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Abstract— Nowadays, modern software for the development of 

augmented and virtual reality applications is designed with the 

aim to simplify its usability in order to provide services to a wider 

user base. In this context, our paper presents a novel approach to 

make the replacement and reconfiguration of a simulation 

framework's subsystems possible, without being bound by the 

restrictions, current plug-in strategies incur, or the need of 

manipulating its source code. Code manipulation requires a deep 

understanding of software engineering and the framework's 

software design, including all dependencies among the 

subsystems. For this purpose, common simulation systems were 

examined and their restrictions identified. Solutions of different 

problems in this context were elaborated and are discussed in this 

paper. 

 

Index Terms— Augmented reality; Virtual reality; Simulation 

framework; Metaprotocol. 

 

I. INTRODUCTION 

 

Since the first appearance of so-called game engines in the 

mid nineties [1], not only the capability of the technology is 

being advanced. Today, modern software for the development 

of augmented and virtual reality applications is designed with 

the aim to simplify its usability in order to provide its services 

to a wider user base. But the extension and reconfiguration of 

such framework's subsystems is still restricted to the use of 

mostly naive plug-in architectures with all their limitations, or 

to the manipulation of the software's source code. The latter is 

a subject only for highly trained software engineers with 

profound knowledge of the software's architecture and 

implementation, especially of the dependencies among all its 

subsystems. 

Figure 1 shows fundamental parts of a simulation 

application and the distribution of responsibilities in the 

development process of this kind of software. Simulation 

software usually consists of a reusable part called engine, or in 

case of games also game engine [1, 2]. The engine is normally 

developed by separate teams of highly specialized software 

engineers and then licensed to simulation developers like 

game development studios or individuals. Moreover the 

application consists of a set of data and some application 

specific code, with the data being the major part. Further, 

current engines allow manipulation of this data directly from 

the engine's user interface. The application specific code itself 

is reduced to a minimum, often being no more than some sort 

of short scripts. This approach fosters the simplified use of 

such frameworks. It is called data-driven architecture [1]. 

One significant drawback that still remains is the missing 

ability to reconfigure the engine itself by adding, removing 

and exchanging its subsystems in a way the application 

developers know and can manage. With this in mind, we 

present a possibility to reconfigure a framework for 

augmented and virtual reality applications using a vocabulary 

known and mainly used by the developers of simulations, 

rather than by the software engineers of the framework. 

In the context of our research, several simulation 

frameworks like Unity3D, Unreal Engine or CryENGINE [3-

5] were studied to identify commonly used types and their 

restrictions related to reconfiguration and subsystem 

replacement. Related standards like OpenGL [6, 7] and other 

frameworks like the Open Dynamics Engine [8], 

OpenSceneGraph [9] and the Robot Operating System (ROS) 

[16] were taken into account. ROS was taken into account 

because of its completely decoupled subsystem integration 

where each subsystem is a separate process. It turned out that 

this constellation can be treated as a collection of different 

simulations, each bound by the same restrictions discussed in 

the following sections. 

Besides this, related work in the context of modular 

programming was considered, like OSGi [18], Plux [19, 20] or 

the Eclipse Platform [17]. Those technologies make heavy use 

of language specific features like reflection, which isn't 

provided in languages like C++, which are commonly used for 

implementation of simulation frameworks. PAL and OPAL 

[13] use a simple adapter-based concept. An example is given 

in the next section. 

 

II. ARCHITECTURE OF A TYPICAL SIMULATION 

ENVIRONMENT AND THE ACCESS TO ITS SUBSYSTEMS 

 

A simulation environment or game engine consists of a 

quite large number of subsystems. Not all of these subsystems 

can be adjusted or completely exchanged by the user of the 

environment. Figure 2 shows typical layers of a simulation 

environment, each containing a set of subsystems. 
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A. Runtime Layer 

The runtime layer contains software components designated 

for the playback of the simulation. Most modern simulation 

environments are data-driven [1]. This means that a simulation 

is not being defined by the manipulation of code, instead it is 

defined by a set of data. 

Data is in this context every type of media, like images, 

audio files or animations and others, but also short scripts that 

are used to describe the simulation logic. This data is then 

used by interpreter software like different players or the 

simulation environment's integrated development environment 

(IDE). Consider Unity3D [3] as a good example for this 

approach. 

Generally, this layer does not need profound access and 

reconfiguration by the user, except for some minor 

adjustments, like amongst others the selection of rendering 

quality. The interpreter software is normally exchanged as a 

whole part. Often interpreters are capable of using only 

actually needed subsystems in order to maintain a smaller size 

of the resulting simulation application. Figure 3 shows this in 

a simplified diagram. 

 

B. Composition Layer 

Direct access is given to the composition layer of the 

simulation framework. It contains all the necessary types 

needed to define the entire structure and the behavior of a 

simulation. These types are generalized versions of the 

fundamental types found in lower subsystems, or sometimes 

combined types providing frequently used functionality [3, 4]. 

They are used to construct simulation objects, to define their 

functionality and to set up connections and references among 

the simulation entities. This is normally done in editors with 

graphical user interfaces instead of being coded by using 

complex programming languages. 

Popular simulation frameworks like Unreal Engine and 

Unity3D utilize hierarchical data structures for the definition 

of simulation scenarios, like AActor or GameObject. 

Functionality is then added by the use of composition. In those 

cases functional components are added to the hierarchical 

structure like AActorComponent or Component. Those are 

the abstract interfaces to the underlying subsystems of the 

simulation framework. 

Especially in the case of AActor and 

AActorComponent this concept can be bypassed by the 

implementation of subclasses. In the first place this seems to 

be a simplification in terms of implementing a simulation 

application but it makes an automated evaluation of 

subsystems along with their communication channels and their 

purpose nearly impossible. 

It is also common practice to define completely specialized 

data structures for the use in special purpose simulation 

frameworks, like the ones we presented earlier [10, 11]. See 

also [12] for further examples. Such concepts are working 

well in special cases but are not suitable for a general 

simulation environment. 

The vocabulary used in this layer, the utilization of 

hierarchical data structures for the definition of the simulation 

layout and composition for the definition of the functionality 

of simulation objects, works very well in a general purpose 

simulation framework, and thus is being used in our approach. 

Besides this it is not only well known from popular 

environments like Unity3D and Unreal Engine but also from 

other concepts like file systems with folders and files. 

As a consequence this vocabulary needs to be used for the 

underlying subsystems layer, in order to allow its 

reconfiguration and manipulation in the same way as with 

types in the composition layer. 
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Figure 3: Interpreter using only needed subsystems of the engine and the data 

defining the simulation 

 

C. Subsystems Layer 

In current frameworks, this layer is in most parts not 

editable by the user.  In many cases it is possible to adjust 

some values but the subsystems are not a subject to be 

replaced or included as completely new to the entire system. 

This layer contains software modules like physics engines, 

renderers or frameworks for the calculation of artificial 

intelligence. All those subsystems provide types, which are 

utilized by the composition layer, e.g. rigid bodies, colliders or 

renderables. Many other types are not propagated to the upper 

layers; instead they are used for internal calculations only. 

Figure 4 shows an example of such a constellation. 

 

D. Foundation Layer 

The responsibility of this layer is to implement the most 

fundamental management of the upper layers, namely the 

loading and unloading of the modules in the subsystems layer. 

This layer does not need any reconfiguration by the user. 
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Figure 4: Propagation of different subsystem entities to the composition layer 

 

 

E. Subsystem Dependencies 

Dependencies among subsystems are quite complex. A 

standardized way for an automated evaluation and description 

of the communication does not exist. Commonly, subsystems 

of software are connected directly in the source code or they 

are implemented in the form of plug-in modules, mostly 

dynamic libraries, sometimes just scripts using already 

existing functionality. The implementation of plug-in modules 

is generally done by coding against interfaces or by 

implementing subclasses of existing types. Access to 
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subsystems can be achieved only through interfaces on source 

code basis. The main disadvantage here is that this approach 

does not allow automatic evaluation of the communication and 

the conversion of the results into any human readable form. 

Also, undesirable direct dependencies to particular subsystems 

may occur if no adapters are used instead of direct access to 

types of subsystems. 

 

F. Audio Subsystem Replacement Example 

In this example an audio subsystem based on simple 

OpenAL [14] is going to be replaced with an audio-raycaster 

like RAYAV [15]. See figure 5. Both subsystems generate the 

same kind of output but the latter one has additional 

requirements regarding its input. The raycaster uses world 

geometry to calculate the resulting audio signal. In a typical 

simulation world geometry is already present, so that this 

dependency may be solved without further problems. What is 

missing is a material description for that geometry, defining 

the characteristics of the reflections of the audio signal on its 

surface. In the case of this subsystem replacement a simulation 

environment should be able to report the missing dependency 

for each object in the simulation. The proposed approach 

makes this possible. 

 

G. Physics Subsystem Replacement Example 

During simulation development it may become necessary to 

exchange the physics subsystem. The reasons for this can be a 

change of requirements on quality, efficiency or functionality. 

For this reason software frameworks like PAL and OPAL 

were developed [13]. This kind of software works as an 

adapter providing a generalized set of functionality. The 

drawbacks are that these systems are restricted to physics 

engines only, and that they are reducing the functional range 

of the implemented subsystems. Further they are still not 

capable of any automated evaluation of connections or 

dependencies. 
 

III. RESULTING FRAMEWORK 

 

Our proposed framework defines four fundamental types to 

be used to implement a simulation environment, System, 

Scenario, Node and Component. 

One of the main types of the proposed framework is 

System. It is used for the lowest level of resource 

management, mainly for the allocation and storage of further 

subsystems. Besides this, its main area of responsibility is the 

management of Scenario instances, as stated in fig. 6. This 

type belongs to the lowest layer, the foundation layer. 

The type Scenario is also contained in the foundation layer. 

Its area of responsibility is to maintain a single simulation per 

instance, each composed of Node hierarchies. See figure 6. 

This is based on similar concepts like the one used by 

Unity3D. 

Instances of the type Node are responsible for the logical 

composition of a simulation. Every entity contained in a 

simulation must be defined using a hierarchy of this type. This 

concept is well known and widely used so it fits our 

requirements. It can be found e.g. in a file system in the form 

of folders. Besides this, in the context of computer graphics, it 

is used in most scene graphs for the purpose of hierarchical 

spatial transformations, mostly as specialized and rigid 

implementations. This concept is also used in other simulation 

environments, like the AActor type in Unreal Engine, 

GameObject in Unity3D or even in other form often as 

inheritance hierarchies like the types GameObject, 

MovableObject, or the type RenderableObject and 

others [1]. Node is integrated into the composition layer. 

The type Component is used for the encapsulation of data 

and services within a simulation. It is used being included into 

any instance of Node. See figure 7. Similar to Node, 

Component is defined as a type belonging to the composition 

layer of the framework. 

 

 

OS

System

Scenario 1 Scenario 2 Scenario X...

 
Figure 6: The operating system, system and scenario layers 

 

Subsystem Implementation 

The main types in the concept presented so far omit the 

subsystems layer. But this approach is capable of being used 

for the implementation of subsystems of a simulation 

framework exactly in the same way as the simulation itself is 

being defined within the composition layer of the engine. It is 

possible to implement all the simulation framework's 

subsystems using the main data types presented in the 

previous section. The only difference is that the subsystems 

now have to be treated as ordinary simulation objects, namely 

nodes and components. Thus the subsystem layer of the 

simulation framework can be transferred into, or combined 

with the composition layer. Parts of subsystems like the 

examples in figure 4, e.g. the dynamics and collision solver, 

can be implemented using the Component type. 

 

IV. COMMUNICATION 

 

An important criterion is the communication between 

components. Especially the possibility must be implemented 

to automatically interpret and examine component interfaces 

and dependencies among each other. For this purpose it is 

necessary to describe the communication and some of its 

details. This is done with the use of interfaces and protocols. 

 

A. Interfaces and Interface Types 

Conceptually, we define an interface as a connection 

between a single output and a single input of two components, 

as shown in figure 8. At the current stage of our work we 

defined a set of different interface types, each working 

differently in terms of its implementation. Specifically this 

means, how the interface delivers the data from the source to 

its destination. 

 

B. Protocol 

Protocols describe the communication between two or more 

components, as shown by figure 8, both in a formal and 

informal way. The informal part is necessary for human 
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readability and is currently recommended but optional. The 

formal description is necessary, and it is done by the definition 

of every single connection between the inputs and outputs of 

components. Such a definition needs to contain information 

about the direction of the connection, the type of the data 

transfer, the type of data to be transported and its purpose. 

Every connection needs to describe its direction by 

identifying its data source and the target. For this purpose, 

connections identify a server and a client. 

The connection type describes how the data is 

communicated between the server and the client. The transfer 

is possible in different ways like e.g. the provision of function 

pointers, the use of shared memory or other message-based 

methods. 

The Protocol must also describe the type of data being 

transferred. In this context it is still possible to define 

completely proprietary connections e.g. by the simple use of 

shared memory. In this case it is only necessary to exchange a 

single reference to the memory. The communicating parties 

can then use this memory in any way. But, a purpose must be 

specified additionally in order to make it possible to identify 

the connection among others. 

The signature of a connection alone is not sufficient for its 

definition. A purpose is also required. Otherwise the 

communicated data cannot carry any useful information. The 

problem is, if we only describe how the data is structured and 

transferred, we still don't know what exactly will be the 

calculated result, or the result's meaning. As an example, 

consider a simple communication protocol between two 

participating components. The first sends two numbers to the 

second one, which then sends another number back as a result. 

This protocol could describe an addition, subtraction or 

another kind of calculation. 

 

C. Metaprotocol 

In order to provide the possibility for an automated 

evaluation of all protocols and connections among 

components, protocols need to be formally described using a 

predefined set of rules. To ensure this, we use a metaprotocol, 

which provides a set of interface types a protocol may use. 

Fig. 9 shows a diagram describing the general structure of the 

metaprotocol. 

 

V. CONCLUSION 

 

We presented a new approach to simplify the 

reconfiguration of simulation frameworks and the replacement 

of their subsystems without forcing users to know the internal 

workings and dependencies of all contained subsystems. To 

achieve this, common simulation frameworks were studied 

and their restrictions related to the problem identified. Based 

on those restrictions a solution has been elaborated and 

discussed. The solution is based on two steps. First step is the 

combination of the composition layer and the subsystems 

layer by the definition of necessary types and system 

architecture. The other step is the definition of the 

communication channels, which can be automatically 

evaluated by the simulation system. The resulting framework 

is currently under development. The implementation is done 

using C++. As a consequence we have to implement 

customized reflection mechanics, which can be implemented 

on the basis of the proposed structure of our framework. 
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Figure 1: General interaction between developers of the simulation framework and the designers and developers of a simulation application 
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Figure 2: Simplified diagram of typical layers and subsystems of a simulation engine 
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Figure 5: Subsystem exchange 

 
Scenario

N

C N

N

C C

N

C C

N

C C

N

N

C C

N

C C C

N

N

C

 
 

Figure 7: Scenario containing node (N) hierarchies and components (C) 
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Figure 8: A protocol describing the connections between multiple components 
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Figure 9: Metaprotocol for the definition of interface types (IT) used by protocols 


