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Abstract— This paper introduces the results of an analysis of 

security threats based on 3D graphics interface abuse mainly in 

Windows operating systems. Basic security threats, which can 

greatly influence the functionality and security of an operating 

system, are introduced in this paper. Due to the specific nature of 

the operating systems architecture, the most vulnerable part are 

the third party drivers, which have access to the core mode. 

Different approaches of protecting drivers are described together 

with disadvantages of these solutions. Practical methods of 

attacks are discussed in detail and when relevant, program 

alterations are suggested to program designers. The goal of these 

suggestion is to minimize or to completely eliminate mentioned 

security threats, making 3D graphics interface more secure. 

 

Index Terms— 3D Graphics; Security threats; Third party 

drivers. 

 

I. INTRODUCTION 

 

Thanks to IT specialist paying extra attention to security, usual 

pathways for malicious code have lately been either fully 

closed or very difficult to discover. Standard security threats 

are the topic of many defense strategies and approaches, such 

as layout randomization, utilizing NX security, rights 

restrictions within the operating system, locking authorization, 

utilizing isolation on application level in the form of integrity 

level or in the form of utilizing a sandbox with operating 

system interface restrictions. 

For this reason, the focus of attackers shifts to other parts of 

the operating system, through which the attackers could break 

through the security measures and which are hard to secure at 

all. Generally, we are speaking about any random code in core 

mode, which can use any processor instruction and thus access 

any sources. Code of core mode can be divided into the core 

itself, drivers, and system services. The only part, in which the 

highest percentage of third party codes is present, are the 

drivers needed to ensure the functionality of hardware or 

specialized software and thus the highest probability of critical 

errors is to be expected. The fundamental problem of drivers 

lies in the fact that the outer code is divided from them by thin 

interface oriented on power and not prepared to be used as a 

security divider. An example of such drivers is graphic card 

drivers, libraries, and services associated with them. Although 

the part of core interface is accessible only as system calls, 

graphic cards and their drivers are a potential security threat. 

Standard drivers are hidden from potentially untrustworthy 

codes using several different interfaces, parameters and data 

are processed and validated by the system. Specifically altered 

driver using DMA channels providing direct access to the 

memory for reading and writing directly into physical memory 

is far more common than an attack aimed at general drivers. 

Such process can be both, an attack or a rootkit detection 

method. 

Unlike standard drivers, graphic drivers mostly utilize 

separate interface and they interpret and perform complete 

code given by a client application. The result of this is a 

significantly better visible area for an attacker, and because 

WebGL standard, enabling Javascript access to graphic 

interfaces in webpages, exists, potential attack does not 

require anything else than malicious code attached to a 

webpage, e.g. in the form of a compiled script.  

The aim of the paper is to investigate possible pathways to 

breeching system security and to suggest security methods 

which could be applied to graphic card drivers. 

 

II. DEFINITION OF PROBLEMS AND THEIR ANALYSIS  

 

Recently, several approaches to how to deal with security 

threats of general drivers exist, but almost all of them are 

dependent on using virtualization of the first type and a 

hypervisor as an isolated environment for monitoring and 

checking the drivers. 

First option, which is not using virtualization, is an 

approach described in [1], in which an adaptation of code 

instrumentation using a translation of binary code is 

suggested. This approach is primarily designed for operating 

systems based on a Linux core, which differs greatly from 

Windows in its implementation of core mode and services. 

Another problem is that this approach can be applied on a 

GPU code, as it is processed solely on a driver and afterwards 

by hardware and it is therefore not possible to prevent 

interference through the GPU. The last issue with this 

approach is the power demand of the graphic card and its 

influence on its performance.  

Next solution is utilizing full virtualization for DriverGuard 

(DG), as introduced in [2], in which one can use a lite version 

of a hypervisor to put the control code above the code of the 

controlled system, while the supervisor also has to be able to 

distinguish individual types of allocated memory so it is 

possible to distinguish the program part of memory from the 

data part. The principle lies in monitoring changes in the data 

area of the memory of the driver, so when DG accesses a page 
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of a secured area, it forces throwing an exception, resulting in 

stopping the code execution. Just like when using classic 

debug function, int 3, without the driver or the malicious code 

could recognize such action. DG then analyses the source of 

the access and based on the analysis, it either permits or denies 

access. 

Another group of solutions for this issue is virtualization of 

only selected components and drivers, as introduced in [3] as 

SILVER. Each object in core mode is encapsulated in its own 

virtualization with a common hypervisor. When accessing the 

particular objects or executing their code, the impossibility of 

direct modification of paging tables is used and instead, the 

tables itself are being switched between, and thus only a 

restricted view of the core memory with optional different 

permission for each object is possible. 

The solution introduced in [4] utilizes a hypervisor for 

monitoring writings into secured areas in memory and also 

forces the memory department with sensitive data structures 

from others, because it is not possible to efficiently use 

smaller allocation unit than the memory page, which is 

minimally 4kB on x86 processors, which would not permit 

using the assistance of memory unit of the processor. The first 

problem is the dependency on virtualization, which might not 

be available all the time, and without virtualization of I/O 

ports, it is not possible to deny the GPU access to secured 

memory efficiently. Another problem is the impossibility to 

secure data structures of drivers, mostly data drivers of the 

graphic card. 

The issue with abovementioned solutions is the non-zero 

effect on system performance and in case of graphic drivers; 

those solutions cannot be suitable for majority of users who 

demand the highest GPU performance. 

Besides the effect on the performance, possible 

incompatibilities with given hardware and the way of its 

utilization are an issue for general hypervisors, as the 

operation system itself has high requirements on 

virtualization. 

Virtualization security, such as SILVER, requires larger 

disadvantageous modification of the system, in order to 

execute necessary allocations of core objects and their 

allocation to individual virtualizations. A significant 

disadvantage is then noticeable effect on system performance, 

as it is necessary to have extensive code for memory 

administration, and each switch between objects, or between 

the user and the core modes, will be significantly more 

difficult. 

For all abovementioned solutions, there is one characteristic 

common disadvantage, because they require the system to 

support virtualization extension. For x86 an x86-64, exist two 

pairs of virtualization technologies. VT-X and VT-D by Intel 

and AMD-V and AMD-Vi by AMD. VT-X and AMD-V 

extensions provide basic support for virtualization and 

administration of a hypervisor, host system, and guest 

systems. The support consists of instructions administrating 

virtualized systems and possible extensions of system objects, 

such as extended page table (EPT) or advanced programmable 

interrupt controller virtualization (APICV). VT-D and AMD-

Vi are virtualization extensions that extend basic virtualization 

by support for virtualization of input-output sources. The aim 

is extending the isolation of the guest system from the 

viewpoint of working with hardware without noticeably 

affecting system performance, which would be cause by 

software emulation and hardware translation. These extensions 

offer the option to utilize memory addresses designated for 

direct memory access (DMA), routing interruptions, and 

supporting direct sending of interruptions from the virtualized 

devices to virtual processors. 

Another solution is DeviceGuard. It is a function 

implemented in the core of Windows 10 operating system, 

which uses virtualization to protect processes working with 

signatures, system processes and drivers of devices, from 

outer attacks. The disadvantage of the whole system are 

system requirements, as it is necessary to ensure correct 

implementation of UEFI firmware with the SecureBoot 

function, which verifies the integrity of booting up the system 

and Hyper-V virtualization, which requires both extensions, 

the VT-X and VT-D. 

In Windows 10, there are also Shielded VMs, running under 

Hyper-V, which contain restricted SKernel, which does not 

support any drivers, except for necessary minimum, and which 

enables to host sensitive system services, such as Local 

Security Authority (LSA) in such a way, that sensitive 

information contained in them are secured. It is mostly the 

security of logging information against an attack from an 

administrator account. 

In present days there is no solution that would deal with the 

issues of the security of graphic drivers and work with GPU 

without utilizing virtualization, negatives of which have been 

mentioned above. Most of the current work is focused on 

optimization of 3D rendering in mobile devices with no focus 

on enhancing security [5,6].  

 

III. SECURITY THREATS AND THEIR SOLUTIONS  

 

Among the main analyzed security threats and 

vulnerabilities belong Buffer over-flow, Timing attack, Object 

slicing, reading and underflow of character buffers, invalid 

indicator, Use-after-free, Out-of-memory, and Malformed 

input data. Each security threat was assessed based on its 

significance and the possibility of redress. 

 

A. Buffer Overflow 

It is a standard error, during which the code writes behind 

the border defined as the area of the memory. This way, the 

attacker may in some cases rewrite the data structure, in which 

the given buffer is located. 

The main aim when abusing this error, is rewriting 

indicators in such a way that they would link to a memory 

under the attacker's influence, or which contains content 

provided by the attacker and with a known address. The 

content is then a machine code, which can attempt to abuse 

other vulnerabilities to gain higher permissions or to execute 

target activity. This flaw and this particular way of abuse for 

user code throws an exception, as the access memory is solely 

in pages with prohibited code execution. This restriction is 

present since Windows XP Service Pack 2 and it primary uses 

one of the free bits in the description of a page labeling 

restrictions. The processor supporting this function throws a 

special exception, which then terminates the process. 

This measure cannot be applied by default drivers in the 
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core mode, as an exception will cause fast system termination, 

because at that moment, there is no guarantee for any non-

standard exception that structures and allocated memory for 

the core mode are not damaged. The drivers thus must 

explicitly call for such labelled memory and this option is 

available since Windows 8. 

Attack alternative to the previous one is the rewrite of the 

NULL ending character by a random byte, and abuse of 

incorrect work with standard functions for working with 

strings in C language, which use the NULL character to 

determine the end of the string. In such case, the error cause 

the possibility to read the memory behind the character string 

and it enables possible data leak or getting information 

necessary for subsequent attacks. Alternatively, the memory 

can be rewritten by the following code and thus cause a buffer 

overflow with the safe effect: 

 
Void VulnerableFunction (wchar_t 

*buffer,int cbLength) 

{ 

char* dest = malloc(…); 

memcpy(dest,buffer,cbLength*sizeof(wchar_

t)); 

… 

} 

 

B. Timing Attack 

It is a class of errors in code, when the function does not 

validate the input from the calling code correctly, or it 

validates it prematurely, and the attacker then can, thanks to 

more core processes, change parameters from a different 

thread and bypass authentication code, as depicted on Figure 

1. 

The basic assumption is that the function takes over one of 

the input parameter, object indicator, basic parameters of 

which can be altered parallel in a different thread. The aim of 

the attack is to cause buffer overflow or another error, e.g. a 

free indicator. The most significant disadvantage of such an 

attack is an inherent dependency on a programming error, 

when the access to a given object from more threads is not 

treated correctly and race conditioned, and depending on many 

factors, such as sequencing threads for performance or system 

activity of the core, the attacker's thread can but does not have 

to have the window to parallel manipulation with an object. 

Standard security for such kind of attacks is validating 

borders of array for every iteration or disablement of the 

internal structure of an object for an outer code and forcing 

access through methods, which force synchronization through 

threads or which fill in missing synchronizations. 

The disadvantage of such defense is the necessity to 

validate the buffer for every iteration. Because modern 

processors possess high efficiency of branching predictor, but 

that means at least several instructions more. In addition, such 

solution will prevent any code vectorization, i.e. utilization of 

specialized instructions for parallel processing of several 

elements at once. In the case of AVX extension for 

instructional set x86/x64, the number of elements can be as 

high as 8 elements for one instruction. In other cases, the 

condition requires performing functions that are more complex 

and thus reaching further loss of performance.  

Locking the memory page belongs among the suggested 

methods of security dealing with timing attacks. With buffers 

it is possible to force allocation in individual pages and it is 

also possible to change page security before validation from 

read/write to "read only" using the VirtualProtect function, 

which instructs the memory administrator to make changes to 

memory attributes concerning security of pages containing the 

given extent defined by an address and size. Subsequently, a 

copy from memory allocated by the user is made into the 

memory controlled by runtime or a driver. If it is not possible 

to ensure the use of an allocator, which uses separate pages for 

allocation, it is then possible to introduce change of memory 

administration, which will enable to lock the heap, in which 

the given array is located an thus prevent any changes. 

 

JavaScipt 
code

Modification of 
buffer

WebGL

Validation

Procesing

Function call (buffer pointer)

 
Figure 1: Timing attack 

 

Another possible solution is strict access synchronization. 

With objects of graphic interface, it is possible to rather easily 

ensure complete access synchronization. To achieve 

scalability, it is possible to utilize Slim Reader/Writer (SRW) 

stamps, which were located in individual public methods. An 

alternative to access synchronization is attribute locking, i.e. 

introducing a type bool variable, which will deactivate codes 

of other methods for the given instance of the object after 

calling an executive method.  

We recommend to switch from C code to a C++ code and to 

utilize STL (standard template library), which allows to use 

iterators to check the extent. 

 

C. Object Slicing  

This security issue occurs primarily in object-oriented 

languages, in which a class can extend the definition of a 

superior class by another attribute and then during transferring 

the object to a function, which expects a superior class, the 

object can have the added attributes trimmed. With indicators, 

the trim itself is not realized, but methods which will be called 

and which will belong to the superior class, will not know 

about other attributes. If one or more methods were deployed 

within an inferior class, they will behave according to the new 

code and subsequently perform incorrect functions, or they 

will lead to a security flaw.  

The same problem applies to the procedural C language, in 

which the code can define several structures with a common 

base and of similar structure. The design of the solution to this 

issue lies in two complementary approaches. In the first case, 
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additional variable, which determines the version of the 

object, is introduced in classes. If the variable is introduced at 

the beginning of the declaration, it will be present even in case 

of trimming. Another method is using RunTime Type 

Information of the given language and in the event of 

transferring indicators, it is possible to verify their relevance. 

 

D. Character Buffer Overflow and Underflow 

Character buffer overflow and underflow is a combination 

of a buffer overflow with a timing attack when character 

buffers are used for functions that process files or shader 

functions for saving the name of the file of a shader, and these 

buffers are often controlled by a vulnerable code, or directly 

by a code trying to penetrate it. Vulnerable code can be 

Javascript, which runs under the web browser or in 

independent environment, such as V8, and which is used as a 

3D interface of WebGL. Because initial validation of strings is 

performed during transferring names from the user code into 

the WebGL interface and then to components responsible for 

processing requests, there is an interval between the initial 

validation and the finish of copying into the buffer. Such 

buffer is controlled by a responsible component. Penetrating 

code, which is running within the original Javascript and 

which has access to the source string, can then attempt to 

change the content to a shorter or longer string which contains 

malicious code or other data specific for the object containing 

the target buffer. If the code is loaded within this interval, the 

vulnerable function then rewrites the content not only of the 

target buffer, but also the rest remaining part of the object. 

 

E.  Invalid Indicator  

Invalid indicators are an important calls of errors, 

significance of which ranges from the option to cause an 

application or a service to crash, i.e. a DOS type attack, to 

forcing a run of a malicious code. The simplest type of an 

invalid indicator is a zero indicator, which links to a memory 

on the 0 address. This memory is not labelled as invalid on 

common platforms (IA 32/IA 64 or ARM). In order to detect 

common errors in programs, first 64kB of virtual memory are 

labelled as inaccessible and thus when attempting to 

dereference the zero indicator, an exception is thrown by a 

memory controller of the processor. Such exception typically 

terminates the process of the code does not filter this 

exception and does not attempt to continue. The most common 

reason for the existence of a zero indicator of the failure of 

memory allocation, or the attempt to extend the allocated array 

fail, as shown in the following example: 

 
void BadFunctionWithResizing(char* 

string) 

{ 

…. 

string = Realloc(string,new_size); 

 …. 

} 

 

Vulnerable code rewrites the original indicator with a new 

one, which is returned by the standard realloc function. The 

problem is that if allocation of new memory fails, a zero 

indicator is returned and an error indicator and the original 

allocation are kept. However, in that moment the indicator of 

the original memory is lost and thus a memory leak is caused, 

but when attempting to use such indicator, an exception is 

thrown and the application crashes. 

The following demonstration shows one possibility how to 

repair this security flaw: 

 
void CorrectFunctionWithResizing(char* 

string) 

{ 

…. 

char *string2 = Realloc(string,new_size); 

if(!string2){return;} /*or throw 

exception*/ 

string = string2; 

 …. 

} 
 

The second class of invalid indicators is non-zero indicators. 

One of the sources of such indicators are variables, which 

were not initialized on the correct, or rather known, value like 

the zero indicators. Another cause is handling the value of 

indicators incorrectly (e.g. indicator arithmetic without proper 

control of interventions). This security flaw is more 

dangerous, as the indicator does not have to link into virtual 

space not accessible for the application (it is not allocated or it 

belongs into the core mode) and in case an attack code can 

ensure allocation in target address space or somehow affect 

the indicator, it is then possible to ensure the performance of a 

malicious code with rights of the given process or a service. 

 

F. Use-after-free  

Use-after-free is one option of an invalid indicator, in which 

the base of this error is vacating an object and subsequent 

deallocation from memory, and afterwards an attempt to call a 

method of this object or an access to a variable in it happens, 

while the memory previously occupied by the object is already 

allocated to a new object or it is being used by the still existing 

object. Such error often occurs when of the variables linking 

to this object does not reset to zero or when a new indicator 

was not saved for some reason. The result is then often crash 

of the code, as there is no executable code present in that 

location at that moment or the function execution is started on 

a random place. It is cause by not executing the prologue of a 

function, when the environment including the buffer settings 

for the given function is set. In less frequent cases, the whole 

function including the prologue is being executed, but when 

attempting to access the input parameters, random values, or 

zeros if the page was set to zero by the system, will be loaded 

and a failure occurs. Especially with a C++ object, in which 

the first parameter includes the indicator of the beginning of 

an object, then a zero indicator is not valid and no code is 

ready for such indicator. In both cases, the application fails 

and denial-of-service occurs. However, if the memory 

contains data from the penetration code, the content is 

executed in the given user context and for the components 

running with higher rights, e.g. drivers, it is a successful 

privilege escalation. 
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This flaw can easily be abused in Javascript, as it is a 

significantly asynchronous code execution, including simple 

explicit parallelization. 

 

G. Out-of-memory 

This vulnerability belongs among less serious flaws, as it 

cannot force execution of another code in most cases. It is a 

significant memory leak in the GPU driver, which is not 

administering the memory used for graphic sources correctly, 

and for module in core mode, it primarily concerns dynamic 

buffers used for allocation and repair pages for data intended 

to be loaded to the GPU. Although the memory for buffers in 

core mode should be labeled as pageable, it is not a required 

feature and a vulnerable driver can cause exhaustion of 

unpageable memory under allocation request of the malicious 

code and thus cause the instability and rare failures of drivers 

and services using said memory. 

 

H. Malformed input data 

In the context of interface for 3D graphics, data input for 

pipeline is one of the most important inputs. Each buffer 

containing data of peaks must be in accordance with pre-

specified format, which defines the order of variables, their 

type and size, and sometimes how they are used. Main 

deviations are often determined by an initial validation, 

executed by the runtime of the graphic interface, and their 

processing is terminated. However, some anomalies cannot be 

revealed this way. It is mostly incorrect values (e.g. abnormal 

FP) or structures declared higher than in the buffer. 

Alternative attack is then the timing attack, when the interval 

between compilation of input and transfer of data to the driver 

for processing is used. An attempt to process data behind the 

border of the buffer and subsequent rewrite of internal 

structures can occur in the driver itself, which is similar to 

using buffer overflow. The extent of such flaw can range from 

DOS to executing a code under the rights of the driver. 

 

IV. CONCLUSION 

 

The investigated area of 3D graphic interface and the issue 

of it being attacked from the outside is very important topic in 

operating systems’ security. We based our investigation on the 

principles of WDDM driver architecture and DirectX 

interface, which uses this architecture. It was discovered that 

majority of functions and services within DirectX is 

implemented in drivers from graphic cards. Therefore, the 

main burden, from the viewpoint of implementing security 

measures, lies on their programmers. Another important 

finding is the extent of threat of important functions for 

working with the pipeline. These functions use user defined 

data or various buffers, including basic strings, for access.  

Various methods of penetration, which could be used 

against the interfaces and drivers implementing these 

interfaces were analyzed. Several various penetrations were 

identified and possible countermeasures appropriate for 

graphic interfaces were suggested. The significance of this 

paper is in its focus on identifying new methods of penetration 

into the system via various graphic interfaces and in 

suggesting of possible countermeasures considering their 

implementation on graphic cards, which can help 

programmers eliminate security threats.  
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