. Protocol

Protocols describe the communication between two or more

components, as shown by figure 8, both in a formal and

informal way. The informal part is necessary for human

Journal of Telecommunication, Electronic and Computer Engineering

178 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 3

readability and is currently recommended but optional. The

formal description is necessary, and it is done by the definition

of every single connection between the inputs and outputs of

components. Such a definition needs to contain information

about the direction of the connection, the type of the data

transfer, the type of data to be transported and its purpose.

Every connection needs to describe its direction by

identifying its data source and the target. For this purpose,

connections identify a server and a client.

The connection type describes how the data is

communicated between the server and the client. The transfer

is possible in different ways like e.g. the provision of function

pointers, the use of shared memory or other message-based

methods.

The Protocol must also describe the type of data being

transferred. In this context it is still possible to define

completely proprietary connections e.g. by the simple use of

shared memory. In this case it is only necessary to exchange a

single reference to the memory. The communicating parties

can then use this memory in any way. But, a purpose must be

specified additionally in order to make it possible to identify

the connection among others.

The signature of a connection alone is not sufficient for its

definition. A purpose is also required. Otherwise the

communicated data cannot carry any useful information. The

problem is, if we only describe how the data is structured and

transferred, we still don't know what exactly will be the

calculated result, or the result's meaning. As an example,

consider a simple communication protocol between two

participating components. The first sends two numbers to the

second one, which then sends another number back as a result.

This protocol could describe an addition, subtraction or

another kind of calculation.

C. Metaprotocol

In order to provide the possibility for an automated

evaluation of all protocols and connections among

components, protocols need to be formally described using a

predefined set of rules. To ensure this, we use a metaprotocol,

which provides a set of interface types a protocol may use.

Fig. 9 shows a diagram describing the general structure of the

metaprotocol.

V. CONCLUSION

We presented a new approach to simplify the

reconfiguration of simulation frameworks and the replacement

of their subsystems without forcing users to know the internal

workings and dependencies of all contained subsystems. To

achieve this, common simulation frameworks were studied

and their restrictions related to the problem identified. Based

on those restrictions a solution has been elaborated and

discussed. The solution is based on two steps. First step is the

combination of the composition layer and the subsystems

layer by the definition of necessary types and system

architecture. The other step is the definition of the

communication channels, which can be automatically

evaluated by the simulation system. The resulting framework

is currently under development. The implementation is done

using C++. As a consequence we have to implement

customized reflection mechanics, which can be implemented

on the basis of the proposed structure of our framework.

REFERENCES

[1] M. Gregory, J., “Game Engine Architecture,” 1st edn. A K Peters/CRC

Press, 2009.

[2] Zerbst, S., Düvel, O., “3D game Engine Programming,” 1st edn.

Thomson Course Technology, 2004.

[3] Lavieri, E., “Getting Started with Unity 5,” 1st edn. Packt Publishing,
2015.

[4] Tavakkoli, A., “Game Development and Simulation with Unreal

Technology,” 1st edn. A K Peters/CRC Press, 2015.
[5] Gundlach, S., Martin, M.K., “Mastering CryENGINE,” 1st edn. Packt

Publishing, 2014.

[6] Sellers, G., Wright, R.S., Haemel, N.: OpenGL SuperBible,
“Comprehensive Tutorial and Reference,” 7th edn. Addison-Wesley

Professional, 2015.
[7] Ginsburg, D., Purnomo, B., Shreiner, D., Munshi, A., “OpenGL ES 3.0

Programming Guide,” 2nd edn. Addison-Wesley Professional, 2014.

[8] Smith, R., “Constraints in der Festkörperdynamik,” In: Kirmse, A. (ed.)
Spieleprogrammierung Gems, vol. 4. Carl Hanser Verlag, pp. 253–264,

2004.

[9] Wang, R., Quian, X., OpenSceneGraph 3.0: Beginner's Guide, Packt
Publishing, 2010.

[10] Lepich, T.D., “Simulation einer Industrieanlage für die Ausbildung im

Bereich der SPS-Programmierung,” In: Möller, R. (ed.): Tagungsband,
Workshop Sichtsysteme - Visualisierung in der Simulationstechnik.

Shaker Verlag, pp. 123–134, 2007.

[11] Lepich, T.D., “Framework zur Untersuchung und Simulation autonomer
Robotiksysteme,” In: Möller, R. (ed.): Tagungsband, 11. Workshop

Sichtsysteme - Visualisierung in der Simulationstechnik. Shaker Verlag,

pp. 43–53, 2009.
[12] Hawkins, K., Astle, D., OpenGL Game Programming. 1st edn. Prima

Publishing, 2001.

[13] Boeing, A., Bräunl, T., “Evaluation of Real-time Physics Simulation
Systems,” In: Proceedings of the 5th International Conference on

Computer Graphics and Interactive Techniques in Australia and

Southeast Asia, ACM, 2007.
[14] Hiebert, G.: OpenAL 1.1 Specification and Reference, 2005.

[15] Karbowniczek, P.: Praca dyplomowa, wersja demonstracyjna silnika

audio do gier rayav, 2014.
[16] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J.,

Wheeler, R., Ng, A.Y., “ROS: An Open-source Robot Operating

System,” In: ICRA Workshop on Open-source Software, vol. 3, no. 3.2,
pp. 5. 2005.

[17] Beck, K., Gamma, E.: Contributing to Eclipse. Addison-Wesley, 2003.

[18] Alliance, O., “ OSGi Service Platform, Release 3,” IOS Press, Inc, 2003.
[19] Jahn, M., Löberbauer, M., Wolfinger, R., and Mössenböck, H., “ Rule-

based Composition Behaviors in Dynamic Plug-in Systems,” In:

Software Engineering Conference (APSEC), 17th Asia Pacific, pp. 80–
89, 2010.

[20] Wolfinger, R., Dhungana, D., Prähofer, H., and Mössenböck, H., “ A

Component Plug-in Architecture for the .NET Platform,” In: Modular
Programming Languages. Springer Berlin Heidelberg, pp. 287–305,

2006.

An Approach for Simplified Subsystem Replacement and Reconfiguration in Multimodal VR, AR and Other Simulation Frameworks

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 3 179

	

AR / VR Application, Simulation or Game

DataEngine
Application

Specific Code

Software Engineer Application

Developer /

Designer

Develops and

modifies

Develops and

modifies

Defines needs

Figure 1: General interaction between developers of the simulation framework and the designers and developers of a simulation application

	
OS

Resource Management Subsystem ManagementFoundation

...

Physics and

Collision
Graphics 3D Audio AI Scripting AnimationSubsystems

Editors & Tools Game/Simulation RuntimeRuntime

Simulation Subsystems (Simulation Objects, Components...)Composition

Figure 2: Simplified diagram of typical layers and subsystems of a simulation engine

...Composition

Physics and
Collision

...

Graphics AI Scripting AnimationSubsystems

3D Audio3D Raytraced Audio

Figure 5: Subsystem exchange

Scenario

N

C N

N

C C

N

C C

N

C C

N

N

C C

N

C C C

N

N

C

Figure 7: Scenario containing node (N) hierarchies and components (C)

Component A
I 1 O 2

O 3
Component B

I 2 O 1

I 3
Component C

I 2 O 2

I 1

Figure 8: A protocol describing the connections between multiple components

Component A

Protocol 2

Component B

Component C

Protocol 3

Protocol 1

MetaprotocolIT 1 IT 2 IT 3 IT 4

Figure 9: Metaprotocol for the definition of interface types (IT) used by protocols

