
 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 3 43

Analysis of Security Possibilities of Platforms for 3D

Graphics

Tomas Svoboda, Josef Horalek
University of Pardubice, Faculty of Electrical Engineering and Informatics,

Pardubice, Czech Republic.

tomas.svoboda5@student.upce.cz

Abstract— This paper introduces the results of an analysis of

security threats based on 3D graphics interface abuse mainly in

Windows operating systems. Basic security threats, which can

greatly influence the functionality and security of an operating

system, are introduced in this paper. Due to the specific nature of

the operating systems architecture, the most vulnerable part are

the third party drivers, which have access to the core mode.

Different approaches of protecting drivers are described together

with disadvantages of these solutions. Practical methods of

attacks are discussed in detail and when relevant, program

alterations are suggested to program designers. The goal of these

suggestion is to minimize or to completely eliminate mentioned

security threats, making 3D graphics interface more secure.

Index Terms— 3D Graphics; Security threats; Third party

drivers.

I. INTRODUCTION

Thanks to IT specialist paying extra attention to security, usual

pathways for malicious code have lately been either fully

closed or very difficult to discover. Standard security threats

are the topic of many defense strategies and approaches, such

as layout randomization, utilizing NX security, rights

restrictions within the operating system, locking authorization,

utilizing isolation on application level in the form of integrity

level or in the form of utilizing a sandbox with operating

system interface restrictions.

For this reason, the focus of attackers shifts to other parts of

the operating system, through which the attackers could break

through the security measures and which are hard to secure at

all. Generally, we are speaking about any random code in core

mode, which can use any processor instruction and thus access

any sources. Code of core mode can be divided into the core

itself, drivers, and system services. The only part, in which the

highest percentage of third party codes is present, are the

drivers needed to ensure the functionality of hardware or

specialized software and thus the highest probability of critical

errors is to be expected. The fundamental problem of drivers

lies in the fact that the outer code is divided from them by thin

interface oriented on power and not prepared to be used as a

security divider. An example of such drivers is graphic card

drivers, libraries, and services associated with them. Although

the part of core interface is accessible only as system calls,

graphic cards and their drivers are a potential security threat.

Standard drivers are hidden from potentially untrustworthy

codes using several different interfaces, parameters and data

are processed and validated by the system. Specifically altered

driver using DMA channels providing direct access to the

memory for reading and writing directly into physical memory

is far more common than an attack aimed at general drivers.

Such process can be both, an attack or a rootkit detection

method.

Unlike standard drivers, graphic drivers mostly utilize

separate interface and they interpret and perform complete

code given by a client application. The result of this is a

significantly better visible area for an attacker, and because

WebGL standard, enabling Javascript access to graphic

interfaces in webpages, exists, potential attack does not

require anything else than malicious code attached to a

webpage, e.g. in the form of a compiled script.

The aim of the paper is to investigate possible pathways to

breeching system security and to suggest security methods

which could be applied to graphic card drivers.

II. DEFINITION OF PROBLEMS AND THEIR ANALYSIS

Recently, several approaches to how to deal with security

threats of general drivers exist, but almost all of them are

dependent on using virtualization of the first type and a

hypervisor as an isolated environment for monitoring and

checking the drivers.

First option, which is not using virtualization, is an

approach described in [1], in which an adaptation of code

instrumentation using a translation of binary code is

suggested. This approach is primarily designed for operating

systems based on a Linux core, which differs greatly from

Windows in its implementation of core mode and services.

Another problem is that this approach can be applied on a

GPU code, as it is processed solely on a driver and afterwards

by hardware and it is therefore not possible to prevent

interference through the GPU. The last issue with this

approach is the power demand of the graphic card and its

influence on its performance.

Next solution is utilizing full virtualization for DriverGuard

(DG), as introduced in [2], in which one can use a lite version

of a hypervisor to put the control code above the code of the

controlled system, while the supervisor also has to be able to

distinguish individual types of allocated memory so it is

possible to distinguish the program part of memory from the

data part. The principle lies in monitoring changes in the data

area of the memory of the driver, so when DG accesses a page

Journal of Telecommunication, Electronic and Computer Engineering

44 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 3

of a secured area, it forces throwing an exception, resulting in

stopping the code execution. Just like when using classic

debug function, int 3, without the driver or the malicious code

could recognize such action. DG then analyses the source of

the access and based on the analysis, it either permits or denies

access.

Another group of solutions for this issue is virtualization of

only selected components and drivers, as introduced in [3] as

SILVER. Each object in core mode is encapsulated in its own

virtualization with a common hypervisor. When accessing the

particular objects or executing their code, the impossibility of

direct modification of paging tables is used and instead, the

tables itself are being switched between, and thus only a

restricted view of the core memory with optional different

permission for each object is possible.

The solution introduced in [4] utilizes a hypervisor for

monitoring writings into secured areas in memory and also

forces the memory department with sensitive data structures

from others, because it is not possible to efficiently use

smaller allocation unit than the memory page, which is

minimally 4kB on x86 processors, which would not permit

using the assistance of memory unit of the processor. The first

problem is the dependency on virtualization, which might not

be available all the time, and without virtualization of I/O

ports, it is not possible to deny the GPU access to secured

memory efficiently. Another problem is the impossibility to

secure data structures of drivers, mostly data drivers of the

graphic card.

The issue with abovementioned solutions is the non-zero

effect on system performance and in case of graphic drivers;

those solutions cannot be suitable for majority of users who

demand the highest GPU performance.

Besides the effect on the performance, possible

incompatibilities with given hardware and the way of its

utilization are an issue for general hypervisors, as the

operation system itself has high requirements on

virtualization.

Virtualization security, such as SILVER, requires larger

disadvantageous modification of the system, in order to

execute necessary allocations of core objects and their

allocation to individual virtualizations. A significant

disadvantage is then noticeable effect on system performance,

as it is necessary to have extensive code for memory

administration, and each switch between objects, or between

the user and the core modes, will be significantly more

difficult.

For all abovementioned solutions, there is one characteristic

common disadvantage, because they require the system to

support virtualization extension. For x86 an x86-64, exist two

pairs of virtualization technologies. VT-X and VT-D by Intel

and AMD-V and AMD-Vi by AMD. VT-X and AMD-V

extensions provide basic support for virtualization and

administration of a hypervisor, host system, and guest

systems. The support consists of instructions administrating

virtualized systems and possible extensions of system objects,

such as extended page table (EPT) or advanced programmable

interrupt controller virtualization (APICV). VT-D and AMD-

Vi are virtualization extensions that extend basic virtualization

by support for virtualization of input-output sources. The aim

is extending the isolation of the guest system from the

viewpoint of working with hardware without noticeably

affecting system performance, which would be cause by

software emulation and hardware translation. These extensions

offer the option to utilize memory addresses designated for

direct memory access (DMA), routing interruptions, and

supporting direct sending of interruptions from the virtualized

devices to virtual processors.

Another solution is DeviceGuard. It is a function

implemented in the core of Windows 10 operating system,

which uses virtualization to protect processes working with

signatures, system processes and drivers of devices, from

outer attacks. The disadvantage of the whole system are

system requirements, as it is necessary to ensure correct

implementation of UEFI firmware with the SecureBoot

function, which verifies the integrity of booting up the system

and Hyper-V virtualization, which requires both extensions,

the VT-X and VT-D.

In Windows 10, there are also Shielded VMs, running under

Hyper-V, which contain restricted SKernel, which does not

support any drivers, except for necessary minimum, and which

enables to host sensitive system services, such as Local

Security Authority (LSA) in such a way, that sensitive

information contained in them are secured. It is mostly the

security of logging information against an attack from an

administrator account.

In present days there is no solution that would deal with the

issues of the security of graphic drivers and work with GPU

without utilizing virtualization, negatives of which have been

mentioned above. Most of the current work is focused on

optimization of 3D rendering in mobile devices with no focus

on enhancing security [5,6].

III. SECURITY THREATS AND THEIR SOLUTIONS

Among the main analyzed security threats and

vulnerabilities belong Buffer over-flow, Timing attack, Object

slicing, reading and underflow of character buffers, invalid

indicator, Use-after-free, Out-of-memory, and Malformed

input data. Each security threat was assessed based on its

significance and the possibility of redress.

A. Buffer Overflow

It is a standard error, during which the code writes behind

the border defined as the area of the memory. This way, the

attacker may in some cases rewrite the data structure, in which

the given buffer is located.

The main aim when abusing this error, is rewriting

indicators in such a way that they would link to a memory

under the attacker's influence, or which contains content

provided by the attacker and with a known address. The

content is then a machine code, which can attempt to abuse

other vulnerabilities to gain higher permissions or to execute

target activity. This flaw and this particular way of abuse for

user code throws an exception, as the access memory is solely

in pages with prohibited code execution. This restriction is

present since Windows XP Service Pack 2 and it primary uses

one of the free bits in the description of a page labeling

restrictions. The processor supporting this function throws a

special exception, which then terminates the process.

This measure cannot be applied by default drivers in the

Analysis of Security Possibilities of Platforms for 3D Graphics

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 3 45

core mode, as an exception will cause fast system termination,

because at that moment, there is no guarantee for any non-

standard exception that structures and allocated memory for

the core mode are not damaged. The drivers thus must

explicitly call for such labelled memory and this option is

available since Windows 8.

Attack alternative to the previous one is the rewrite of the

NULL ending character by a random byte, and abuse of

incorrect work with standard functions for working with

strings in C language, which use the NULL character to

determine the end of the string. In such case, the error cause

the possibility to read the memory behind the character string

and it enables possible data leak or getting information

necessary for subsequent attacks. Alternatively, the memory

can be rewritten by the following code and thus cause a buffer

overflow with the safe effect:

Void VulnerableFunction (wchar_t

*buffer,int cbLength)

{

char* dest = malloc(…);

memcpy(dest,buffer,cbLength*sizeof(wchar_

t));

…

}

B. Timing Attack

It is a class of errors in code, when the function does not

validate the input from the calling code correctly, or it

validates it prematurely, and the attacker then can, thanks to

more core processes, change parameters from a different

thread and bypass authentication code, as depicted on Figure

1.

The basic assumption is that the function takes over one of

the input parameter, object indicator, basic parameters of

which can be altered parallel in a different thread. The aim of

the attack is to cause buffer overflow or another error, e.g. a

free indicator. The most significant disadvantage of such an

attack is an inherent dependency on a programming error,

when the access to a given object from more threads is not

treated correctly and race conditioned, and depending on many

factors, such as sequencing threads for performance or system

activity of the core, the attacker's thread can but does not have

to have the window to parallel manipulation with an object.

Standard security for such kind of attacks is validating

borders of array for every iteration or disablement of the

internal structure of an object for an outer code and forcing

access through methods, which force synchronization through

threads or which fill in missing synchronizations.

The disadvantage of such defense is the necessity to

validate the buffer for every iteration. Because modern

processors possess high efficiency of branching predictor, but

that means at least several instructions more. In addition, such

solution will prevent any code vectorization, i.e. utilization of

specialized instructions for parallel processing of several

elements at once. In the case of AVX extension for

instructional set x86/x64, the number of elements can be as

high as 8 elements for one instruction. In other cases, the

condition requires performing functions that are more complex

and thus reaching further loss of performance.

Locking the memory page belongs among the suggested

methods of security dealing with timing attacks. With buffers

it is possible to force allocation in individual pages and it is

also possible to change page security before validation from

read/write to "read only" using the VirtualProtect function,

which instructs the memory administrator to make changes to

memory attributes concerning security of pages containing the

given extent defined by an address and size. Subsequently, a

copy from memory allocated by the user is made into the

memory controlled by runtime or a driver. If it is not possible

to ensure the use of an allocator, which uses separate pages for

allocation, it is then possible to introduce change of memory

administration, which will enable to lock the heap, in which

the given array is located an thus prevent any changes.

JavaScipt
code

Modification of
buffer

WebGL

Validation

Procesing

Function call (buffer pointer)

Figure 1: Timing attack

Another possible solution is strict access synchronization.

With objects of graphic interface, it is possible to rather easily

ensure complete access synchronization. To achieve

scalability, it is possible to utilize Slim Reader/Writer (SRW)

stamps, which were located in individual public methods. An

alternative to access synchronization is attribute locking, i.e.

introducing a type bool variable, which will deactivate codes

of other methods for the given instance of the object after

calling an executive method.

We recommend to switch from C code to a C++ code and to

utilize STL (standard template library), which allows to use

iterators to check the extent.

C. Object Slicing

This security issue occurs primarily in object-oriented

languages, in which a class can extend the definition of a

superior class by another attribute and then during transferring

the object to a function, which expects a superior class, the

object can have the added attributes trimmed. With indicators,

the trim itself is not realized, but methods which will be called

and which will belong to the superior class, will not know

about other attributes. If one or more methods were deployed

within an inferior class, they will behave according to the new

code and subsequently perform incorrect functions, or they

will lead to a security flaw.

The same problem applies to the procedural C language, in

which the code can define several structures with a common

base and of similar structure. The design of the solution to this

issue lies in two complementary approaches. In the first case,

Journal of Telecommunication, Electronic and Computer Engineering

46 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 3

additional variable, which determines the version of the

object, is introduced in classes. If the variable is introduced at

the beginning of the declaration, it will be present even in case

of trimming. Another method is using RunTime Type

Information of the given language and in the event of

transferring indicators, it is possible to verify their relevance.

D. Character Buffer Overflow and Underflow

Character buffer overflow and underflow is a combination

of a buffer overflow with a timing attack when character

buffers are used for functions that process files or shader

functions for saving the name of the file of a shader, and these

buffers are often controlled by a vulnerable code, or directly

by a code trying to penetrate it. Vulnerable code can be

Javascript, which runs under the web browser or in

independent environment, such as V8, and which is used as a

3D interface of WebGL. Because initial validation of strings is

performed during transferring names from the user code into

the WebGL interface and then to components responsible for

processing requests, there is an interval between the initial

validation and the finish of copying into the buffer. Such

buffer is controlled by a responsible component. Penetrating

code, which is running within the original Javascript and

which has access to the source string, can then attempt to

change the content to a shorter or longer string which contains

malicious code or other data specific for the object containing

the target buffer. If the code is loaded within this interval, the

vulnerable function then rewrites the content not only of the

target buffer, but also the rest remaining part of the object.

E. Invalid Indicator

Invalid indicators are an important calls of errors,

significance of which ranges from the option to cause an

application or a service to crash, i.e. a DOS type attack, to

forcing a run of a malicious code. The simplest type of an

invalid indicator is a zero indicator, which links to a memory

on the 0 address. This memory is not labelled as invalid on

common platforms (IA 32/IA 64 or ARM). In order to detect

common errors in programs, first 64kB of virtual memory are

labelled as inaccessible and thus when attempting to

dereference the zero indicator, an exception is thrown by a

memory controller of the processor. Such exception typically

terminates the process of the code does not filter this

exception and does not attempt to continue. The most common

reason for the existence of a zero indicator of the failure of

memory allocation, or the attempt to extend the allocated array

fail, as shown in the following example:

void BadFunctionWithResizing(char*

string)

{

….

string = Realloc(string,new_size);

 ….

}

Vulnerable code rewrites the original indicator with a new

one, which is returned by the standard realloc function. The

problem is that if allocation of new memory fails, a zero

indicator is returned and an error indicator and the original

allocation are kept. However, in that moment the indicator of

the original memory is lost and thus a memory leak is caused,

but when attempting to use such indicator, an exception is

thrown and the application crashes.

The following demonstration shows one possibility how to

repair this security flaw:

void CorrectFunctionWithResizing(char*

string)

{

….

char *string2 = Realloc(string,new_size);

if(!string2){return;} /*or throw

exception*/

string = string2;

 ….

}

The second class of invalid indicators is non-zero indicators.

One of the sources of such indicators are variables, which

were not initialized on the correct, or rather known, value like

the zero indicators. Another cause is handling the value of

indicators incorrectly (e.g. indicator arithmetic without proper

control of interventions). This security flaw is more

dangerous, as the indicator does not have to link into virtual

space not accessible for the application (it is not allocated or it

belongs into the core mode) and in case an attack code can

ensure allocation in target address space or somehow affect

the indicator, it is then possible to ensure the performance of a

malicious code with rights of the given process or a service.

F. Use-after-free

Use-after-free is one option of an invalid indicator, in which

the base of this error is vacating an object and subsequent

deallocation from memory, and afterwards an attempt to call a

method of this object or an access to a variable in it happens,

while the memory previously occupied by the object is already

allocated to a new object or it is being used by the still existing

object. Such error often occurs when of the variables linking

to this object does not reset to zero or when a new indicator

was not saved for some reason. The result is then often crash

of the code, as there is no executable code present in that

location at that moment or the function execution is started on

a random place. It is cause by not executing the prologue of a

function, when the environment including the buffer settings

for the given function is set. In less frequent cases, the whole

function including the prologue is being executed, but when

attempting to access the input parameters, random values, or

zeros if the page was set to zero by the system, will be loaded

and a failure occurs. Especially with a C++ object, in which

the first parameter includes the indicator of the beginning of

an object, then a zero indicator is not valid and no code is

ready for such indicator. In both cases, the application fails

and denial-of-service occurs. However, if the memory

contains data from the penetration code, the content is

executed in the given user context and for the components

running with higher rights, e.g. drivers, it is a successful

privilege escalation.

Analysis of Security Possibilities of Platforms for 3D Graphics

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 3 47

This flaw can easily be abused in Javascript, as it is a

significantly asynchronous code execution, including simple

explicit parallelization.

G. Out-of-memory

This vulnerability belongs among less serious flaws, as it

cannot force execution of another code in most cases. It is a

significant memory leak in the GPU driver, which is not

administering the memory used for graphic sources correctly,

and for module in core mode, it primarily concerns dynamic

buffers used for allocation and repair pages for data intended

to be loaded to the GPU. Although the memory for buffers in

core mode should be labeled as pageable, it is not a required

feature and a vulnerable driver can cause exhaustion of

unpageable memory under allocation request of the malicious

code and thus cause the instability and rare failures of drivers

and services using said memory.

H. Malformed input data

In the context of interface for 3D graphics, data input for

pipeline is one of the most important inputs. Each buffer

containing data of peaks must be in accordance with pre-

specified format, which defines the order of variables, their

type and size, and sometimes how they are used. Main

deviations are often determined by an initial validation,

executed by the runtime of the graphic interface, and their

processing is terminated. However, some anomalies cannot be

revealed this way. It is mostly incorrect values (e.g. abnormal

FP) or structures declared higher than in the buffer.

Alternative attack is then the timing attack, when the interval

between compilation of input and transfer of data to the driver

for processing is used. An attempt to process data behind the

border of the buffer and subsequent rewrite of internal

structures can occur in the driver itself, which is similar to

using buffer overflow. The extent of such flaw can range from

DOS to executing a code under the rights of the driver.

IV. CONCLUSION

The investigated area of 3D graphic interface and the issue

of it being attacked from the outside is very important topic in

operating systems’ security. We based our investigation on the

principles of WDDM driver architecture and DirectX

interface, which uses this architecture. It was discovered that

majority of functions and services within DirectX is

implemented in drivers from graphic cards. Therefore, the

main burden, from the viewpoint of implementing security

measures, lies on their programmers. Another important

finding is the extent of threat of important functions for

working with the pipeline. These functions use user defined

data or various buffers, including basic strings, for access.

Various methods of penetration, which could be used

against the interfaces and drivers implementing these

interfaces were analyzed. Several various penetrations were

identified and possible countermeasures appropriate for

graphic interfaces were suggested. The significance of this

paper is in its focus on identifying new methods of penetration

into the system via various graphic interfaces and in

suggesting of possible countermeasures considering their

implementation on graphic cards, which can help

programmers eliminate security threats.

ACKNOWLEDGMENT

This work and contribution is supported by the project of

the student grant competition of the University of Pardubice,

Faculty of Electrical Engineering and Informatics, Intelligent

Smart Grid networks protection system, using software-

defined networks, no. SGS_2016_016.

REFERENCES

[1] Feiner, Peter, Angela Demke Brown and Ashvin Goel, “Light-weight

kernel instrumentation framework using dynamic binary translation,”

The Journal of supercomputing, 2013. ISBN: 0920-8542..
[2] Suzaki, Kuniyasu, Toshiki Yagi, Kazukuni Kobara and Toshiaki

Ishiyama, “Kernel Memory Protection by an Insertable Hypervisor

Which Has VM Introspection and Stealth Breakpoints,” Advances in
Information and Computer Security, pp. 48, 2014. DOI: 10.1007/978-3-

319-09843-2_4.

[3] Xiong and Peng Liu. Silver, “Fine-Grained and Transparent Protection
Domain Primitives in Commodity OS Kernel,” Research in Attacks,

Intrusions, and Defenses, pp. 103, 2013. DOI: 10.1007/978-3-642-

41284-4_6.
[4] Srivastava, Abhinav and Jonathon Giffin, “Efficient protection of kernel

data structures via object partitioning,” Proceedings of the 28th Annual

Computer Security Applications Conference, pp. 429, 2012. DOI:
10.1145/2420950.2421012. ISBN 9781450313124.

[5] Marek, T., Krejcar, O., “Optimization of 3D Rendering by

Simplification of Complicated Scene for Mobile Clients of Web
Systems,” 7th International Conference, ICCCI, Lecture Notes in

Computer Science, vol. 9330, pp 3-12, 2015. DOI: 10.1007/978-3-319-

24306-1_1
[6] Marek, T., Krejcar, O., “Optimization of 3D Rendering in Mobile

Devices,” The 12th International Conference on Mobile Web and

Intelligent Information Systems, Lecture Notes in Computer Science,
vol. 9228, pp. 37-48, 2015. DOI: 10.1007/978-3-319-23144-0_4.

